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We first give the style spectral decomposition of a special skew circulant matrix 𝐶 and then get the style decomposition of arbitrary
skew circulant matrix by making use of the Kronecker products between the elements of first row in skew circulant and the
special skew circulant 𝐶. Besides that, we obtain the singular value of skew circulant matrix as well. Finally, we deal with the
optimal backward perturbation analysis for the linear system with skew circulant coefficient matrix on the base of its style spectral
decomposition.

1. Introduction

A skew circulant matrix with the first row (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) is a

square matrix of the form

(

𝑎
1

𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛−1
𝑎
𝑛

−𝑎
𝑛
𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
𝑛−1

... d d d
...

−𝑎
3
⋅ ⋅ ⋅ −𝑎

𝑛
𝑎
1

𝑎
2

−𝑎
2
−𝑎
3
⋅ ⋅ ⋅ −𝑎

𝑛
𝑎
1

)

𝑛×𝑛

, (1)

denoted by SCirc (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
).

Skew circulant matrices have important applications
in various disciplines including image processing, signal
processing, solving Toeplitz matrix problems, and precon-
ditioner. The skew circulant matrices are considered as
preconditioners for linear-multistep-formulae (LMF-) based
ordinary differential equations (ODEs) codes; Hermitian and
skew-Hermitian Toeplitz systems are considered in [1–4].
Lyness and Sörevik [5] employed a skew circulant matrix
to construct 𝑠-dimensional lattice rules. Spectral decompo-
sitions of skew circulant and skew left circulant matrices are
discussed in [6]. Akhondi and Toutounian [7] presented a
new iteration method for the numerical solution of Hermi-
tian positive definite Toeplitz systems of linear equations.
Narasimha [8] believed that the linear convolution required

in block filtering can be decomposed into a sum of skew-
circulant convolutions and such convolutions can be realized
efficiently with half-length complex transforms when the
signals are real. Liu and Vaidyanathan [9] presented a new
family of normal form state-space structures, the method
used allows people to synthesize in normal form, most IIR
transfer functions, and the state transition matrices involved
are either circulant or skew circulant matrices. Vaidyanathan
and Pal [10] examined a case where two arrays are generated
by matrices that are adjugates of each other; in this case,
it is possible to obtain a dense rectangular tiling of the 2𝐷
frequency plane froma pair of coarse 2𝐷DFTfilter banks; the
special case where the adjugate pairs are generated by skew
circulant matrices has some advantages, which are examined
in detail. An additional convolution-multiplication property
for the skew-circulant convolution operation 𝑦 = ℎⓈ𝑥 =

𝐻
𝑠
𝑥, where 𝐻

𝑠
is a skew-circulant matrix; besides, skew-

circulant convolution is the underlying form of convolution
in half of the 40 cases of symmetric convolution, and the
convolution is an extension of a result Vernet’s [11], Foltz and
Welsh provided the convolution performed between ℎ and 𝑥
is skew-circulant rather than circulant in [12].

Liu andGuo [13] gave the optimal backward perturbation
analysis for a linear system with block circulant coeffi-
cient matrix. The optimal backward perturbation bound for
underdetermined systems is studied by J.-G. Sun and Z. Sun
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in [14]. Some new theorems generalizing a result of Oettli
and Prager are applied to the a posteriori analysis of the
compatibility of a computed solution to the uncertain data
of a linear system by Rigal and Gaches in [15].

In this paper, we first give the style spectral decompo-
sition of a special skew circulant matrix 𝐶 and then get
the style spectral decomposition of arbitrary skew circulant
matrix by making use of Kronecker products between the
elements of first row in skew circulant and the special skew
circuant 𝐶. Besides that, we obtain the singular value of skew
circulant matrix as well. Finally, we deal with the optimal
backward perturbation analysis for the linear system with
skew circulant coefficient matrix on the base of its style
spectral decomposition.

2. The Style Spectral Decomposition of
Skew Circulant Matrix

2.1. Style Spectral Decomposition of a Special Skew Circulant
Matrix. Let

𝐶 =(

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

... d d d
...

0 ⋅ ⋅ ⋅ 0 0 1

−1 0 ⋅ ⋅ ⋅ 0 0

). (2)

Some properties of this matrix are given in the following
theorem.

Lemma 1. (1) The eigenvalues of matrix 𝐶 are

𝜆
𝑗
= 𝑒
𝑖((2𝑗−1)/𝑛)𝜋

, 𝑗 = 1, 2, . . . , 𝑛. (3)

(2) If 𝑛 is even, the matrix 𝐶 has no real eigenvalue and

𝜆
𝑗
= 𝜆
𝑛+1−𝑗

, 𝑗 = 1, 2, . . . ,
𝑛

2
. (4)

The basis of the associated two-dimensional invariant
subspace can be taken as

𝑥
(1)

𝑗
= (

1

cos 𝜃
𝑗

...
cos (𝑛 − 1) 𝜃

𝑗

),

𝑥
(2)

𝑗
= (

0

sin 𝜃
𝑗

...
sin (𝑛 − 1) 𝜃

𝑗

),

𝜃
𝑗
=
2𝑗 − 1

𝑛
𝜋, 𝑗 = 1, 2, . . . ,

𝑛

2
.

(5)

(3) If 𝑛 is odd, the matrix 𝐶 has only one real eigenvalue
𝜆
(𝑛+1)/2

= −1, and the associated eigenvector is

𝑥
(𝑛+1)/2

=
(
(

(

1

−1

1

−1

...
1

)
)

)

,

𝜆
𝑗
= 𝜆
𝑛+1−𝑗

, 𝑗 = 1, 2, . . . ,
𝑛 − 1

2
.

(6)

The basis of the associated two-dimensional invariant
subspace can be taken as

𝑥
(1)

𝑗
= (

1

cos 𝜃
𝑗

...
cos (𝑛 − 1) 𝜃

𝑗

),

𝑥
(2)

𝑗
= (

0

sin 𝜃
𝑗

...
sin (𝑛 − 1) 𝜃

𝑗

),

𝜃
𝑗
=
2𝑗 − 1

𝑛
𝜋, 𝑗 = 1, 2, . . . ,

𝑛 − 1

2
.

(7)

Specially, if 𝑛 is even, then 𝑥(1)
𝑗

and 𝑥(2)
𝑗

span the two-
dimensional invariant subspace associated with 𝜆

𝑗
and 𝜆

𝑗
.

Lemma 2. (1) 𝑥(1)
𝑗

and 𝑥(2)
𝑗

are orthogonal.
(2) 𝑥(𝑙)
𝑗
and 𝑥(𝑠)

𝑘
are orthogonal (𝑗 ̸= 𝑘) (𝑙, 𝑠 = 1, 2).

(3) Also ‖𝑥
(𝑛+1)/2

‖
2
= √𝑛, ‖𝑥(1)

𝑗
‖
2
= ‖𝑥
(2)

𝑗
‖
2
= √𝑛/2,



(

1

𝜆
𝑗

...
𝜆
𝑛−1

𝑗

)

2

= √𝑛. (8)

Let 𝑄 = [𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
], where

𝑞
2𝑗−1

= √
2

𝑛
𝑥
(1)

𝑗
, 𝑞
2𝑗
= √

2

𝑛
𝑥
(2)

𝑗
(𝑗 = 1, 2, . . . , [

𝑛

2
]) ,

𝑞
𝑛
= √

1

𝑛

(
(

(

1

−1

1

−1

...
1

)
)

)

(𝑛 is odd) .

(9)
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Then 𝑄 is an orthogonal matrix, and if 𝑛 is even,

𝐶 = 𝑄(

𝐶
1

𝐶
2

d
𝐶
𝑛/2

)𝑄
𝑇
, (10)

where 𝐶
𝑗
= (

cos 𝜃𝑗 sin 𝜃𝑗
− sin 𝜃𝑗 cos 𝜃𝑗 ) (𝑗 = 1, 2, . . . , 𝑛/2).

When 𝑛 is odd,

𝐶 = 𝑄(

𝐶
1

d
𝐶
(𝑛−1)/2

−1

)𝑄
𝑇
, (11)

where 𝐶
𝑗
= (

cos 𝜃𝑗 sin 𝜃𝑗
− sin 𝜃𝑗 cos 𝜃𝑗 ) (𝑗 = 1, 2, . . . , (𝑛 − 1)/2).

In fact, (10) and (11) are the style spectral decomposition
of the matrix 𝐶.

2.2. The Style Spectral Decomposition of the Skew Circulant
Matrix. We have

𝐴 =(

𝑎
1

𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛−1
𝑎
𝑛

−𝑎
𝑛
𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
𝑛−1

... d d d
...

−𝑎
3
⋅ ⋅ ⋅ −𝑎

𝑛
𝑎
1

𝑎
2

−𝑎
2
−𝑎
3
⋅ ⋅ ⋅ −𝑎

𝑛
𝑎
1

)

= 𝑎
1
⋅ 𝐶
0
+ 𝑎
2
⋅ 𝐶
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
⋅ 𝐶
𝑛−1

= 𝑎
1
⋅ (𝑄𝐶

0

0
𝑄
𝑇
) + ⋅ ⋅ ⋅ + 𝑎

𝑛
⋅ (𝑄𝐶

𝑛−1

0
𝑄
𝑇
)

= 𝑄 (𝑎
1
⋅ 𝐶
0

0
)𝑄
𝑇
+ ⋅ ⋅ ⋅ + 𝑄 (𝑎

𝑛
⋅ 𝐶
𝑛−1

0
)𝑄
𝑇

(12)

= 𝑄(

𝑛

∑

𝑘=1

𝑎
𝑘
⋅ 𝐶
𝑘−1

0
)𝑄
𝑇
, (13)

where

𝐶
0
= (

𝐶
1

𝐶
2

d
𝐶
𝑛/2

) (14)

(𝑛 is even, the same case as (10)),

𝐶
0
= (

𝐶
1

d
𝐶
(𝑛−1)/2

−1

) (15)

(𝑛 is odd, the same case as (11)).
Noticing that𝑄 is an orthogonal matrix, hence (12) is the

style spectral decomposition of the matrix 𝐴.
The following are the computation formulae of the factors

in (12):

𝐶
𝑘

𝑗
= (

cos 𝑘𝜃
𝑗

sin 𝑘𝜃
𝑗

− sin 𝑘𝜃
𝑗
cos 𝑘𝜃

𝑗

) . (16)

Hence, when 𝑛 is even,

𝑛

∑

𝑘=1

𝑎
𝑘
⋅ 𝐶
𝑘−1

0
= (

𝐴
1

𝐴
2

d
𝐴
𝑛/2

), (17)

where, for arbitrary 𝑗 = 1, 2, . . . , 𝑛/2,

𝐴
𝑗
= (

𝑛

∑

𝑘=1

𝑎
𝑘
cos 𝑘𝜃

𝑗

𝑛

∑

𝑘=1

𝑎
𝑘
sin 𝑘𝜃

𝑗

−

𝑛

∑

𝑘=1

𝑎
𝑘
sin 𝑘𝜃

𝑗

𝑛

∑

𝑘=1

𝑎
𝑘
cos 𝑘𝜃

𝑗

). (18)

When 𝑛 is odd,

𝑛

∑

𝑘=1

𝑎
𝑘
⋅ 𝐶
𝑘−1

0
= (

𝐴
1

d
𝐴
(𝑛−1)/2

𝐴
∗

), (19)

where 𝐴
𝑗
is defined by (18), and

𝐴
∗
= (−1)

𝑘

𝑛

∑

𝑘=1

𝑎
𝑘
. (20)

Hence the style spectral decomposition of the matrix𝐴 is

𝐴 = 𝑄
(
(

(

𝑛

∑

𝑘=1

𝑎
𝑘
𝐶
𝑘−1

1

𝑛

∑

𝑘=1

𝑎
𝑘
𝐶
𝑘−1

2

d
d

)
)

)

𝑄
𝑇
. (21)

3. The Structured Perturbation Analysis

In this section we give the structured perturbation analysis
for linear systems with skew circulant coefficient matrix.

3.1. Condition Number and Relative Error of Linear Skew
Circulant Equation System. Consider the following:

𝐴𝑥 = 𝑏, (22)

where 𝐴 is defined in (2).
From (12), we know that the style spectral decomposition

of the matrix 𝐴 is

𝐴 = 𝑄(

𝐴
11

d
𝐴
𝑡𝑡

)𝑄
𝑇
. (23)

When 𝑛 is even and 𝑡 = 𝑛/2,

𝐴
𝑗𝑗
=

𝑛

∑

𝑘=1

𝑎
𝑘
(
cos (𝑘 − 1) 𝜃

𝑗
sin (𝑘 − 1) 𝜃

𝑗

− sin (𝑘 − 1) 𝜃
𝑗
cos (𝑘 − 1) 𝜃

𝑗

) ,

𝜃
𝑗
=
2𝑗 − 1

𝑛
𝜋, 𝑗 = 1, 2, . . . , 𝑡.

(24)
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When 𝑛 is odd and 𝑡 = (𝑛 − 1)/2 + 1, 𝐴
𝑗𝑗
is defined in (24)

(𝑗 = 1, 2, . . . , (𝑛 − 1)/2) and

𝐴
𝑡𝑡
= (−1)

𝑘

𝑛

∑

𝑘=1

𝑎
𝑘
. (25)

Lemma 3. A is an invertible matrix if and only if
𝑓(𝜔
𝑗
) ̸= 0 (𝑗 = 1, 2, . . . , 𝑛), where

𝑓 (𝜔
𝑗
) =

𝑛

∑

𝑘=1

𝑎
𝑘
𝜔
𝑘−1

𝑗
, 𝜔
𝑗
= 𝑒
𝑖((2𝑗−1)/𝑛)𝜋

, 𝑗 = 1, 2, . . . , 𝑛.

(26)

Let

𝜎
𝑗
=

𝑓 (𝜔
𝑗
)

, 𝑗 = 1, 2, . . . , 𝑛,

K =

max {𝜎
𝑗
}

min {𝜎
𝑗
}

.

(27)

Remark 4. The singular values of matrix 𝐴 are 𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
.

The proof of Lemma 3 and Remark 4 is given in the
following:

𝐴 =

𝑛

∑

𝑘=1

𝑎
𝑘
𝐶
𝑘−1
. (28)

Consequently, the spectral decomposition of the matrix 𝐴
(by using the complex style spectral decomposition of 𝐶 =

𝑄
0
(

𝜔1

d
𝜔𝑛
)𝑄
∗

0
) is

𝐴 = 𝑄
0
(

𝑓(𝜔
1
)

𝑓 (𝜔
2
)

d
𝑓 (𝜔
𝑛
)

)𝑄
∗

0
, (29)

where 𝑄
0
is a unitary matrix.

Let Δ𝐴, Δ𝑏 be the perturbation of the coefficient matrix
𝐴 and vector 𝑏, respectively, where

Δ𝐴 =(

𝛿𝑎
1

𝛿𝑎
2

⋅ ⋅ ⋅ 𝛿𝑎
𝑛−1

𝛿𝑎
𝑛

−𝛿𝑎
𝑛
𝛿𝑎
1

𝛿𝑎
2

⋅ ⋅ ⋅ 𝛿𝑎
𝑛−1

... d d d
...

−𝛿𝑎
3
⋅ ⋅ ⋅ −𝛿𝑎

𝑛
𝛿𝑎
1

𝛿𝑎
2

−𝛿𝑎
2
−𝛿𝑎
3
⋅ ⋅ ⋅ −𝛿𝑎

𝑛
𝛿𝑎
1

). (30)

Let

𝐴 = 𝐴 + Δ𝐴, �̂� = 𝑏 + 𝛿𝑏,

𝑓 (𝜔
𝑗
) =

𝑛

∑

𝑘=1

(𝑎
𝑘
+ 𝛿𝑎
𝑘
) 𝜔
𝑘−1

𝑗
.

(31)

If
𝑛

∑

𝑘=1

𝛿𝑎𝑘
 < min
1≤𝑗≤𝑛

{𝜎
𝑗
} , (32)

then


𝑓 (𝜔
𝑗
)

≥



𝑛

∑

𝑘=1

𝑎
𝑘
𝜔
𝑘−1

𝑗



−

𝑛

∑

𝑘=1

𝛿𝑎𝑘



𝜔
𝑗



𝑘−1

≥ min
1≤𝑗≤𝑛

{𝜎
𝑗
} −

𝑛

∑

𝑘=1

𝛿𝑎𝑘
 > 0.

(33)

Hence 𝐴 is an invertible matrix. Let

𝜎min = min
1≤𝑗≤𝑛

{𝜎
𝑗
} , Δ =

𝑛

∑

𝑘=1

𝛿𝑎𝑘
 . (34)

By 𝐴𝑥 = 𝑏 and 𝐴𝑥 = �̂�, we get

𝑥 − 𝑥 = 𝐴
−1
�̂� − 𝐴
−1
𝑏 = 𝐴

−1
(𝑏 + 𝛿𝑏) − 𝐴

−1
𝑏

= 𝐴
−1
𝛿𝑏 + (𝐴

−1
− 𝐴
−1
) 𝑏

= 𝐴
−1
𝛿𝑏 + (𝐴

−1
− 𝐴
−1
)𝐴𝑥

= 𝐴
−1
𝛿𝑏 + 𝐴

−1
(𝐴 − 𝐴) 𝑥,

‖𝑥 − 𝑥‖2 ≤

𝐴
−12

‖𝛿𝑏‖2 +

𝐴
−12


𝐴 − 𝐴

2
‖𝑥‖2

≤
‖𝛿𝑏‖2

𝜎min − Δ
+


𝐴 − 𝐴

2
‖𝑥‖2

𝜎min − Δ
,

‖𝑥 − 𝑥‖2

‖𝑥‖2

≤
‖𝛿𝑏‖2

(𝜎min − Δ) ‖𝑥‖2
+


𝐴 − 𝐴

2

𝜎min − Δ

≤
‖𝐴‖2

𝜎min − Δ
(
‖𝛿𝑏‖2

‖𝑏‖2

+


𝐴 − 𝐴

2

‖𝐴‖2

) ,

(35)

where

‖𝐴‖
2
= max
1≤𝑗≤𝑛

{𝜎
𝑗
} . (36)

Notice that 𝐴 − 𝐴 = Δ𝐴 is a skew circulant matrix, and
‖𝐴 − 𝐴‖

2
= | − 1|‖𝐴 − 𝐴‖

2
= ‖𝐴 − 𝐴‖

2
. So we get


𝐴 − 𝐴

2
= max
1≤𝑗≤𝑛



𝑛

∑

𝑘=1

𝛿𝑎
𝑘
𝜔
𝑘−1

𝑗



≤

𝑛

∑

𝑘=1

𝛿𝑎𝑘



𝜔
𝑗



𝑘−1

=

𝑛

∑

𝑘=1

𝛿𝑎𝑘
 = Δ.

(37)

Hence we have the following theorem.

Theorem 5. Let 𝐴, 𝐴, 𝛿𝑏, Δ, and 𝜎min be defined as above. If
Δ < 𝜎min, then

‖𝑥 − 𝑥‖2

‖𝑥‖2

≤
𝜎max

𝜎min − Δ
(
‖𝛿𝑏‖2

‖𝑏‖2

+
Δ

𝜎max
) , (38)
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where

𝜎max = ‖𝐴‖2. (39)

Remark 6. From (38) and (39), the condition number
of the skew circulant system can be defined as K =

max{𝜎
𝑗
}/min{𝜎

𝑗
}. It is easily computed, as well as the bound

of perturbation (38).

3.2. Optimal Backward Perturbation Bound of the Linear Skew
Circulant Equation System. Let 𝑥 be an approximate solution
to 𝐴𝑥 = 𝑏 and let

Ω ≡ {(Δ𝐴, Δ𝑏) | (𝐴 + Δ𝐴) 𝑥 = 𝑏 + Δ𝑏} ,

𝜂 (𝑥) ≡ inf
(Δ𝐴,Δ𝑏)∈Ω

‖[Δ𝐴, Δ𝑏]‖ ,

(𝐴 + Δ𝐴) 𝑥 = 𝑏 + Δ𝑏

(40)

which is equivalent to

(Δ𝐴, Δ𝑏) (
𝑥

−1
) = 𝑏 − 𝐴𝑥. (41)

Due to [15], we have

𝜂 (𝑥) =
‖𝑏 − 𝐴𝑥‖2

√1 + ‖𝑥‖
2

2

(‖⋅‖ being unitary invariant norm) .

(42)

If the recycling property of 𝐴 is not utilized in the
algorithm in forming 𝑥, then 𝜂(𝑥) can be used to estimate the
backward stability for this algorithm.

Let 𝑥 be an approximate solution to 𝐴𝑥 = 𝑏, where 𝐴 is
defined in (2):

Ω ≡ {(Δ𝐴, Δ𝑏) | (𝐴 + Δ𝐴) 𝑥 = 𝑏 + Δ𝑏,

Δ𝐴 is a skew circulantmatrix}

𝜂 (𝑥) ≡ inf
(Δ𝐴,Δ𝑏)∈Ω

{‖(Δ𝐴, Δ𝑏)‖𝐹} .

(43)

ThenΩ ̸= 𝜙 (such that Δ𝐴 = 0 is a skew circulant matrix, and
Δ𝑏 = 𝐴𝑥 − 𝑏) and

𝜂
2
(𝑥) = inf

(Δ𝐴,Δ𝑏)∈Ω

{‖Δ𝐴‖
2

𝐹
+ ‖Δ𝐴𝑥 + 𝐴𝑥 − 𝑏‖

2

𝐹
} . (44)

Since

Δ𝐴 =

𝑛

∑

𝑘=1

𝛿𝑎
𝑘
𝐶
𝑘−1
, (45)

so

‖Δ𝐴‖
2

𝐹
= 𝑛

𝑛

∑

𝑘=1

(𝛿𝑎
𝑘
)
2

. (46)

Besides that, we can get

‖Δ𝐴𝑥 + 𝐴𝑥 − 𝑏‖
2

𝐹

=

𝑄𝐶
∗
𝑄
𝑇
𝑥 + 𝐴𝑥 − 𝑏



2

𝐹

=



(

(

𝑛

∑

𝑘=1

𝛿𝑎
𝑘
𝐶
𝑘−1

1
𝑥
(0)

1

...
𝑛

∑

𝑘=1

𝛿𝑎
𝑘
𝐶
𝑘−1

𝑡
𝑥
(0)

𝑡

)

)

− 𝑟
0



2

𝐹

=



𝐺
0
(

𝛿𝑎
1

...
𝛿𝑎
𝑛

)− 𝑟
0



2

𝐹

,

(47)

where

𝐶
∗
=(

𝑛

∑

𝑘=1

𝛿𝑎
𝑘
𝐶
𝑘−1

1

d
𝑛

∑

𝑘=1

𝛿𝑎
𝑘
𝐶
𝑘−1

𝑡

),

𝑟
0
= 𝑄
𝑇
(𝑏 − 𝐴𝑥) , 𝑄

𝑇
𝑥 = (

𝑥
(0)

1

...
𝑥
(0)

𝑡

),

𝐺
0
= (

𝐶
0

1
𝑥
(0)

1
⋅ ⋅ ⋅ 𝐶

𝑛−1

1
𝑥
(0)

1

... d
...

𝐶
0

𝑡
𝑥
(0)

𝑡
⋅ ⋅ ⋅ 𝐶

𝑛−1

𝑡
𝑥
(0)

𝑡

).

(48)

Let

𝑓 (𝛿𝑎
1
, . . . , 𝛿𝑎

𝑛
) = 𝑛

𝑛

∑

𝑘=1

(𝛿𝑎
𝑘
)
2

+



𝐺
0
(

𝛿𝑎
1

...
𝛿𝑎
𝑛

)− 𝑟
0



2

𝐹

; (49)

then

𝜕𝑓

𝜕𝛿𝑎
𝑘

= 0 (50)

which is equivalent to

(2𝑛𝐼
𝑛
+ 2𝐺
𝑇

0
𝐺
0
)(

𝛿𝑎
1

...
𝛿𝑎
𝑛

)− 2𝐺
𝑇

0
𝑟
0
= 0.

𝜕
2
𝑓

𝜕(𝛿𝑎
𝑘
)
2
= 2𝑛𝐼
𝑛
+ 2𝐺
𝑇

0
𝐺
0
> 0,

(51)
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Hence the𝑓 is a convex function about (𝛿𝑎
1
, . . . , 𝛿𝑎

𝑛
), and the

point of minimal value is

(

𝛿𝑎
1

...
𝛿𝑎
𝑛

) = (𝑛𝐼
𝑛
+ 𝐺
𝑇

0
𝐺
0
)
−1

𝐺
𝑇

0
𝑟
0
. (52)

Substituting it back into (49), we can get the following.

Theorem 7. One has

𝜂(𝑥)
2
= 𝑛𝑟
𝑇

0
𝐺
0
(𝑛𝐼
𝑛
+ 𝐺
𝑇

0
𝐺
0
)
−2

𝐺
𝑇

0
𝑟
0

+

[𝐺
0
(𝑛𝐼
𝑛
+ 𝐺
𝑇

0
𝐺
0
)
−1

𝐺
𝑇

0
− 𝐼
𝑛
] 𝑟
0



2

𝐹

.

(53)

Let 𝐺
0
= 𝑈Σ𝑉

∗ be the singular value decomposition
of 𝐺
0
, where 𝑈 and 𝑉 are unitary (in fact, 𝑈 and 𝑉 can be

real orthogonal), Σ = diag(𝜎
1
, . . . , 𝜎



𝑛
), and 𝜎

𝑗
≥ 0 (𝑗 =

1, 2, . . . , 𝑛). Hence we have

𝜂(𝑥)
2
= 𝑛𝑟
𝑇

0
𝑈Σ𝑉
𝑇
(𝑛𝐼
𝑛
+ Σ
2
)
−2

𝑉Σ𝑈
𝑇
𝑟
0

+

[𝑈Σ𝑉

𝑇
(𝑛𝐼
𝑛
+ Σ
2
)
−1

𝑉Σ𝑈
𝑇
− 𝐼
𝑛
] 𝑟
0



2

𝐹

= 𝑛𝑟
𝑇

1
Σ(𝑛𝐼
𝑛
+ Σ
2
)
−2

Σ𝑟
1

+

[Σ(𝑛𝐼

𝑛
+ Σ
2
)
−1

Σ − 𝐼
𝑛
] 𝑟
0



2

𝐹

= 𝑛𝑟
𝑇

1
Σ(𝑛𝐼
𝑛
+ Σ
2
)
−2

Σ𝑟
1

+

[Σ(𝑛𝐼

𝑛
+ Σ
2
)
−1

Σ − 𝐼
𝑛
] 𝑟
1



2

𝐹

= 𝑛𝑟
𝑇

1
Σ(𝑛𝐼
𝑛
+ Σ
2
)
−2

Σ𝑟
1

+ 𝑛
2
𝑟
𝑇

1
(𝑛𝐼
𝑛
+ Σ
2
)
−2

𝑟
1

= 𝑟
𝑇

1
(

𝑑
1

d
𝑑
𝑛

)𝑟
1
,

(54)

where 𝑟
1
= 𝑈
𝑇
𝑟
0
, and 𝑑

𝑗
= (𝑛𝜎

2

𝑗
+𝑛
2
)/(𝑛+𝜎

2

𝑗
)
2
= 𝑛/(𝑛+𝜎

2

𝑗
).

Remark 8. By 𝜎2
𝑗
≤ ‖𝐺
0
‖
2

𝐹
= 𝑛‖𝑥‖

2

2
, we get 1 + (𝜎2

𝑗
/𝑛) ≤

1 + ‖𝑥‖
2

2
, and hence 1/(1 + ‖𝑥‖2

2
) ≤ 𝑛/(𝑛 + 𝜎

2

𝑗
).

Algorithm 9.
Step 1. Form the block style spectral decomposition of the
matrix 𝐶

𝐶 = 𝑄(

𝐶
1

d
𝐶
𝑡

)𝑄
𝑇
. (55)

Step 2. Compute 𝑟 = 𝑏 − 𝐴𝑥.

Step 3. Compute 𝑟
0
= 𝑄
𝑇
𝑟.

Step 4. Compute 𝑄𝑇𝑥 = (
𝑥
(0)
1

...
𝑥
(0)
1

).

Step 5. Form 𝐺
0
.

Step 6. Compute 𝜂2(𝑥).

4. Conclusion

The related problems of skew-circulantmatrix are considered
in this paper. We not only present style spectral decomposi-
tion and singular value but also study backward perturbation
analysis for the linear system with skew-circulant coefficient
matrix. The reason why we focus our attentions on skew-
circulant is to explore the application of skew circulant in the
related field in medicine. Wittsack et al. in [16] validated a
deconvolution method originating from magnetic resonance
techniques and apply it to the calculation of dynamic contrast
enhanced computed tomography perfusion imaging, and the
application of a block circulant matrix approach for singular
value decomposition renders the analysis independent of
tracer arrival time to improve the results. On the basis
of existing application situation, we conjecture that SVD
decomposition of skew circulant matrix will play an impor-
tant role in CT-perfusion imaging of human brain.
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perfusion imaging of the human brain: advanced deconvolution
analysis using circulant singular value decomposition,” Com-
puterizedMedical Imaging and Graphics, vol. 32, no. 1, pp. 67–77,
2008.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


