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Despite the ecological importance of eelgrass, nowadays anthropogenic influences have produced deleterious effects in many
meadows worldwide. Transplantation plots are commonly used as a feasible remediation scheme. The characterization of eelgrass
biomass and its dynamics is an important input for the assessment of the overall status of both natural and transplanted populations.
Particularly, in restoration plots it is desirable to obtain nondestructive assessments of these variables. Allometric models allow
the expression of above ground biomass and productivity of eelgrass in terms of leaf area, which provides cost effective and
nondestructive assessments. Leaf area in eelgrass can be conveniently obtained by the product of associated length and width.
Although these variables can be directly measured on most sampled leaves, digital image methods could be adapted in order to
simplify measurements. Nonetheless, since width to length ratios in eelgrass leaves could be even negligible, noise induced by leaf
humidity content could produce misidentification of pixels along the peripheral contour of leaves images. In this paper, we present
a procedure aimed to produce consistent estimations of eelgrass leaf area in the presence of the aforementioned noise effects. Our
results show that digital image procedures can provide reliable, nondestructive estimations of eelgrass leaf area.

1. Introduction

Zostera marina also known as eelgrass is a relevant sea-
grass species, which supplies significant amounts of organic
materials to food webs in shallow coastal environments
and provides habitat (in bays, lagoons, or estuaries) for
many fishes and their larvae [1]. Eelgrass beds can also
help remediate contaminated sediments [2], filter and retain
nutrients from the water column [3], help in the stabilization
of sediments [4], and reduce erosion forces by stumping
wave energy, thus promoting the stabilization of adjacent
shorelines [5]. However, the permanence of eelgrass beds—
as well as those formed by other seagrass species—is cur-
rently being threatened by anthropogenic influences to such
an extent that special conservation efforts are needed [6].
This requires the development of accurate and cost-effective
procedures aimed at obtaining scientific knowledge about
the pertinent growth dynamics. This is particularly relevant
in assessments of restoration projects, where the use of

noninvasive data gathering techniques turns out to be of
fundamental importance.

The characterization of eelgrass biomass and its dynamics
is an important input for the assessment of the overall status
of both natural and transplanted eelgrass populations. In
eelgrass the basic unit for studying biomass and its produc-
tion is the shoot, which includes sheaths, leaves, rhizomes,
and roots. Biomass consists of an aboveground component
formed by sheaths and leaves and a belowground constituent
formed by rhizomes and roots. Root emergence occurs at leaf
scars, also known as rhizome nodes.The production of leaves
and rhizome nodes is connected such that each leaf produced
is linked to a rhizome node. Hence, the overall production
of shoots can be estimated by measuring the production of
leaves [7]; this makes us know the growth rate of leaves
fundamental to the assessment of eelgrass populations [8].
Moreover, estimations of leaf biomass and leaf-growth rates
are keys to assessing the reestablishment of ecological func-
tioning in restored areas. Nevertheless, traditional methods
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for the estimation of eelgrass leaf biomass and the related
leaf growth rates are destructive and time consuming. Even
though these procedures do not damage natural seagrass
populations, they could produce undesirable effects on trans-
plant experiments. Favorably, the conspicuous growth form
of eelgrass makes it possible to introduce proxies that allow
assessments while avoiding invasive interference. Moreover,
estimations of leaf biomass or productivity in eelgrass can
be efficiently obtained using allometric alternatives, which
state these variables in terms of leaf length or area [9,
10]. But even though leaf architecture in eelgrass makes
length a consistent descriptor of area, allometric models that
express leaf biomass in terms of linked area perform relatively
better than those involving leaf length as an independent
variable. Therefore, for consistent allometric estimations of
leaf biomass or productivity of eelgrass it is convenient
to produce reliable estimations of leaf area. The observed
ribbon-like appearance of the leaves in Zostera marina is
a feature that permits obtaining direct and fairly accurate
estimations of blade length 𝑙 and width ℎ. These variables
provide convenient estimations of the corresponding blade
area 𝑎, through the leaf length times width proxy [1]. If we
used the symbol 𝑜 as a subscript to represent observed values
for the above named variables, then estimations of leaf area
obtained through this proxy are given by

𝑎
𝑜
= 𝑙
𝑜
⋅ ℎ
𝑜

(1)

which combined with allometric methods could simplify
assessments of eelgrass leaf biomass and productivity [9, 10].

Digital image processing techniques were initially aimed
to calculate the area of leaves for terrestrial plants [11–13].
These methods provide simplified estimations of biologically
relevant variables. For example, Patil and Bodh [14] used area
of sugarcane leaves for plant growth monitoring to analyze
manure scarcity and environmental stress and to assess
disease severity. Lü et al. [15] used leaf area measurement
to assess long-term influences on yield and because it is a
fundamental index in crop growth and nurturing practice.
Although, leaf area in eelgrass can be conveniently obtained
by means of (1), and both 𝑙

𝑜
and ℎ

𝑜
can be directly measured

on most sampled leaves, methods based on digital image
processing could be adapted in order to simplify these tasks.
Moreover, eelgrass leaf area can be directly estimated from
digital imagery by using theMonte Carlomethod [1]: if we let
𝑎
𝑚𝑐

denote these estimations, then they are obtained through

𝑎
𝑚𝑐
=

LPN
UPN2

, (2)

where LPN is the number of points placed inside the con-
sidered leaf area and UPN2 stands for the number of points
contained in a unit area.

Besides, the Monte Carlo method eelgrass leaf area could
be also obtained fromdigital images by using the length times
width proxy of (1). Indeed, if 𝑙

𝑑
and ℎ

𝑑
, respectively, denote

leaf length and width obtained from the associated digital
image, then these variables can be estimated through

𝑙
𝑑
=

np
𝑙

unp
, (3)

ℎ
𝑑
=

np
ℎ

unp
, (4)

where np
𝑙
and np

ℎ
are, respectively, obtained by counting

the number of points contained over the length and width
dimensions of the leaf, and unp is the number of points
contained in the appropriate distance measurement unit.
Therefore, denoting by means of 𝑎

𝑑
the associated leaf area,

we will correspondingly have

𝑎
𝑑
= 𝑙
𝑑
⋅ ℎ
𝑑
. (5)

Nevertheless, when using either (2) or (5) to produce estima-
tions of leaf area we must be aware that some Zostera marina
leaves could be very long or present curvatures, among
irregularities caused by environmental factors like grazing or
drag forces. The influence of these factors could affect image
quality, which could produce biased estimations for leaf area.
These effects have been partially addressed by Ramfos et al.
[16], who proposed a method based on image processing
techniques for measurements of a Zostera marina leaf by
taking into account the effects of curvature on accuracy. Yet
another important factor which we address here concerns the
effects that the humidity contents of a leaf can originate in
image processing. In fact, once leaves are removed from a
shoot they begin to lose water and degrade. Hence, if leaves
cannot be processed immediately after being collected, it is
important to keep them in a manner that reduces changes
in shape [17]. Therefore, an efficient digitalizing of a Zostera
marina blade requires maintenance of an optimal humidity
for increased image fidelity. On the other hand, humidity
contents in a leaf can induce noise to an image by adding
extraneous information, which usually manifests by pixel
value misidentification.

Data published by Echavarria-Heras et al. [1], taken over
a comprehensive sampling experiment, show that measured
maximum width for a Zostera marina leaf is 6mm. Surely,
other authors report a variation range from 1.5 to 12mm
for this estimation [18]. A wide variation range in width in
conjunction with noise due to humidity content can increase
uncertainty in blade width measurements obtained from
digitalized leaf images.Thismakes it necessary to devise away
that allows discriminating the concomitant error spreading
over leaf area assessments. So far, an approach that integrates
among others techniques, one aimed to handle noise effects
induced by the humidity contents on a Zostera marina leaf,
has not been produced. In this study, we conceived a method
which using criteria based on statistical analysis techniques
reduces the effects that noise linked to the humidity contents
of a Zostera marina leaf produces on the accuracy of associ-
ated area estimations obtained from a digital image.
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2. Conceptual Framework for
Image Processing

Our arrangement depends in a fundamental way on the
concept of the peripheral or bordering contour of a bidimen-
sional enclosure or domain. Several definitions of peripheral
contour exist, being each one appropriate for different set-
tings. Our interpretation is similar to the perimeter definition
of a regular pattern in geometry.More accurately, a peripheral
contour in the present settings will be defined as the sequence
of boundary pixels of a digitalized eelgrass leaf. Moreover,
for a reasonable identification of the area of the pertinent
blade it is imperative that in the extents of the corresponding
image minimal changes of color levels occur, even though
around its outer contour abrupt changes of a color levels
could be shown.The effect projected by humidity adds to leaf
area pixels placed between the pixels captured by the digital
image of the leaf itself and others belonging to its background.
Hence, a reliable imbedding of the area of a leaf into an image
requires the unambiguous identification of the pixels on its
surrounding contour.

Our design is aimed to the aforesaid identification in
the presence of noise due to the humidity content in the
leaf. For the incumbent characterization, our system uses a
quantitative setup developed on the basis of the concepts of
adjacency, vicinity, connectivity, and tolerance of similarity
between pixels. We briefly describe these notions in what
follows.

Two pixels are adjacent if and only if they share one of
their borders, or at least one of their corners. Two pixels are
neighbors if they fulfill the definition of adjacency. Formally,
the vicinity 𝑉

𝑝
(𝑥, 𝑦) of the point 𝑃(𝑥, 𝑦) is defined through

𝑉
𝑝
(𝑥, 𝑦) = (𝑥 + 1, 𝑦) , (𝑥 − 1, 𝑦) , (𝑥, 𝑦 + 1) , (𝑥, 𝑦 − 1) ,

(𝑥 + 1, 𝑦 + 1) , (𝑥 + 1, 𝑦 − 1) , (𝑥 − 1, 𝑦 + 1) ,

(𝑥 − 1, 𝑦 − 1) .

(6)

Without loss of generality, we explain the notion of tolerance
of similarity by referring to the RGB format description
of a color. This allows quantifying tonality in terms of the
intensities of the constituting primary colors: red, green, and
blue. To indicate at which amount each one of these colors
is mixed to produce a given tonality a value is assigned to
each prime color; for example, the value 0 means that a given
basic color does not appear in the mix, but if a chief color
component is nonvanishing it means that it contributes to
the mix in a given intensity. We set 𝐶max which identifies
the colors number to be used through the whole image
processing task; for an RGB color space we have 𝐶max = 256.
Usually, the intensity of each of the primary colors appearing
in a mix is measured on a scale ranging from 0 to 𝐶max − 1.
The set of all color intensities can be represented in the form
of a cube in the cartesian coordinate system, where each
color is a point on the surface or in its interior. Given points
𝑃 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
) and 𝑄 = (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛
) in an RGB color

space, we will define the distance 𝑑
𝐸
(𝑃, 𝑄) between them

through

𝑑
𝐸
(𝑃, 𝑄) = √

𝑛

∑

𝑖=1

(𝑝
𝑛
− 𝑞
𝑛
)
2

. (7)

Moreover, given a point 𝑃 in an RGB color space, a second
one𝑄with the greatest similarity to 𝑃 is the one placed at the
smallest distance 𝑑

𝐸
(𝑃, 𝑄). Furthermore, let ST(𝑥) = [0, 𝑥] be

a color tonality range, with 𝑥 being the number of different
colors included. Then, we must have 1 ≤ 𝑥 ≤ 𝐶max − 1 and
we will say that two pixels 𝑃 and 𝑄 are similar to a tolerance
limit ST(𝑥) if the inequality

𝑑
𝐸
(𝑃, 𝑄) ≤ 𝑥 (8)

is satisfied. In what follows the range ST(𝑥) will be simply
called “tolerance of similarity” and the upper bound 𝑥 can be
interpreted as the maximum distance that two points located
within the extent of an object can attain in an RGB color
space in order to be considered similar. Connectivity between
pixels is used to identify the limits in objects and regions in
an image. We will say that two pixels 𝑃 and 𝑄 are connected
with tolerance of similarity ST(𝑥) if they fulfill the definition
of adjacency and also if inequality (8) holds.

3. The Image Selection Method

Theprocedure to obtain efficient estimations of 𝑙
𝑑
, ℎ
𝑑
, and 𝑎

𝑚𝑐

requires two stages. On a first one we create a digital image
for each one of the collected leaves. Then, we set 𝐶max and
continue by choosing an interval of tolerance of similarity
ST(𝑥) with 0 ≤ 𝑥 ≤ 𝐶max − 1; we use this to obtain the
peripheral contour of each one of the available leaf images
and from them the linked 𝑙

𝑑
, ℎ
𝑑
, and 𝑎

𝑚𝑐
values. Different

intervals ST(𝑥) will produce different estimations for 𝑙
𝑑
, ℎ
𝑑
,

and 𝑎
𝑚𝑐
, and consequently we must rely on a criterion for the

selection of the ST(𝑥) range that produces the most accurate
estimations. To carry out this task in a second stage of the
method we arrange leaf length data into groups of leaves
whose size differences are bounded by a preferred tolerance
𝑞 and use that arrangement to obtain related statistics 𝛽

𝑎
and

𝜆
𝑎
that are used to implement what we call the IS

𝑥
selection

index. In what follows we describe pseudo-codes for the
above referred stages. Detailed formulae are presented in the
appendices. Tables 1, 2, 3, 4, and 5 summarize the involved
notation.

3.1. The Procedure to Obtain 𝑙
𝑑
, ℎ
𝑑
, and 𝑎

𝑚𝑐
Assessments

(a.1) Choose a color format and set 𝐶max.
(a.2) Load the leaf image.
(a.3) Enter an interval of tolerance of similarity ST(𝑥); 1 ≤

𝑥 ≤ 𝐶max − 1.
(a.4) Select a starting point inside the loaded leaf image.
(a.5) Find the contour of the leaf image through (6), (7),

and (8) (these equations identify all adjacent pixels
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Table 1: Different symbols used in the digital image processing
method.

Symbol Description
𝑙 Leaf length
ℎ Leaf width
𝐶max Number of colors in a format of a digital image
ST(𝑥) = [0, 𝑥] Interval of Tolerance of Similarity
𝑙max Maximum observed leaf length

𝑞 =
𝑙max
𝑛

Norm of the partition for the interval [0, 𝑙max]

𝐼
𝑘

Partition interval of the form [𝑞 (𝑘 − 1) , 𝑞𝑘) for
0 ≤ 𝑘 ≤ 𝑛

𝑃
𝑙max
0

=

𝑛

⋃

1

(𝐼
𝑘
) Collection of 𝑛 intervals 𝐼

𝑘
that cover [0, 𝑙max]

𝐺
𝑘
(𝑙) Group of leaves whose lenghts (𝑙) lie in 𝐼

𝑘

𝑛
𝑘 Number of leaves in the group 𝐺

𝑘
(𝑙)

𝐶
𝐺
=

𝑛

⋃

1

𝐺
𝑘
(𝑙) Collection of all groups 𝐺

𝑘
(𝑙) of leaves

Table 2: Symbols for observed, digitally obtained variables and
related averages.

Description Observed
data

Digital
data

Monte Carlo
data

Leaf length (𝑙) 𝑙
𝑜

𝑙
𝑑

—
Leaf width (ℎ) ℎ

𝑜
ℎ
𝑑

—
Leaf area (𝑎) 𝑎

𝑜
𝑎
𝑑

𝑎
𝑚𝑐

Length of the 𝑗th leaf in group
𝐺
𝑘
(𝑙) 𝑙

𝑘

𝑜𝑗
𝑙
𝑘

𝑑𝑗
—

Width of the 𝑗th leaf in group
𝐺
𝑘
(𝑙) ℎ

𝑘

𝑜𝑗
ℎ
𝑘

𝑑𝑗
—

Area of the 𝑗th leaf in group
𝐺
𝑘
(𝑙) 𝑎

𝑘

𝑜𝑗
𝑎
𝑘

𝑑𝑗
𝑎
𝑘

𝑚𝑐𝑗

Average length of the leaves in
group 𝐺

𝑘
(𝑙) 𝑙

𝑘

𝑜
𝑙
𝑘

𝑑
—

Average width of the leaves in
group 𝐺

𝑘
(𝑙) ℎ

𝑘

𝑜
ℎ
𝑘

𝑑
—

Average area of the leaves in
group 𝐺

𝑘
(𝑙) 𝑎

𝑘

𝑜
𝑎
𝑘

𝑑
𝑎
𝑘

𝑚𝑐

falling within the selected interval of tolerance of
similarity ST(𝑥)).

(a.6) Obtain 𝑙
𝑑
, ℎ
𝑑
, and 𝑎

𝑑
by using (3), (4), and (5),

respectively.
(a.7) Obtain 𝑎

𝑚𝑐
by using (2).

(a.8) Record ST(𝑥) and the associated 𝑙
𝑑
, ℎ
𝑑
, 𝑎
𝑑
, and 𝑎

𝑚𝑐

estimations.
(a.9) Repeat steps 2–8 for each one of the available leaf

images.
(a.10) Change the ST(𝑥) interval and jump to step (a.3).

Different ST(𝑥) intervals will produce through the above
procedure different estimations for 𝑙

𝑑
, ℎ
𝑑
, 𝑎
𝑑
, and 𝑎

𝑚𝑐
. We

now outline a procedure for the selection of the image that
produces the most accurate estimations 𝑎

𝑑
or 𝑎
𝑚𝑐

for the
observed leaves area 𝑎

𝑜
. This requires the identification of

the interval of tolerance of similarity ST(𝑥) that yields the
smallest values of the selection index IS

𝑥
defined by (9) below.

3.2. TheMethod for the Selection of an Optimal 𝑆𝑇(𝑥) Interval

(b.1) For the entered ST(𝑥) interval, use (E.9) to calculate
𝜆
𝑎
(this value gives the proportion of leaves for which

𝑎
𝑑
produces consistent estimations of 𝑎

𝑜
).

(b.2) For the entered ST(𝑥) interval, use (E.10) to calculate
𝛽
𝑎
(this value yields the proportion of leaves for which

𝑎
𝑑
overestimates observed leaf area 𝑎

𝑜
).

(b.3) For the entered ST(𝑥) interval, calculate the value of
the image selection index IS

𝑥
according to

IS
𝑥
=
𝛽
𝑎

𝜆
𝑎

. (9)

(b.4) Record both ST(𝑥) and IS
𝑥
.

(b.5) Change the ST(𝑥) interval and repeat steps (b.1)
to (b.3) until all the ST(𝑥) intervals generated in
Section 3.1 are exhausted.

(b.6) Choose the ST(𝑥) interval that produces the smallest
value of IS

𝑥
for image processing and leaf area 𝑎

𝑑

estimations.

The above selection index IS
𝑥
criterion can be adapted for

Monte Carlo method estimations of leaf area. It becomes

IS
𝑥𝑚𝑐

=
𝛽
𝑎𝑚𝑐

𝜆
𝑎𝑚𝑐

, (10)

where 𝜆
𝑎𝑚𝑐

and 𝛽
𝑎𝑚𝑐

are, respectively, given by (E.11) and
(E.12) in Appendix E and are equivalent to 𝜆

𝑎
and 𝛽

𝑎

correspondingly.

4. Results

4.1. Leaf Data Grouping. Thepresent data set was obtained by
randomly sampling 5 shoots biweekly from January through
December 2009 in a Zostera marina field at Punta Banda
estuary, a shallow coastal lagoon located near Ensenada, Baja
California, Mexico (31∘ 43–46 N and 116∘ 37–40W). For each
sampled leaf, a millimeter ruler was used to obtain 𝑙

𝑜
to the

nearest 1/10mm taken as the distance from the top of the
sheath to the leaf tip. Meanwhile, ℎ

𝑜
was measured at a point

halfway between the top of the sheath and the tip. Observed
leaf area estimations 𝑎

𝑜
were calculated by means of (1).

We obtained 𝑙max = 460mm. For data grouping we
selected 𝑛 = 46, so we acquired 𝑞 = 10mm and for
the interval [0, 𝑙max] we formed a partition 𝑃460

0
of disjoint

intervals 𝐼
𝑘
of the form 𝐼

𝑘
= {𝑙 | 𝑞(𝑘 − 1) ≤ 𝑙 < 𝑞𝑘},

with 1 ≤ 𝑘 ≤ 46. Hence, as described in the appendices for
each value of the index 𝑘, we formed a group𝐺

𝑘
(𝑙) containing

leaves with sizes varying in the interval 𝐼
𝑘
(Table 6). Longer

and older leaves displayed darker tonalities than younger and
shorter ones.Moreover, leaveswith lengths varying on a given
partition interval 𝐼

𝑘
displayed a similar color distribution. For

some of the partition intervals there was at most one leaf with
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Table 3: Approximation errors.

Symbols Formal expression Description
𝑒
𝑘

𝑙𝑗
𝑙
𝑘

𝑜𝑗
− 𝑙
𝑘

𝑑𝑗
Difference of observed and image obtained leaf lengths in group 𝐺

𝑘
(𝑙).

𝑒
𝑘

ℎ𝑗
ℎ
𝑘

𝑜𝑗
− ℎ
𝑘

𝑑𝑗
Difference of observed and image obtained leaf widths in group 𝐺

𝑘
(𝑙).

𝑒
𝑘

𝑎𝑗
𝑎
𝑘

𝑜𝑗
− 𝑎
𝑘

𝑑𝑗
Difference of observed and image obtained leaf areas in group 𝐺

𝑘
(𝑙).

𝑒
𝑘

𝑚𝑐j 𝑎
𝑘

𝑜𝑗
− 𝑎
𝑘

𝑚𝑐j Difference of observed and Monte Carlo estimated leaf areas in group 𝐺
𝑘
(𝑙).

Table 4: Estimation errors for observed and image obtained
variables averages and standard deviations.

Symbol Formal expression Description

𝛿
𝑘

𝑙

∑
𝑛𝑘

1
𝑒
𝑘

𝑙𝑗

𝑛
𝑘

Leaf length average
deviation in the group
𝐺
𝑘
(𝑙).

𝛿
𝑘

ℎ

∑
𝑛𝑘

1
𝑒
𝑘

ℎ𝑗

𝑛
𝑘

Leaf width average
deviation in the group
𝐺
𝑘
(𝑙).

𝛿
𝑘

𝑎

∑
𝑛𝑘

1
𝑒
𝑘

𝑎𝑗

𝑛
𝑘

Leaf area average
deviation in the group
𝐺
𝑘
(𝑙).

𝛿
𝑙

∑
𝑛

1
𝛿
𝑘

𝑙

𝑛

Leaf length average
deviation in 𝐶

𝐺
.

𝛿
ℎ

∑
𝑛

1
𝛿
𝑘

ℎ

𝑛

Leaf width average
deviation in 𝐶

𝐺
.

𝜎
𝛿𝑙

(
∑
𝑛𝑘

1
(𝑒
𝑘

𝑙𝑗
−𝛿
𝑘

𝑙
)
2

(𝑛
𝑘
− 1)

)

1/2

Standard deviation of
𝑒
𝑘

𝑙𝑗
.

𝜎
𝛿ℎ

(
∑
𝑛𝑘

1
(𝑒
𝑘

ℎ𝑗
− 𝛿
𝑘

ℎ
)
2

(𝑛
𝑘
− 1)

)

1/2

Standard deviation of
𝑒
𝑘

ℎ𝑗
.

length placed in the linked variation range. Therefore, these
groups are not taken into account because they donot provide
information for the statistical analysis (see bold in Table 6).

4.2. Image Selection Procedure. For each one of the leaves
in the collection 𝐶

𝐺
of groups 𝐺

𝑘
(𝑙), we applied the proce-

dure described in the pseudo-code (a) aimed to detect the
points on the associated peripheral contour and to get the
concomitant 𝑙

𝑑
, ℎ
𝑑
, 𝑎
𝑑
, and 𝑎

𝑚𝑐
estimations. For that purpose

we used a variety of equivalence of tones, which permitted
an unambiguous framing of the extent of the leaf. A RGB
256 color format was used for all leaves images. Hence, we
set 𝐶max = 256. Therefore, different tolerances of similarity
ranges, ST(𝑥) = [0, 𝑥] with 1 ≤ 𝑥 ≤ 255, were used.
Moreover, the procedure was automatically applied up to 256
times on each individual leaf image. For every tolerance of
similarity interval ST(𝑥) we selected a starting point inside
a chosen leaf image and we identified all adjacent pixels
falling within the named similarity range. This identified the
peripheral contour of the leaf image so the linked 𝑙𝑘

𝑑𝑗
, ℎ𝑘
𝑑𝑗
,

and 𝑎𝑘
𝑑𝑗
assessments as well as leaf area estimations 𝑎𝑘

𝑚𝑐𝑗
were

acquired (see B.3 in Appendix B).
For each group𝐺

𝑘
(𝑙) of leaves determined by the partition

𝑃
460

0
we calculated deviation values 𝛿𝑘

ℎ
and 𝛿

𝑘

𝑙
and their

averages 𝛿
ℎ
and 𝛿
𝑙
taken over𝐶

𝐺
.We also calculated the asso-

ciated standard deviation values𝜎
𝛿ℎ
and𝜎
𝛿𝑙
(seeAppendix D)

and the proportions, 𝜆
ℎ
, 𝜆
𝑙
. 𝜃
ℎ
, 𝜃
𝑙
, 𝜆
𝑎
𝛽
𝑎
, 𝜆
𝑎𝑚𝑐

, and 𝛽
𝑎𝑚𝑐

(see
Appendix E); calculated values are presented in Tables 7 and
8. Values of the image selection index IS

𝑥
were obtained and

compared. For easy of presentation we focus on the results
obtained for ST(68), ST(128), and ST(192) which include the
smallest obtained value for IS

𝑥
(Table 8). Figures 1, 2, and 3

display comparisons of the averages 𝑙
𝑘

𝑜
and ℎ
𝑘

𝑜
of observed leaf

lengths and widths in groups 𝐺
𝑘
(𝑙) versus estimations 𝑙

𝑘

𝑑
and

ℎ
𝑘

𝑑
from images acquired using these tolerance of similarity

intervals.
For 1 ≤ 𝑥 ≤ 67, 𝜆

𝑙
and 𝜆

ℎ
values were greater than

those calculated for ST(68). Moreover, 𝜆
𝑙
and 𝜆

ℎ
values

obtained using 1 ≤ 𝑥 ≤ 127 were greater than those
obtained using ST(128) but smaller than those obtained for
1 ≤ 𝑥 ≤ 67. Nevertheless, 𝜆

𝑙
values produced for 1 ≤

𝑥 ≤ 196 were smaller than those linked to 1 ≤ 𝑥 ≤

128, but generally 𝜆
ℎ
values increased implying a greater

concentration of a particular tonality within the range of
colors forming the color spectrumof the image.That is, ST(𝑥)
broadens or reduces the collection of colors which can be
taken into account for pixel identification within the extent
of the image. Whenever 𝑥 stands for a greater amount of
colors relative to the assortment defining the image, the pixel
selection procedure will lead to subjective identification.This
influences 𝛿

ℎ
and𝛿
𝑙
values in a directway. Indeed for ST(192),

𝛿
ℎ
was negative (Table 7) which means that most ℎ𝑘

𝑑𝑗
values

were greater than ℎ𝑘
𝑜𝑗
values. Nevertheless, this outcome is

limited by the maximum value that 𝑥 can attain and also
by image size. For 1 ≤ 𝑥 ≤ 255, the value of 𝜆

𝑙
remained

unchanged.
By using the proportion values 𝜆

𝑎
, 𝛽
𝑎
, 𝜆
𝑎𝑚𝑐

and 𝛽
𝑎𝑚𝑐

,
we assessed that for ST(192) leaf area was overestimated
by the method. And although for ST(128) the method
slightly overestimated leaf area, for ST(𝑥) intervals beyond
ST(128) leaf area overestimation always increased. Moreover,
in Table 9 we provide root-mean-square deviation (RMSD)
values for comparisons of directly versus image obtained
estimations when using ST(𝑥) intervals. We can assess that
a ST(128) interval produced the highest RMSD values for
the comparison of directly versus image obtained estimations
of leaf width, length or area. This is consistent with the
smallest value obtained for the IS

𝑥
selection index.Therefore,

we suggest that a similarity ST(128) interval must be set to
process the present Zostera marina leaf image set through the
method proposed.
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Table 5: Auxiliary statistics 𝜆
𝑙
, 𝜆
ℎ
, 𝜃
𝑙
, 𝜃
ℎ
, 𝜆
𝑎
, 𝛽
𝑎
, 𝜆
𝑎𝑚𝑐

and 𝛽
𝑎𝑚𝑐

used to obtain the set of leaves with estimation errors in range for a reliable
estimation.

Symbol Description Reference equation

𝜆
𝑙

Proportion of leaves in 𝐶
𝐺
for which 𝛿𝑘

𝑙
satisfies:

𝛿
𝑙
− 𝜎
𝛿𝑙
≤ 𝛿
𝑘

𝑙
≤ 𝛿
𝑙
+ 𝜎
𝛿𝑙

(E.5)

𝜆
ℎ

Proportion of leaves in 𝐶
𝐺
for which 𝛿𝑘

ℎ
satisfies:

𝛿
ℎ
− 𝜎
𝛿ℎ
≤ 𝛿
𝑘

ℎ
≤ 𝛿
ℎ
+ 𝜎
𝛿ℎ

(E.6)

𝜃
𝑙

Proportion of leaves in 𝐶
𝐺
for which 𝛿𝑘

𝑙
do not satisfies:

𝛿
𝑙
− 𝜎
𝛿𝑙
≤ 𝛿
𝑘

𝑙
≤ 𝛿
𝑙
+ 𝜎
𝛿𝑙

(E.7)

𝜃
ℎ

Proportion of leaves in 𝐶
𝐺
for which 𝛿𝑘

ℎ
do not satisfies:

𝛿
ℎ
− 𝜎
𝛿ℎ
≤ 𝛿
𝑘

ℎ
≤ 𝛿
ℎ
+ 𝜎
𝛿ℎ

(E.8)

𝜆
𝑎

Proportion of leaves in 𝐶
𝐺
for which 𝛿𝑘

𝑙
and 𝛿𝑘

ℎ
satisfies:

𝛿
𝑙
− 𝜎
𝛿𝑙
≤ 𝛿
𝑘

𝑙
≤ 𝛿
𝑙
+ 𝜎
𝛿𝑙
and 𝛿

ℎ
− 𝜎
𝛿ℎ
≤ 𝛿
𝑘

ℎ
≤ 𝛿
ℎ
+ 𝜎
𝛿ℎ
, and 𝑒𝑘

𝑎𝑗
≥ 0. (E.9)

𝛽
𝑎

Proportion of leaves in 𝐶
𝐺
for which 𝛿𝑘

𝑙
and 𝛿𝑘

ℎ
do not satisfies:

𝛿
𝑙
− 𝜎
𝛿𝑙
≤ 𝛿
𝑘

𝑙
≤ 𝛿
𝑙
+ 𝜎
𝛿𝑙
and 𝛿

ℎ
− 𝜎
𝛿ℎ
≤ 𝛿
𝑘

ℎ
≤ 𝛿
ℎ
+ 𝜎
𝛿ℎ

(E.10)

𝜆
𝑎𝑚𝑐

Proportion 𝜆
𝑎𝑚𝑐

equivalent to 𝜆
𝑎
respectively but linked to leaf area estimation by Monte
Carlo method (cf. (2)). (E.11)

𝛽
𝑎𝑚𝑐

Proportion 𝛽
𝑎𝑚𝑐

equivalent to 𝛽
𝑎
but linked to leaf area estimation by Monte Carlo
method (cf. (2)). (E.12)

Table 6: Numbers 𝑛
𝑘
of whole leaves classified in groups 𝐺

𝑘
(𝑙)

formed by leaf sizes varying in corresponding length intervals 𝐼
𝑘
.

𝑘 𝐼
𝑘

𝑛
𝑘

𝑘 𝐼
𝑘

𝑛
𝑘

1 [0, 10) 10 24 [230, 240) 24
2 [10, 20) 43 25 [240, 250) 23
3 [20, 30) 38 26 [250, 260) 15
4 [30, 40) 38 27 [260, 270) 21
5 [40, 50) 32 28 [270, 280) 16
6 [50, 60) 37 29 [280, 290) 12
7 [60, 70) 43 30 [290, 300) 10
8 [70, 80) 32 31 [300, 310) 9
9 [80, 90) 34 32 [310, 320) 9
10 [90, 100) 38 33 [320, 330) 4
11 [100, 110) 28 34 [330, 340) 7
12 [110, 120) 40 35 [340, 350) 3
13 [120, 130) 28 36 [350, 360) 4
14 [130, 140) 29 37 [360, 370) 3
15 [140, 150) 19 38 [370, 380) 3
16 [150, 160) 27 39 [380, 390) 1
17 [160, 170) 19 40 [390, 400) 1
18 [170, 180) 14 41 [400, 410) 1
19 [180, 190) 17 42 [410, 420) 1
20 [190, 200) 21 43 [420, 430) 1
21 [200, 210) 19 44 [430, 440) 0
22 [210, 220) 20 45 [440, 450) 0
23 [220, 230) 14 46 [450, 460) 1

5. Discussion

Deleterious effects derived from anthropogenic influences
are currently increasing worldwide, threatening the health
of many eelgrass meadows [19]. Remediation efforts have
included transplant projects [20] and the valuation of their

5

4

3

2

1
0 5 10 15 20 25 30 35 40

Observed
Estimated

Av
er

ag
e 

Group index k

w
id

th
 (m

m
)

(a)

0 5 10 15 20 25 30 35 40

Observed
Estimated

Av
er

ag
e 

400

300

200

100

0

Group index k

le
ng

th
 (m

m
)

(b)

Figure 1: (a) Comparison of observed ℎ
𝑘

𝑜
and image estimated

ℎ
𝑘

𝑑
width averages taken over groups 𝐺

𝑘
(𝑙). (b) Comparison of

observed 𝑙
𝑘

𝑜
and image estimated 𝑙

𝑘

𝑑
length averages taken over

groups𝐺
𝑘
(𝑙) (see Table 6).The values obtained from digitized leaves

were estimated by using ST(68).

status, requires the estimations of key variables such as
standing stock or productivity. Although shoot removal
for the measurement of these variables does not damage
natural seagrass populations, these procedures could pro-
duce undesirable effects on transplants. Therefore, when
standing stock or productivity assessment are performed
over the early stages of an eelgrass restoration experiment,
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Table 7: Direct comparison statistics for different ST(𝑥) range values.

ST(𝑥) 𝛿
ℎ

𝜎
𝛿ℎ

𝛿
𝑙

𝜎
𝛿𝑙

𝜃
𝑙

𝜃
ℎ

𝜆
𝑙

𝜆
ℎ

ST(68) 0.4493 0.2721 24.0157 23.6548 0.0161 0.1038 0.9839 0.8962
ST(128) 0.2599 0.2576 5.0342 13.7282 0.0049 0.0445 0.9951 0.9555
ST(192) −0.1291 0.2496 3.8965 12.9700 0.0049 0.1669 0.9951 0.8331

Table 8: Proportions of overestimation and underestimation of leaf area and selection index values for a given ST(𝑥) range.

ST(𝑥) 𝜆
𝑎

𝛽
𝑎

IS
𝑥

𝜆
𝑎𝑚𝑐

𝛽
𝑎𝑚𝑐

IS
𝑥𝑚𝑐

ST(68) 0.6820 0.3180 0.4662 0.6666 0.3344 0.5016
ST(128) 0.7005 0.2995 0.4275 0.7197 0.2803 0.3894
ST(192) 0.4982 0.5018 1.0072 0.4917 0.5083 1.0337
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Figure 2: (a) Comparison of observed ℎ
𝑘

𝑜
and image estimated

ℎ
𝑘

𝑑
width averages taken over groups 𝐺

𝑘
(𝑙). (b) Comparison of

observed 𝑙
𝑘

𝑜
and image estimated 𝑙

𝑘

𝑑
length averages taken over

groups𝐺
𝑘
(𝑙) (see Table 6).The values obtained from digitized leaves

were estimated by using ST(68). The values obtained from digitized
leaves were estimated by using ST(128).

data gathering approaches that avoid disruptive interference
are essential. Allometric methods can provide convenient
proxies, which reduce leaf biomass and growth assessments
to simple blade length or area measurements. What is
more, if the estimation of these leaf attributes can be
done without removing the blades allometric approaches
could furnish truly non-destructive assessments. Modern
electronic scanning technologies could be used under water
in order to produce reliable images of marine plants leaves,
which guarantee non-destructive sampling of leaves length,
width or area. However, insitu scanning of eelgrass leaves
could add extraneous informationmainly due to the inherent
humidity content or to materials attached to blades like mud
related particles. Hence, for estimating leaf attributes such
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Figure 3: (a) Comparison of observed ℎ
𝑘

𝑜
and image estimated

ℎ
𝑘

𝑑
width averages taken over groups 𝐺

𝑘
(𝑙). (b) Comparison of

observed 𝑙
𝑘

𝑜
and image estimated 𝑙

𝑘

𝑑
length averages taken over

groups𝐺
𝑘
(𝑙) (see Table 6).The values obtained from digitized leaves

were estimated by using ST(68). The values obtained from digitized
leaves were estimated by using ST(192).

as length or area, we must take into account that image
noise effects could render biased assessments. Moreover, if
we strive to use (6), the digital image counterpart of (1),
we must take into account that a Zostera marina leaf does
not show a perfect rectangular shape. We should also notice
that since width attains small values, noise produced by
humidity could increase the width of the digital leaf in a
noticeable way which could certainly heighten uncertainty
in leaf area estimations produced through (5). What is more,
even when leaf area is estimated from images using Monte
Carlo methods, noise effects could produce ambiguity in
peripheral contour identification rendering biased results.

In the other hand, we need to be aware that since the
power functions involved in allometric approaches are highly
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Table 9: RMSD calculated by using observed versus image calculated variables.

ST(𝑥) RMSD(ℎ
𝑜
, ℎ
𝑑
) RMSD(𝑙

𝑜
, 𝑙
𝑑
) RMSD(𝑎

𝑜
, 𝑎
𝑑
) RMSD(𝑎

𝑜
, 𝑎
𝑚𝑐
)

ST(68) 0.4590 26.4500 360.8746 151.2869
ST(128) 0.4016 12.9587 99.1725 90.6759
ST(192) 0.7303 10.8674 155.3371 160.6715

sensitive to parameter uncertainty we require consistent esti-
mations of blade length or area [10].Therefore, when we esti-
mate eelgrass leaf area, using digital imagery in combination
with allometric proxies, we must be aware that image noise
could certainly reduce the accuracy of estimates. This makes
it necessary to rely on efficient image selectionmethodologies
for uncertainty reduction. Our results show that the present
methods produce reliable results. This conclusion is mainly
substantiated by the obtained values for the RMSD. We used
these statistics to determine consistency between directly
obtained measurements and image estimated assessments.
Table 9 shows that the highest RMSD values corresponded
with the smallest values obtained for the IS

𝑥
selection index.

Moreover, the ST(𝑥) interval selected using the IS
𝑥
criteria

produced also the highest RMSDvalues for the comparison of
observed values and those obtained bymeans ofMonte Carlo
method. This justifies our claim that the proposed procedure
abridged by the selection index IS

𝑥
can be expected to

produce consistent estimations of the leaf attributes necessary
for allometric estimation of relevant variables required to
assess the status of an eelgrass population. Moreover, the
presented procedure could be straightforwardly applied to
other eelgrass populations or seagrass species that exhibit
similar leaf architectures making leaf length times width a
reliable proxy for the pertinent area.

Appendices

We now explain how to identify the interval of tolerance
of similarity ST(𝑥) that yields accurate estimations for the
observed leaf area values. The task, is achieved through
statistical methodologies, which requires the completion of
the following steps.

A. Grouping Leaf Data: 𝑙
𝑜

and ℎ
𝑜

(A.1) Identify the maximum observed leaf length (𝑙max).

(A.2) Chose a positive integer 𝑛 and define a partition of the
interval [0, 𝑙max] with norm 𝑞 = (𝑙max/𝑛).

(A.3) Form the collection ⋃𝑛
1
(𝐼
𝑘
) of 𝑛 disjoint intervals of

the form 𝐼
𝑘
= [𝑞(𝑘 − 1), 𝑞𝑘) with 1 ≤ 𝑘 ≤ 𝑛. This

collection is denoted thought 𝑃𝑙max
0

.

(A.4) For each value of the index 𝑘 identify the group 𝐺
𝑘
(𝑙)

of leaves whose lengths are contained in 𝐼
𝑘
. Notice

that 𝐺
𝑘
(𝑙) holds the leaves whose size differences are

bounded by 𝑞.

(A.5) For each value of the index 𝑘 obtain and record 𝑛
𝑘

standing for the number of leaves in the group 𝐺
𝑘
(𝑙).

(A.6) For each value of the index 𝑘 introduce an index 𝑗
such that 1 ≤ 𝑗 ≤ 𝑛

𝑘
and label as 𝑙𝑘

𝑜𝑗
, ℎ𝑘
𝑜𝑗
and 𝑎𝑘

𝑜𝑗

respectively, the straight length, width and area of
the 𝑗th leaf in 𝐺

𝑘
(𝑙). The character 𝑎𝑘

𝑜𝑗
denotes the

associated estimations of leaf area obtained by means
of (1).

(A.7) Form and record the collection⋃𝑛
1
𝐺
𝑘
(𝑙) of all groups

of leaves 𝐺
𝑘
(𝑙). This collection is denoted by means of

𝐶
𝐺
.

(A.8) Obtain the average length 𝑙
𝑘

𝑜
for each group of leaves

𝐺
𝑘
(𝑙). That is, calculate and record

𝑙
𝑘

𝑜
=
1

𝑛
𝑘

𝑛𝑘

∑

1

𝑙
𝑘

𝑜𝑗
. (A.1)

(A.9) Obtain the average width ℎ
𝑘

𝑜
for each group of leaves

𝐺
𝑘
(𝑙). That is, calculate and record

ℎ
𝑘

𝑜
=
1

𝑛
𝑘

𝑛𝑘

∑

1

ℎ
𝑘

𝑜𝑗
. (A.2)

(A.10) Obtain the average area 𝑎𝑘
𝑜
for each group of leaves

𝐺
𝑘
(𝑙). That is, calculate and record,

𝑎
𝑘

𝑜
=
1

𝑛
𝑘

𝑛𝑘

∑

1

𝑎
𝑘

𝑜𝑗
. (A.3)

B. Obtaining Length, Width and Area from the
Image of each Leaf

(B.1) For processing all digital images, we chose a specified
color format with a number 𝐶max of colors.

(B.2) For processing the digital images of all collected
leaves, we choose different intervals of tolerance of
similarity ST(𝑥) = [0, 𝑥], with the upper bound 𝑥
satisfying 0 ≤ 𝑥 ≤ 𝐶max − 1.

(B.3) For a picked ST(𝑥) interval, for 1 ≤ 𝑗 ≤ 𝑛
𝑘
use

the algorithm (a) described in the method section
to obtain 𝑙𝑘

𝑑𝑗
and ℎ𝑘

𝑑𝑗
, which respectively denote the

length and width of the image of the 𝑗th leaf in 𝐺
𝑘
(𝑙).

Also, obtain 𝑎𝑘
𝑑𝑗
and 𝑎𝑘
𝑚𝑐𝑗

, which respectively stand for
leaf area obtained from the image and calculated by
means of (1) and (2) respectively. Record these values.

(B.4) interval obtain and record the concomitant averages
𝑙
𝑘

𝑑
, ℎ
𝑘

𝑑
, 𝑎𝑘
𝑑
and 𝑎𝑘
𝑐𝑚

(cf. (A.1) through (A.3)).
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C. Obtain Estimation Errors between
the Observed and Image Obtained Values
in Steps A and B

(C.1) For the picked ST(𝑥) interval and for 1 ≤ 𝑗 ≤

𝑛
𝑘
, calculate the leaf length approximation errors

through

𝑒
𝑘

𝑙𝑗
= 𝑙
𝑘

𝑜𝑗
− 𝑙
𝑘

𝑑𝑗
. (C.1)

(C.2) For the picked ST(𝑥) interval and for 1 ≤ 𝑗 ≤

𝑛
𝑘
, calculate the individual leaf width approximation

errors through

𝑒
𝑘

ℎ𝑗
= ℎ
𝑘

𝑜𝑗
− ℎ
𝑘

𝑑𝑗
. (C.2)

(C.3) For the picked ST(𝑥) interval and for 1 ≤ 𝑗 ≤ 𝑛
𝑘
,

calculate the leaf area approximation errors through

𝑒
𝑘

𝑎𝑗
= 𝑎
𝑘

𝑜𝑗
− 𝑎
𝑘

𝑑𝑗
. (C.3)

(C.4) For the picked ST(𝑥) interval and for 1 ≤ 𝑗 ≤ 𝑛
𝑘
,

calculate the leaf area approximation errors linked to
the Monte Carlo method through

𝑒
𝑘

𝑚𝑐𝑗
= 𝑎
𝑘

𝑜𝑗
− 𝑎
𝑘

𝑚𝑐𝑗
. (C.4)

D. Obtain the Average Deviations Produced by
the Individual Estimation Errors

(D.1) For the picked ST(𝑥) interval, obtain the average
leaf length deviations 𝛿𝑘

𝑙
, which are calculated by

averaging the 𝑒𝑘
𝑙𝑗
values. That is,

𝛿
𝑘

𝑙
=
1

𝑛
𝑘

𝑛𝑘

∑

1

𝑒
𝑘

𝑙𝑗
. (D.1)

We notice that 𝛿𝑘
𝑙
= (𝑙
𝑘

𝑜
− 𝑙
𝑘

𝑑
) and also that negative

values of 𝛿𝑘
𝑙
imply that in a lot 𝐺

𝑘
(𝑙) most image

assessments 𝑙𝑘
𝑑𝑗
overestimate observed 𝑙𝑘

𝑜𝑗
values.

(D.2) For the picked ST(𝑥) interval, obtain the average
leaf width deviations 𝛿𝑘

ℎ
, which are calculated by

averaging the 𝑒𝑘
ℎ𝑗
values. That is,

𝛿
𝑘

ℎ
=
1

𝑛
𝑘

𝑛𝑘

∑

1

𝑒
𝑘

ℎ𝑗
. (D.2)

notice that since 𝛿𝑘
ℎ
= (ℎ
𝑘

𝑜
− ℎ
𝑘

𝑑
), negative values of 𝛿𝑘

ℎ

imply that in a group 𝐺
𝑘
(𝑙) most image assessments

ℎ
𝑘

𝑑𝑗
overestimate observed ℎ𝑘

𝑜𝑗
values.

(D.3) For the picked ST(𝑥) interval, calculate the average
leaf area deviations𝛿𝑘

𝑎
by averaging the 𝑒𝑘

𝑎𝑗
values.That

is,

𝛿
𝑘

𝑎
=
1

𝑛
𝑘

𝑛𝑘

∑

1

𝑒
𝑘

𝑎𝑗
. (D.3)

again since 𝛿𝑘
𝑎
= 𝑎
𝑘

𝑜
− 𝑎
𝑘

𝑑
negative values of 𝛿𝑘

𝑎
imply

that in a group 𝐺
𝑘
(𝑙) most image assessments 𝑎𝑘

𝑑𝑗

overestimate observed 𝑎𝑘
𝑜𝑗
values.

(D.4) For the picked ST(𝑥) interval, calculate 𝛿
𝑙
, the average

value of deviations 𝛿𝑘
𝑙
taken over 𝐶

𝐺
. Calculate also

the associated standard deviation 𝜎
𝛿𝑙
.

(D.5) For the picked ST(𝑥) interval, calculate 𝛿
ℎ
, the average

value of deviation 𝛿𝑘
ℎ
taken over𝐶

𝐺
. Calculate also the

associated standard deviation 𝜎
𝛿ℎ
.

E. Criteria for Selecting the 𝑆𝑇(𝑥) Interval
That Produces the Highest Correspondence
Level between Image Obtained
Measurements and Those Obtained Directly
from Collected Leaves

(E.1) For a given range of similarity values ST(𝑥) = [0, 𝑥],
identify the leaves satisfying the conditions

𝛿
ℎ
≥ 0, (E.1)

𝛿
𝑙
≥ 0, (E.2)

𝛿
𝑙
− 𝜎
𝛿𝑙
≤ 𝛿
𝑘

𝑙
≤ 𝛿
𝑙
+ 𝜎
𝛿𝑙
, (E.3)

𝛿
ℎ
− 𝜎
𝛿ℎ
≤ 𝛿
𝑘

ℎ
≤ 𝛿
ℎ
+ 𝜎
𝛿ℎ
. (E.4)

(E.2) Calculate the proportion 𝜆
𝑙
of leaves in 𝐶

𝐺
that

comply with the condition (E.3) through

𝜆
𝑙
=

𝑛

∑

𝑘=1

𝑛𝑘

∑

𝑗=1

[𝑙
𝑘

𝑑𝑗
| leaves in 𝐺

𝑘
that comply with

condition (E.3) ] × (
𝑛

∑

𝑘=1

𝑛𝑘

∑

𝑗=1

𝑙
𝑘

𝑜𝑗
)

−1

.

(E.5)

(E.3) Calculate the proportion 𝜆
ℎ
of leaves in 𝐶

𝐺
that

comply with the condition (E.4) through

𝜆
ℎ
=

𝑛

∑

𝑘=1

𝑛𝑘

∑

𝑗=1

[ℎ
𝑘

𝑑𝑗
| leaves in 𝐺

𝑘
that comply with

condition (E.4) ] × (
𝑛

∑

𝑘=1

𝑛𝑘

∑

𝑗=1

ℎ
𝑘

𝑜𝑗
)

−1

.

(E.6)

(E.4) Calculate the proportion 𝜃
𝑙
of leaves in𝐶

𝐺
that do not

comply with the condition (E.3) through,

𝜃
𝑙
= 1 − 𝜆

𝑙
. (E.7)

(E.5) Calculate the proportion 𝜃
ℎ
of leaves in𝐶

𝐺
that do not

comply with the condition (E.4) through,

𝜃
ℎ
= 1 − 𝜆

ℎ
. (E.8)
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(E.6) Obtain the concomitant proportions of leaves in 𝐶
𝐺

that provide consistent leaf area estimations by the
proxy of (1)

𝜆
𝑎
=

𝑛

∑

𝑘=1

𝑛𝑘

∑

𝑗=1

[𝑎
𝑘

𝑑𝑗
| leaves in 𝐺

𝑘
that comply with

condition (E.3) , (E.4) and 𝑒𝑘
𝑎𝑗
≥ 0]

× (

𝑛

∑

𝑘=1

𝑛𝑘

∑

𝑗=1

𝑎
𝑘

𝑜𝑗
)

−1

.

(E.9)

(E.7) Calculate the proportion of leaves in 𝐶
𝐺
for which

image estimated blade length and width measure-
ments overestimate leaf area calculated through (1)

𝛽
𝑎
= 1 − 𝜆

𝑎
. (E.10)

(E.8) The proportions 𝜆
𝑎𝑚𝑐

and 𝛽
𝑎𝑚𝑐

equivalent to 𝜆
𝑎
and

𝛽
𝑎
respectively but linked to leaf area estimation by

Monte Carlo method (cf. (2)) that is,

𝜆
𝑎𝑚𝑐

=

𝑛

∑

𝑘=1

𝑛𝑘

∑

𝑗=1

[𝑎
𝑘

𝑚𝑐𝑗
| leaves in 𝐺

𝑘
that comply with

condition (E.3) , (E.4) and 𝑒𝑘
𝑚𝑐𝑗

≥ 0]

× (

𝑛

∑

𝑘=1

𝑛𝑘

∑

𝑗=1

𝑎
𝑘

𝑜𝑗
)

−1

,

(E.11)

𝛽
𝑎𝑚𝑐

= 1 − 𝜆
𝑎𝑚𝑐
. (E.12)

Conditions (E.1) and (E.2) grant bounded estimation errors,
for ℎ and 𝑙 respectively. Moreover, the groups of leaves that
also satisfy conditions (E.3) and (E.4) can be identified as
those groups for which image 𝑙

𝑑
and ℎ

𝑑
estimations are

closer to directly obtained 𝑙
𝑜
and ℎ
𝑜
measurements.Therefore,

groups in 𝐶
𝐺
, which do not comply with conditions (E.1)–

(E.4), denote the set of leaves with estimation errors out of
range for a reliable estimation.
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