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We develop convergence criteria of an iterative learning control on the whole desired trajectory to obtain the hysteresis-
compensating feedforward input in hysteretic systems. In the analysis, the Prandtl-Ishlinskii model is utilized to capture the
nonlinear behavior in piezoelectric actuators. Finally, we apply the control algorithm to an experimental piezoelectric actuator
and conclude that the tracking error is reduced to 0.15% of the total displacement, which is approximately the noise level of the
sensor measurement.

1. Introduction

Piezoelectric actuators (PEAs) have been widely used in nan-
opositioning systems due to their fast response and nanome-
ter scale resolution [1–3]. However, the hysteresis existing in
PEAs can greatly limit system performance [4, 5]. Control
of hysteretic system is an important area of control system
research and a challenging problem [6–9]. Research on feed-
back and model-based feedforward control has been stud-
ied to achieve relatively high-precision positioning [10–13].
Iterative methods can be used to improve the positioning
performance if the positioning application is repetitive.
Therefore, many researchers study the iterative and adaptive
control methods to minimize the adverse effect of hysteresis
[14–18].

The main challenge in iterative approaches for hysteretic
systems is to assure convergence of the iterative algorithm.
Leang and Devasia divide a general desired trajectory into
some monotonicity partition [15, 16]. Afterwards, they prove
the convergence of iterative learning control (ILC) algorithm
on each single branch. In this paper, we study the design of
(ILC) algorithm to compensate for hysteresis-caused error in
PEAs. The main contribution of our work is proving conver-
gence of ILC algorithm on whole tracking trajectory.

The remainder of this paper is organized as follows. First,
we state the problem in the next section. Afterwards, we

briefly review the Prandtl-Ishlinskii model in the context of
this work and prove convergence of the ILC algorithm we
designed. Finally, we implement the ILC algorithm on exper-
imental stage and show our experimental results and conclu-
sions.

2. Problem Statement

Consider a hysteretic system of the following form:

𝑦 (𝑡) = 𝐻 [V (𝑡)] , (1)

where V(𝑡) ∈ R is the input, 𝑦(𝑡) ∈ R is the output, and 𝐻
denotes the hysteresis function R → R. For a given desired
trajectory 𝑦𝑑(𝑡) defined on the finite time interval 𝑡 ∈ [0, 𝑇],
the objective is to find an input V𝑑(𝑡) by way of the following
iterative learning control (ILC) algorithm:

V𝑘+1 (𝑡) = V𝑘 (𝑡) + 𝛾𝑒𝑘 (𝑡) , (2)

where 𝑒𝑘(𝑡) = 𝑦𝑑(𝑡)−𝑦𝑘(𝑡), 𝛾 is a constant (to be determined),
and V𝑘(𝑡) and 𝑦𝑘(𝑡) are the input and output at the 𝑘th itera-
tion, respectively. Figure 1 depicts the block diagram of the
ILC algorithm. The goal of the ILC algorithm is to generate
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Figure 1: The ILC scheme.

a feedforward control input V𝑘(𝑡) → V𝑑(𝑡) in the ‖ ⋅ ‖∞ norm
sense, where

‖⋅‖∞ ≜ sup
𝑡∈[0,𝑇]

|V (𝑡)| . (3)

In this paper,𝐶[0, 𝑇] is used to denote the space of contin-
uous functions on 𝑡 ∈ [0, 𝑇], and 𝐶𝑚[0, 𝑇] denotes the space
of continuous monotone functions on 𝑡 ∈ [0, 𝑇].

Definition 1 (incremental strictly increasing operators). An
operator 𝐹 : 𝐶[0, 𝑇] → 𝐶[0, 𝑇] is called incremental and
strictly increasing, if, for V1, V2 ∈ 𝐶[0, 𝑇], considering the
ordering V1(𝑡) ≥ V2(𝑡) for all 𝑡 ∈ [0, 𝑇], there exist constants
𝑘1, 𝑘2 > 0 such that

𝑘1 (V1 (𝑡) − V2 (𝑡)) ≤ 𝐹 [V1] (𝑡) − 𝐹 [V2] (𝑡)

≤ 𝑘2 (V1 (𝑡) − V2 (𝑡)) ,
(4)

for any 𝑡 ∈ [0, 𝑇].

Lemma 2. Let the operator 𝐹 : 𝐶[0, 𝑇] → 𝐶[0, 𝑇] be incre-
mental and strictly increasing. If 0 < 𝛾 ≤ 1/𝑘2 and V0(𝑡) ≤
V𝑑(𝑡) in (2) for all 𝑡 ∈ [0, 𝑇], then V𝑘(𝑡) ≤ V𝑑(𝑡) for any 𝑡 ∈
[0, 𝑇].

Proof. Weuse themathematical induction to prove this asser-
tion. First, we prove V𝑑(𝑡) − V1(𝑡) ≥ 0 for any 𝑡 ∈ [0, 𝑇].
Consider

V𝑑 (𝑡) − V1 (𝑡)

= V𝑑 (𝑡) − V0 (𝑡) − 𝛾 (𝑦𝑑 (𝑡) − 𝑦0 (𝑡))

= V𝑑 (𝑡) − V0 (𝑡) − 𝛾 (𝐹 [V𝑑] (𝑡) − 𝐹 [V0] (𝑡))

≥ V𝑑 (𝑡) − V0 (𝑡) − 𝛾𝑘2 (V𝑑 (𝑡) − V0 (𝑡))

= (1 − 𝛾𝑘2) (V𝑑 (𝑡) − V0 (𝑡)) ,

(5)

where 1 − 𝛾𝑘2 ≥ 0. We can obtain V𝑑(𝑡) ≥ V1(𝑡). Then, we
assume V𝑑(𝑡) − V𝑘(𝑡) ≥ 0, for all 𝑡 ∈ [0, 𝑇], and

V𝑑 (𝑡) − V𝑘 + 1 (𝑡)

= V𝑑 (𝑡) − V𝑘 (𝑡) − 𝛾 (𝑦𝑑 (𝑡) − 𝑦𝑘 (𝑡))

= V𝑑 (𝑡) − V𝑘 (𝑡) − 𝛾 (𝐹 [V𝑑] (𝑡) − 𝐹 [V𝑘] (𝑡))

≥ V𝑑 (𝑡) − V𝑘 (𝑡) − 𝛾𝑘2 (V𝑑 (𝑡) − V𝑘 (𝑡))

= (1 − 𝛾𝑘2) (V𝑑 (𝑡) − V𝑘 (𝑡)) ;

(6)

we also get V𝑑(𝑡) − V𝑘+1(𝑡) ≥ 0; therefore, the assertion holds.

Lemma 3. Let the operator 𝐹 : 𝐶[0, 𝑇] → 𝐶[0, 𝑇] be incre-
mental and strictly increasing with constants 𝑘1, 𝑘2 as defined
by Definition 1. Then,

(𝑘2V1 (𝑡) − 𝐹 [V1] (𝑡)) − (𝑘2V2 (𝑡) − 𝐹 [V2] (𝑡))
∞

≤ (𝑘2 − 𝑘1)
V1 (𝑡) − V2 (𝑡)

∞

(7)

for all V1(𝑡), V2(𝑡) ∈ 𝐶[0, 𝑇].

Proof. See [19].

Theorem 4. Consider a system of the form 𝑦(𝑡) = 𝐹[V](𝑡). Let
the operator𝐹 : 𝐶[0, 𝑇] → 𝐶[0, 𝑇] be incremental and strictly
increasing. If the constant 0 < 𝛾 ≤ 1/𝑘2 and V0, V𝑑 ∈ 𝐶[0, 𝑇],
V0(𝑡) ≤ V𝑑(𝑡) for all 𝑡 ∈ [0, 𝑇], then the iterative control
algorithm converges; that is,

V𝑑 (𝑡) − V𝑘 (𝑡)
∞ ≤ 𝜌

𝑘V𝑑 (𝑡) − V0 (𝑡)
∞,

(8)

where 𝜌 < 1 and V𝑘(𝑡) → V𝑑(𝑡) uniformly in 𝑡 ∈ [0, 𝑇] as
𝑘 → ∞.

Proof. To prove the convergence of the ILC algorithm, we
show contraction of the input (2). Subtracting V𝑑(𝑡) fromboth
sides of (2) and substituting 𝐹[V](𝑡) in place of 𝑦(𝑡), we get

V𝑑 (𝑡) − V𝑘+1 (𝑡)

= V𝑑 (𝑡) − V𝑘 (𝑡) − 𝛾 (𝑦𝑑 (𝑡) − 𝑦𝑘 (𝑡))

= V𝑑 (𝑡) − V𝑘 (𝑡) − 𝛾 (𝐹 [V𝑑] (𝑡) − 𝐹 [V𝑘] (𝑡)) ,

(9)

for all 𝑡 ∈ [0, 𝑇]. Taking the function ‖ ⋅ ‖∞ norm of (9), we
get

V𝑑(𝑡) − V𝑘+1(𝑡)
∞

=
V𝑑 (𝑡) − V𝑘 (𝑡) − 𝛾 (𝐹 [V𝑑] (𝑡) − 𝐹 [V𝑘] (𝑡))

∞.

(10)

By Lemma 2, we obtain V𝑑(𝑡) ≥ V𝑘(𝑡) for all 𝑡 ∈ [0, 𝑇]. Since
the operator 𝐹 is incrementally strictly increasing with
constants 𝑘1 ≤ 𝑘2 and 0 < 𝛾 ≤ 1/𝑘2, then by Lemma 3 we
obtain

V𝑑(𝑡) − V𝑘+1(𝑡)
∞

≤ (1 − 𝛾𝑘1)
V𝑑 (𝑡) − V𝑘 (𝑡)

∞

≜ 𝜌
V𝑑 (𝑡) − V𝑘 (𝑡)

∞,

(11)

where𝜌 = 1−𝛾𝑘1 < 1. Because 0 < 𝜌 < 1, (11) is a contraction.
By induction, we obtain that

V𝑑 (𝑡) − V𝑘 (𝑡)
∞ ≤ 𝜌

𝑘V𝑑 (𝑡) − V0 (𝑡)
∞;

(12)

therefore, the sequence ‖V𝑑(𝑡) − V𝑑(𝑡)‖∞ → 0 as 𝑘 → ∞;
that is, V𝑘(𝑡) converges to V𝑑(𝑡) uniformly in 𝑡 ∈ [0, 𝑇]. Proof
is completed.
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3. The Prandtl-Ishlinskii Hysteresis Model

The Prandtl-Ishlinskii (PI) model can be used to capture the
rate-independent hysteresis nonlinearity in piezoelectric
actuators. In this section, the PI model is presented.

The PI model utilizes the play or stop operators and a
density function to characterize the hysteresis behavior. The
hysteresis play operator is illustrated in Figure 2, while its
detailed formulations have been presented in [20]. For a given
input V(𝑡) ∈ 𝐶𝑚[0, 𝑇], the play operator 𝐹𝑟[V](𝑡) with
threshold 𝑟 is defined by

𝐹𝑟 [V; 𝜓] (0) = 𝑓𝑟 (V (0) , 𝜓) ,

𝐹𝑟 [V; 𝜓] (𝑡) = 𝑓𝑟 (V (𝑡) , 𝐹𝑟 [V; 𝜓] (𝑡𝑖)) ,

for 𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1, 0 ≤ 𝑖 ≤ 𝑁,

(13)

with

𝑓𝑟 (V, 𝑤) = max (V − 𝑟,min (V + 𝑟, 𝑤)) , (14)

where 𝜓 is initial value of the operator 𝐹𝑟, and 0 = 𝑡0 < 𝑡1 <
⋅ ⋅ ⋅ < 𝑡𝑁 = 𝑇 is a partition of [0, 𝑇], such that the input
function V is monotone on each subinterval [𝑡𝑖, 𝑡𝑖+1].

3.1. Property of Play Operator

Lemma 5. For any 𝑟 ≥ 0, the operator 𝐹𝑟 can be extended
uniquely to a Lipschitz continuous operator𝐹𝑟 : 𝐶[0, 𝑇]×R →

𝐶[0, 𝑇]. And it holds for all V1, V2 ∈ 𝐶[0, 𝑇], for all initial values
𝜓1, 𝜓2 ∈ R, and for all 𝑡 ∈ [0, 𝑇]. Consider

𝐹𝑟 [V1; 𝜓1] (𝑡) − 𝐹𝑟 [V2; 𝜓2] (𝑡)


≤ max( sup
𝜏∈[0,𝑡]

V1 (𝜏) − V2 (𝜏)
 ,
𝜓1 − 𝜓2

)

(15)

𝐹𝑟 [V1; 𝜓1] (𝑡) ≤ 𝐹𝑟 [V2; 𝜓2] (𝑡) , if V1 ≤ V2, 𝜓1 ≤ 𝜓2.

(16)

Proof. See [20] Section 2.3.

Lemma 6. If V1(𝑡) ≥ V2(𝑡), for all 𝑡 ∈ [0, 𝑇], and initial value
𝜓1 = 𝜓2 = 0, a Lipschitz continuous operator 𝐹𝑟 : 𝐶[0, 𝑇] ×
𝑅 → 𝐶[0, 𝑇] is incremental and strictly increasing; that is,
there exist constants 𝑘1, 𝑘2 > 0 such that 𝑘1(V1(𝑡) − V2(𝑡)) ≤
𝐹𝑟[V1](𝑡) − 𝐹𝑟[V2](𝑡) ≤ 𝑘2(V1(𝑡) − V2(𝑡)).

Proof. Consider

𝐹𝑟 [V1; 𝜓1] (𝑡) − 𝐹𝑟 [V2; 𝜓2] (𝑡)

= 𝐹𝑟 [V1] (𝑡) − 𝐹𝑟 [V2] (𝑡)

= 𝑓𝑟 (V1 (𝑡) , 𝐹𝑟 [V1] (𝑡 − 1)) − 𝑓𝑟 (V2 (𝑡) , 𝐹𝑟 [V2] (𝑡 − 1)) .
(17)

Since V1(𝑡) ≥ V2(𝑡), for all 𝑡 ∈ [0, 𝑇], and initial value 𝜓1 =
𝜓2 = 0, then 𝐹𝑟[V1](0) ≥ 𝐹𝑟[V2](0). By induction, 𝐹𝑟[V1](𝑡) ≥
𝐹𝑟[V2](𝑡). There must exist a constant 𝑘1 > 0 such that

𝐹𝑟 [V1] (𝑡) − 𝐹𝑟 [V2] (𝑡) ≥ 𝑘1 (V1 (𝑡) − V2 (𝑡)) . (18)

w

r > 0

−r

�

Figure 2: Play operator.

Because 𝐹𝑟[V1](𝑡) −𝐹𝑟[V2](𝑡) ≥ 0 and 𝜓1 = 𝜓2 = 0, (15) can be
simplified as

𝐹𝑟 [V1] (𝑡) − 𝐹𝑟 [V2] (𝑡) ≤ sup
𝜏∈[0,𝑡]

(V1 (𝜏) − V2 (𝜏)) . (19)

Let 𝛼(𝑡) > 0 and sup
𝜏∈[0,𝑡]

(V1(𝜏) − V2(𝜏)) = 𝛼(𝑡)(V1(𝑡) − V2(𝑡)).
We get

𝐹𝑟 [V1] (𝑡) − 𝐹𝑟 [V2] (𝑡) ≤ sup
𝜏∈[0,𝑡]

(𝛼 (𝜏)) (V1 (𝑡) − V2 (𝑡)) .

(20)

Let 𝑘2 = sup
𝜏∈[0,𝑡]

(𝛼(𝜏)). From (18) and (20), we obtain

𝑘1 (V1 (𝑡) − V2 (𝑡)) ≤ 𝐹𝑟 [V1] (𝑡) − 𝐹𝑟 [V2] (𝑡)

≤ 𝑘2 (V1 (𝑡) − V2 (𝑡)) ;
(21)

therefore, the assertion holds.

3.2. Property of the Prandtl-Ishlinskii Model. The PI model
assumes that the output 𝑦(𝑡) of a piezoelectric actuator is a
weighted superposition of basic 𝐹𝑟[V]. The output 𝑦(𝑡) is
written as

𝑦 (𝑡) = 𝐻 [V] (𝑡) = ∫
∞

0

𝐹𝑟 [V] (𝑡) 𝑝 (𝑟) 𝑑𝑟, (22)

where 𝑝(𝑟) is a given density function, satisfying 𝑝(𝑟) ≥ 0

with ∫∞
0
𝑝(𝑟)𝑑𝑟 < ∞.

Lemma 7. If V1(𝑡) ≥ V2(𝑡), for all 𝑡 ∈ [0, 𝑇], and all initial
values 𝜓1 = 𝜓2 in all operators 𝐹𝑟, then PI operator 𝐻 :

𝐶[0, 𝑇] → 𝐶[0, 𝑇] is incremental and strictly increasing; that
is, there exist constants 𝜆1, 𝜆2 > 0 such that

𝜆1 (V1 (𝑡) − V2 (𝑡)) ≤ 𝐻 [V1] (𝑡) − 𝐻 [V2] (𝑡)

≤ 𝜆2 (V1 (𝑡) − V2 (𝑡))
(23)

for any 𝑡 ∈ 𝐶[0, 𝑇].
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Proof. Consider

𝐻[V1] (𝑡) − 𝐻 [V2] (𝑡)

= ∫

∞

0

𝐹𝑟 [V1] (𝑡) 𝑝 (𝑟) 𝑑𝑟 − ∫
∞

0

𝐹𝑟 [V2] (𝑡) 𝑝 (𝑟) 𝑑𝑟

= ∫

∞

0

(𝐹𝑟 [V1] (𝑡) − 𝐹𝑟 [V2] (𝑡)) 𝑝 (𝑟) 𝑑𝑟

≤ ∫

∞

0

𝑘2 (V1 (𝑡) − V2 (𝑡)) 𝑝 (𝑟) 𝑑𝑟

= 𝑘2 ∫

∞

0

𝑝 (𝑟) 𝑑𝑟 (V1 (𝑡) − V2 (𝑡))

≜ 𝜆2 (V1 (𝑡) − V2 (𝑡)) ,
(24)

for any 𝑡 ∈ 𝐶[0, 𝑇], where 𝜆2 = 𝑘2 ∫
∞

0
𝑝(𝑟)𝑑𝑟. Similarly, we

can get

𝐻[V1] (𝑡) − 𝐻 [V2] (𝑡)

= ∫

∞

0

(𝐹𝑟 [V1] (𝑡) − 𝐹𝑟 [V2] (𝑡)) 𝑝 (𝑟) 𝑑𝑟

≥ 𝑘1 ∫

∞

0

𝑝 (𝑟) 𝑑𝑟 (V1 (𝑡) − V2 (𝑡))

≜ 𝜆1 (V1 (𝑡) − V2 (𝑡)) ,

(25)

for any 𝑡 ∈ 𝐶[0, 𝑇], where 𝜆1 = 𝑘1 ∫
∞

0
𝑝(𝑟)𝑑𝑟. Proof is

completed.

Theorem 8. Consider a hysteretic system of the form 𝑦(𝑡) =

𝐻[V](𝑡). Let the PI hysteresis operator 𝐻 satisfy the condition
of Lemmas 6 and 7. If the constant 0 < 𝛾 ≤ 1/𝜆2 and V0, V𝑑 ∈
𝐶[0, 𝑇] in (2), V0(𝑡) ≤ V𝑑(𝑡) for all 𝑡 ∈ [0, 𝑇], then the iterative
control algorithm converges; that is,

V𝑑 (𝑡) − V𝑘 (𝑡)
∞ ≤ 𝜌

𝑘V𝑑 (𝑡) − V0 (𝑡)
∞,

(26)

where 0 < 𝜌 < 1 and V𝑘(𝑡) → V𝑑(𝑡) uniformly in 𝑡 ∈ [0, 𝑇] as
𝑘 → ∞.

Proof. The proof is identical to the proof of Theorem 4.

4. Experimental Results

4.1. Experimental Setup. The ILC algorithm is applied on an
experimental piezoelectric actuator PST150/7/40VS12, which
is a preloaded PZT from Piezomechanik in Germany. The
natural frequency of the actuator is 20 kHz. The actuator
provides a maximum displacement of 40 𝜇m and includes an
integrated high-resolution strain gauge position sensor
(SGS). The excitation module comprises a voltage amplifier
(HVPZTXE-501.B)with a fixed gain of 15, which provides the
excitation voltage for the actuator. The AD7011-EVA con-
troller board equipped with 12-bit ADC and12-bit DAC is
utilized to generate and acquire input voltage and output
displacement signals.The experimental data are acquired at a
sampling frequency of 1 kHz. Figure 3 illustrates the structure
of the experimental system.

4.2. Experimental Result. Weapply the ILC algorithm to track
a sinusoidal trajectory 𝑦𝑑(𝑡) = 5 sin((1/2𝜋)𝑡 − (𝜋/2)) + 7. The
constant 𝛾 in (2) is chosen to be 𝛾 = 0.5 and the initial input
V0(𝑡) = 5sin((1/2𝜋)𝑡−(𝜋/2))+5.The experimental results are
shown in Figure 4.

Figure 4(a) shows the results of the ILC algorithm to track
the desired trajectory, and the feedforward input of the ILC
algorithm is depicted in Figure 4(b). The maximum error at
the 𝑘th iteration ‖𝑒𝑘(𝑡)‖∞ is shown in Figure 4(c), and it dem-
onstrated that convergence of ILC algorithm is achieved.
Figure 4(d) shows the tracking error at the 30th iteration.The
maximum error is approximately 0.015 𝜇m, which is 0.15% of
the total displacement range.

5. Conclusions

In this paper, we designed an ILC algorithm to compensate
for hysteresis-caused tracking error in piezoelectric actuators
and proved convergence of this algorithm on the whole
tracking trajectory. Experimentswere carried out to verify the
effectiveness of the ILC algorithm. The experimental results
show that the tracking error can be reduced to the noise level
of the sensor measurements.
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