
Hindawi Publishing Corporation
Advances in Numerical Analysis
Volume 2013, Article ID 470480, 8 pages
http://dx.doi.org/10.1155/2013/470480

Research Article
New Nonpolynomial Spline in Compression Method of 𝑂(𝑘2 + ℎ4)
for the Solution of 1D Wave Equation in Polar Coordinates

Venu Gopal,1 R. K. Mohanty,2 and Navnit Jha2

1 Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi 110 007, India
2Department of Applied Mathematics, South Asian University, Akbar Bhawan, Delhi 110021, India

Correspondence should be addressed to Venu Gopal; vgopal.zh@gmail.com

Received 21 December 2012; Revised 6 July 2013; Accepted 25 July 2013

Academic Editor: Rüdiger Weiner
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We propose a three-level implicit nine point compact finite difference formulation of order two in time and four in space direction,
based on nonpolynomial spline in compression approximation in r-direction and finite difference approximation in t-direction
for the numerical solution of one-dimensional wave equation in polar coordinates. We describe the mathematical formulation
procedure in detail and also discussed the stability of the method. Numerical results are provided to justify the usefulness of the
proposed method.

1. Introduction

We consider the one-dimensional wave equation in polar
forms:

𝑢
𝑡𝑡
= 𝑢
𝑟𝑟
+ 𝐷 (𝑟) 𝑢

𝑟
+ 𝐸 (𝑟) 𝑢 + 𝑓 (𝑟, 𝑡) , 0 < 𝑟 < 1, 𝑡 > 0,

(1)

with the following initial conditions:

𝑢 (𝑟, 0) = 𝜙 (𝑟) , 𝑢
𝑡
(𝑟, 0) = 𝜑 (𝑟) , 0 ≤ 𝑟 ≤ 1, (2)

and the following boundary conditions:

𝑢 (0, 𝑡) = 𝑝
0
(𝑡) , 𝑢 (1, 𝑡) = 𝑝

1
(𝑡) , 𝑡 ≥ 0, (3)

where𝐷(𝑟) = 𝛾/𝑟 and 𝐸(𝑟) = −𝛾/𝑟
2.

We assume that the conditions (2) and (3) are given with
sufficient smoothness tomaintain the order of accuracy in the
numerical method under consideration.

The study of wave equation in polar form is of keen
interest in the fields like acoustics, electromagnetic, fluid
dynamics, mathematical physics, and so forth. Efforts are
being made to develop efficient and high accuracy finite
difference methods for such types of PDEs. During the last
three decades, there has been much effort to develop stable

numerical methods based on spline approximations for the
solution of time-dependent partial differential equations.
But so far in the literature, very limited spline methods
are there for the wave equation in polar coordinates. In
1968-69, Bickley [1] and Fyfe [2] studied boundary value
problems using cubic splines. In 1973, Papamichael and
Whiteman [3], and the next year, Fleck [4] and Raggett
and Wilson [5] have used a cubic spline technique of lower
order accuracy to solve one-dimensional heat conduction
equation and wave equation, respectively. Then, Jain et al.
[6–9] have derived cubic spline solution for the differential
equations including fourth order cubic spline method for
solving the nonlinear two point boundary value problems
with significant first derivative terms. Recently, Kadalbajoo
et al. [10, 11] and Khan et al. [12, 13] have studied parametric
cubic spline technique for solving two point boundary value
problems. In recent years, Rashidinia et al. [14], Ding and
Zhang [15], and Mohanty et al. [16–21] have discussed spline
and high order finite difference methods for the solution of
hyperbolic equations. In this present paper, we follow the
idea of Jain and Aziz [7] by using nonpolynomial spline in
compression approximation to develop order four method in
space direction for the wave equation in polar co-ordinates.
We have shown that our method is in general of order
four, but for the sake of computations, we have used the
consistency of the first order continuity condition.
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In this paper, using nine grid points (see Figure 1), we
discuss a new three-level implicit non-polynomial spline
finite difference method of accuracy two in time and four in
space for the solution of one-dimensional wave equation in
polar forms. In this method, we require only three evaluation
of function 𝐺 (which is defined in Section 2). In the next
section, we discuss the non-polynomial spline in compres-
sion finite difference method. Difficulties were experienced
in the past for the high order spline solution of wave equation
in polar coordinates. The solution usually deteriorates in
the vicinity of the singularity. In this section, we modify
our technique in such a way that the solution retains its
order and accuracy everywhere in the solution region. In
this section, we also discussed the stability analysis of the
proposed method. In Section 4, we discuss the higher order
approximation at first time level in order to compute the pro-
posed numerical method of same accuracy and compare the
numerical results of proposed high accuracy non-polynomial
spline in compression finite difference method with the
corresponding second order accuracy non-polynomial spline
in compression method. Concluding remarks are given in
Section 5.

2. The Numerical Method Based on
Nonpolynomial Spline in Compression

The solution domain [0, 1] × [𝑡 > 0] is divided into (𝑁 +

1) × 𝐽 mesh with the spatial step size ℎ = 1/(𝑁 + 1) in
𝑟-direction and the time step size 𝑘 > 0 in 𝑡-direction,
respectively, where 𝑁 and 𝐽 are positive integers. The mesh
ratio parameter is given by 𝜆 = (𝑘/ℎ) > 0. Grid points
are defined by (𝑟

𝑙
, 𝑡
𝑗
) = (𝑙ℎ, 𝑗𝑘), 𝑙 = 0, 1, 2, . . . , 𝑁 + 1, and

𝑗 = 0, 1, 2, . . . , 𝐽. The notations 𝑢𝑗
𝑙
and 𝑈

𝑗

𝑙
are used for the

discrete approximation and the exact value of 𝑢(𝑟, 𝑡) at the
grid point (𝑟

𝑙
, 𝑡
𝑗
), respectively.

For the derivation of the non-polynomial spline in
compression finite difference method for the solution of
differential equation (1), we follow the ideas given by Jain and
Aziz [7]. We use the non-polynomial spline in compression
approximations in 𝑟-direction and second order finite differ-
ence approximation in 𝑡-direction.

At the grid point (𝑟
𝑙
, 𝑡
𝑗
), we may write the differential

equation (1) as

𝑈
𝑡𝑡

𝑗

𝑙
− 𝑈
𝑟𝑟

𝑗

𝑙
= 𝐺 (𝑟

𝑙
, 𝑡
𝑗
, 𝑈
𝑗

𝑙
, 𝑈
𝑟

𝑗

𝑙
) ≡ 𝐺

𝑗

𝑙
(say) , (4)

where 𝐺(𝑟, 𝑡, 𝑢, 𝑢
𝑟
) = 𝐷(𝑟)𝑢

𝑟
+ 𝐸(𝑟)𝑢 + 𝑓(𝑟, 𝑡).

Let 𝑆
𝑗
(𝑟) be the non-polynomial spline in compression

interpolating function of the value 𝑢𝑗
𝑙
at the grid point (𝑟

𝑙
, 𝑡
𝑗
)

and is given by

𝑆
𝑗
(𝑟) = 𝑎

𝑗

𝑙
+ 𝑏
𝑗

𝑙
(𝑟 − 𝑟
𝑙
) + 𝑐
𝑗

𝑙
sin 𝜏 (𝑟 − 𝑟

𝑙
) + 𝑑
𝑗

𝑙
cos 𝜏 (𝑟 − 𝑟

𝑙
) ,

𝑟
𝑙−1

≤ 𝑟 ≤ 𝑟
𝑙
; 𝑙 = 1, 2, . . . , 𝑁 + 1; 𝑗 = 1, 2, . . . , 𝐽,

(5)

where 𝑎
𝑗

𝑙
, 𝑏𝑗
𝑙
, 𝑐𝑗
𝑙
, and 𝑑

𝑗

𝑙
are constants and 𝜔 is arbitrary

parameter. 𝑆
𝑗
(𝑟) is a class of𝐶2[0, 1]which interpolates 𝑢(𝑟, 𝑡)

at the grid point (𝑟
𝑙
, 𝑡
𝑗
).
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k
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Figure 1: Schematic representation of three-level implicit scheme.

The derivatives of non-polynomial spline in compression
function 𝑆

𝑗
(𝑟) are given by

𝑆
󸀠

𝑗
(𝑟) = 𝑏

𝑗

𝑙
+ 𝜏𝑐
𝑗

𝑙
cos 𝜏 (𝑟 − 𝑟

𝑙
) − 𝜏𝑑

𝑗

𝑙
sin 𝜏 (𝑟 − 𝑟

𝑙
) ,

𝑙 = 1, 2, . . . , 𝑁 + 1; 𝑗 = 1, 2, . . . , 𝐽,

(6)

𝑆
󸀠󸀠

𝑗
(𝑟) = −𝜏

2
[𝑐
𝑗

𝑙
sin 𝜏 (𝑟 − 𝑟

𝑙
) + 𝑑
𝑗

𝑙
cos 𝜏 (𝑟 − 𝑟

𝑙
)] ,

𝑙 = 1, 2, . . . , 𝑁 + 1; 𝑗 = 1, 2, . . . , 𝐽,

(7)

where

𝑚
𝑗

𝑙
= 𝑆
󸀠

𝑗
(𝑟
𝑙
) = 𝑈

𝑗

𝑟𝑙
,

𝑀
𝑗

𝑙
= 𝑆
󸀠󸀠

𝑗
(𝑟
𝑙
) = 𝑈
𝑟𝑟

𝑗

𝑙

= 𝑈
𝑡𝑡

𝑗

𝑙
− 𝐷 (𝑟

𝑙
) 𝑈
𝑟

𝑗

𝑙
− 𝐸 (𝑟

𝑙
) 𝑈
𝑗

𝑙
− 𝑓 (𝑟

𝑙
, 𝑡
𝑗
) ,

𝑙 = 0, 1, 2, . . . , 𝑁 + 1; 𝑗 = 1, 2, . . . , 𝐽.

(8)

Substituting 𝑟 = 𝑟
𝑙
in (5) and 𝑟 = 𝑟

𝑙−1
in (4) and (5), we obtain

𝑆
󸀠

𝑗
(𝑟
𝑙
) =

ℎ

6
[𝑀
𝑗

𝑙−1
+ 2𝑀

𝑗

𝑙
] + (

𝑢
𝑗

𝑙
− 𝑢
𝑗

𝑙−1

ℎ
) = 𝑚

𝑗

𝑙
, (9)

𝑆
󸀠

𝑗
(𝑟
𝑙−1

) = − ℎ [𝛽𝑀
𝑗

𝑙−1
+ 𝛼𝑀

𝑗

𝑙
] + (

𝑈
𝑗

𝑙
− 𝑈
𝑗

𝑙−1

ℎ
)

= 𝑈
𝑗

𝑟𝑙−1
= 𝑚
𝑗

𝑙−1
, 𝑟
𝑙−1

≤ 𝑟 ≤ 𝑟
𝑙
.

(10)

By considering 𝑆
𝑗
(𝑟) and 𝑆

󸀠

𝑗
(𝑟) in 𝑟

𝑙
≤ 𝑟 ≤ 𝑟

𝑙+1
, we have

𝑆
󸀠

𝑗
(𝑟
𝑙
) =

ℎ

6
[𝑀
𝑗

𝑙+1
+ 2𝑀

𝑗

𝑙
] + (

𝑢
𝑗

𝑙+1
− 𝑢
𝑗

𝑙

ℎ
) = 𝑚

𝑗

𝑙
, (11)

𝑆
󸀠

𝑗
(𝑟
𝑙+1

) = ℎ [𝛽𝑀
𝑗

𝑙+1
+ 𝛼𝑀

𝑗

𝑙
] + (

𝑈
𝑗

𝑙+1
− 𝑈
𝑗

𝑙

ℎ
)

= 𝑈
𝑗

𝑟𝑙+1
= 𝑚
𝑗

𝑙+1
, 𝑟
𝑙
≤ 𝑟 ≤ 𝑟

𝑙+1
.

(12)
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Adding (9) and (11), we get

𝑚
𝑗

𝑙
= 𝑆
󸀠

𝑗
(𝑟
𝑙
) = −

ℎ

12
[𝑀
𝑗

𝑙+1
−𝑀
𝑗

𝑙−1
] + (

𝑈
𝑗

𝑙+1
− 𝑈
𝑗

𝑙−1

ℎ
) .

(13)

To derive expression for the coefficients of (5) in terms of𝑈𝑗
𝑙
,

𝑈
𝑗

𝑙+1
,𝑀𝑗
𝑙
, and𝑀

𝑗

𝑙+1
, we use

𝑆
𝑗
(𝑟
𝑙
) = 𝑈

𝑗

𝑙
, 𝑆

𝑗
(𝑟
𝑙+1

) = 𝑈
𝑗

𝑙+1
,

𝑀
𝑗

𝑙
= 𝑆
󸀠󸀠

𝑗
(𝑟
𝑙
) , 𝑀

𝑗

𝑙+1
= 𝑆
󸀠󸀠

𝑗
(𝑟
𝑙+1

) .

(14)

From algebraic manipulation, we get

𝑎
𝑗

𝑙
= 𝑈
𝑗

𝑙
+
𝑀
𝑗

𝑙

𝜔
2
, 𝑏

𝑗

𝑙
=

𝑈
𝑗

𝑙+1
− 𝑈
𝑗

𝑙

ℎ
+
𝑀
𝑗

𝑙+1
−𝑀
𝑗

𝑙

𝜔𝜃
,

𝑐
𝑗

𝑙
=

𝑀
𝑗

𝑙
cos 𝜃 −𝑀

𝑗

𝑙+1

𝜔
2 sin 𝜃

, 𝑑
𝑗

𝑙
= −

𝑀
𝑗

𝑙

𝜔
2
,

(15)

where 𝜃 = 𝜔ℎ and 𝑙 = 0, 1, 2, . . . , 𝑁 + 1.
Using the continuity of the first derivative at (𝑟

𝑙
, 𝑡
𝑗
), that

is, 𝑆󸀠
𝑗
(𝑟
𝑙
−) = 𝑆

󸀠

𝑗
(𝑟
𝑙
+), we obtain the following relation for 𝑙 =

1, 2, . . . , 𝑁 − 1:

𝑈
𝑗

𝑙+1
− 2𝑈
𝑗

𝑙
+ 𝑈
𝑗

𝑙−1

ℎ
2

= 𝛼𝑀
𝑗

𝑙+1
+ 2𝛽𝑀

𝑗

𝑙
+ 𝛼𝑀

𝑗

𝑙−1
, (16)

where

𝛼 =
1

𝜃
2
(𝜃 cosec 𝜃 − 1) , 𝛽 =

1

𝜃
2
(1 − 𝜃 cot 𝜃) ,

𝜃 = 𝜔ℎ.

(17)

When 𝜔 → 0, that is, 𝜃 → 0, then (𝛼, 𝛽) → (1/6, 1/3), and
the relation (16) reduces to ordinary cubic spline relation:

𝑈
𝑗

𝑙+1
− 2𝑈
𝑗

𝑙
+ 𝑈
𝑗

𝑙−1
=

ℎ
2

6
(𝑀
𝑗

𝑙+1
+ 2𝑀

𝑗

𝑙
+𝑀
𝑗

𝑙−1
) . (18)

Note that (10), (12), (13), and (16) are important properties
of the non-polynomial cubic spline in compression function
𝑆
𝑗
(𝑟).
We consider the following approximations:

𝑈
𝑡𝑡

𝑗

𝑙
=

𝑈
𝑗+1

𝑙
− 2𝑈
𝑗

𝑙
+ 𝑈
𝑗−1

𝑙

𝑘
2

= 𝑈
𝑡𝑡

𝑗

𝑙
+ 𝑂 (𝑘

2
) , (19a)

𝑈
𝑡𝑡

𝑗

𝑙+1
=

𝑈
𝑗+1

𝑙+1
− 2𝑈
𝑗

𝑙+1
+ 𝑈
𝑗−1

𝑙+1

𝑘
2

= 𝑈
𝑡𝑡

𝑗

𝑙+1
+ 𝑂 (𝑘

2
+ 𝑘
2
ℎ) ,

(19b)

𝑈
𝑡𝑡

𝑗

𝑙−1
=

𝑈
𝑗+1

𝑙−1
− 2𝑈
𝑗

𝑙−1
+ 𝑈
𝑗−1

𝑙−1

𝑘
2

= 𝑈
𝑡𝑡

𝑗

𝑙−1
+ 𝑂 (𝑘

2
− 𝑘
2
ℎ) ,

(19c)

𝑈
𝑟

𝑗

𝑙
=

𝑈
𝑗

𝑙+1
− 𝑈
𝑗

𝑙−1

2ℎ
= 𝑈
𝑟

𝑗

𝑙
+
ℎ
2

6
𝑈
𝑟𝑟𝑟

𝑗

𝑙
+ 𝑂 (ℎ

4
) , (20a)

𝑈
𝑟

𝑗

𝑙+1
=

3𝑈
𝑗

𝑙+1
− 4𝑈
𝑗

𝑙
+ 𝑈
𝑗

𝑙−1

2ℎ
= 𝑈
𝑟

𝑗

𝑙+1
−
ℎ
2

3
𝑈
𝑗

𝑟𝑟𝑟𝑙
+ 𝑂 (ℎ

3
) ,

(20b)

𝑈
𝑟

𝑗

𝑙−1
=

−3𝑈
𝑗

𝑙−1
+ 4𝑈
𝑗

𝑙
− 𝑈
𝑗

𝑙+1

2ℎ
= 𝑈
𝑟

𝑗

𝑙−1
−
ℎ
2

3
𝑈
𝑗

𝑟𝑟𝑟𝑙
− 𝑂 (ℎ

3
) ,

(20c)

𝐺
𝑗

𝑙
= 𝐺(𝑟

𝑙
, 𝑡
𝑗
, 𝑈
𝑗

𝑙
, 𝑈
𝑟

𝑗

𝑙
) , (21a)

𝐺
𝑗

𝑙+1
= 𝐺(𝑟

𝑙+1
, 𝑡
𝑗
, 𝑈
𝑗

𝑙+1
, 𝑈
𝑟

𝑗

𝑙+1
) , (21b)

𝐺
𝑗

𝑙−1
= 𝐺(𝑟

𝑙−1
, 𝑡
𝑗
, 𝑈
𝑗

𝑙−1
, 𝑈
𝑟

𝑗

𝑙−1
) . (21c)

Since the derivative values of 𝑆
𝑗
(𝑟) defined by (10), (12) and

(13) are not known at each grid point (𝑟
𝑙
, 𝑡
𝑗
), we use the

following approximations for the derivatives of 𝑆
𝑗
(𝑟). Let

𝑀
𝑗

𝑙
= (𝑈
𝑡𝑡

𝑗

𝑙
− 𝐺
𝑗

𝑙
) , (22a)

𝑀
𝑗

𝑙+1
= (𝑈
𝑡𝑡

𝑗

𝑙+1
− 𝐺
𝑗

𝑙+1
) , (22b)

𝑀
𝑗

𝑙−1
= (𝑈
𝑡𝑡

𝑗

𝑙−1
− 𝐺
𝑗

𝑙−1
) , (22c)

𝑚̂
𝑗

𝑙
=

𝑈
𝑗

𝑙+1
− 𝑈
𝑗

𝑙−1

2ℎ
−
𝛼ℎ

2
[𝑀
𝑗

𝑙+1
−𝑀
𝑗

𝑙−1
] , (23a)

𝑚̂
𝑗

𝑙+1
=

𝑈
𝑗

𝑙+1
− 𝑈
𝑗

𝑙

ℎ
+ ℎ [𝛽𝑀

𝑗

𝑙+1
+ 𝛼𝑀

𝑗

𝑙
] , (23b)

𝑚̂
𝑗

𝑙−1
=

𝑈
𝑗

𝑙
− 𝑈
𝑗

𝑙−1

ℎ
− ℎ [𝛽𝑀

𝑗

𝑙−1
+ 𝛼𝑀

𝑗

𝑙
] . (23c)

Now we define the following approximations:

𝐺
𝑗

𝑙
= 𝐺 (𝑥

𝑙
, 𝑡
𝑗
, 𝑈
𝑗

𝑙
, 𝑚̂
𝑗

𝑙
) , (24a)

𝐺
𝑗

𝑙+1
= 𝐺 (𝑥

𝑙+1
, 𝑡
𝑗
, 𝑈
𝑗

𝑙+1
, 𝑚̂
𝑗

𝑙+1
) , (24b)

𝐺
𝑗

𝑙−1
= 𝐺 (𝑥

𝑙−1
, 𝑡
𝑗
, 𝑈
𝑗

𝑙−1
, 𝑚̂
𝑗

𝑙−1
) , (24c)

in which we use the non-polynomial spline in compression
function 𝑈

𝑗

𝑙
= 𝑆
𝑗
(𝑥
𝑙
), approximation of its first order space

derivative defined by (23a)–(23c) in 𝑟-direction.
With the help of the approximations (20a), from (21a), we

obtain

𝐺
𝑗

𝑙
= 𝐺(𝑟

𝑙
, 𝑡
𝑗
, 𝑈
𝑗

𝑙
, 𝑈
𝑟

𝑗

𝑙
+
ℎ
2

6
𝑈
𝑟𝑟𝑟

𝑗

𝑙
+ 𝑂 (ℎ

4
))

= 𝐺
𝑗

𝑙
+
ℎ
2

6
𝑈
𝑟𝑟𝑟

𝑗

𝑙
(
𝜕𝐺

𝜕𝑈
𝑟

)

𝑗

𝑙

+ 𝑂 (ℎ
4
) .

(25a)
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Similarly,

𝐺
𝑗

𝑙+1
= 𝐺
𝑗

𝑙+1
−
ℎ
2

3
𝑈
𝑟𝑟𝑟

𝑗

𝑙
(
𝜕𝐺

𝜕𝑈
𝑟

)

𝑗

𝑙

+ 𝑂 (𝑘
2
+ ℎ
4
) , (25b)

𝐺
𝑗

𝑙−1
= 𝐺
𝑗

𝑙−1
−
ℎ
2

3
𝑈
𝑟𝑟𝑟

𝑗

𝑙
(
𝜕𝐺

𝜕𝑈
𝑟

)

𝑗

𝑙

+ 𝑂 (𝑘
2
+ ℎ
4
) . (25c)

Now, with the help of the approximations (22a), (23a), and
(25a), from (24a), we obtain

𝐺
𝑗

𝑙
= 𝐺 (𝑟

𝑙
, 𝑡
𝑗
, 𝑈
𝑗

𝑙
, 𝑚
𝑗

𝑙
+ 𝑂 (𝑘

2
+ ℎ
4
))

= 𝐺 (𝑟
𝑙
, 𝑡
𝑗
, 𝑈
𝑗

𝑙
, 𝑚
𝑗

𝑙
) + 𝑂 (𝑘

2
+ ℎ
4
)

= 𝐺
𝑗

𝑙
+ 𝑂 (𝑘

2
+ ℎ
4
) .

(26a)

Similarly,

𝐺
𝑗

𝑙+1
= 𝐺
𝑗

𝑙+1
+ 𝑂 (𝑘

2
+ ℎ
4
) , (26b)

𝐺
𝑗

𝑙−1
= 𝐺
𝑗

𝑙−1
+ 𝑂 (𝑘

2
+ ℎ
4
) . (26c)

Then, at each grid point (𝑟
𝑙
, 𝑡
𝑗
), a non-polynomial spline in

compression finite differencemethodwith accuracy of𝑂(𝑘2+
ℎ
4
) for the solution of differential equation (1) may be written

as

6𝜆
2
[𝑈
𝑗

𝑙+1
− 2𝑈
𝑗

𝑙
+ 𝑈
𝑗

𝑙−1
] =

𝑘
2

2
[𝑈
𝑡𝑡

𝑗

𝑙+1
+ 𝑈
𝑡𝑡

𝑗

𝑙−1
+ 10𝑈

𝑡𝑡

𝑗

𝑙
]

−
𝑘
2

2
[𝐺
𝑗

𝑙+1
+ 𝐺
𝑗

𝑙−1
+ 10𝐺

𝑗

𝑙
] + 𝑇̂
𝑗

𝑙
.

(27)
Using the approximations (19a)–(19c) and (26a)–(26c), from
(27), we obtain the local truncation error:

𝑇̂
𝑗

𝑙
= 6𝜆
2
[𝑈
𝑗

𝑙+1
− 2𝑈
𝑗

𝑙
+ 𝑈
𝑗

𝑙−1
] −

𝑘
2

2
[𝑈
𝑡𝑡

𝑗

𝑙+1
+ 𝑈
𝑡𝑡

𝑗

𝑙−1
+ 10𝑈

𝑡𝑡

𝑗

𝑙
]

+
𝑘
2

2
[𝐺
𝑗

𝑙+1
+ 𝐺
𝑗

𝑙−1
+ 10𝐺

𝑗

𝑙
] + 𝑂 (𝑘

4
+ 𝑘
2
ℎ
4
) .

(28)

Now, substituting the values 𝐺𝑗
𝑙
= 𝑈
𝑡𝑡

𝑗

𝑙
− 𝑈
𝑟𝑟

𝑗

𝑙
and 𝐺

𝑗

𝑙±1
=

𝑈
𝑡𝑡

𝑗

𝑙±1
− 𝑈
𝑟𝑟

𝑗

𝑙±1
in (28) and then using Taylor’s expansion of

𝑈
𝑗

𝑙±1
, 𝑈
𝑡𝑡

𝑗

𝑙±1
and 𝑈

𝑟𝑟

𝑗

𝑙±1
at the grid point (𝑟

𝑙
, 𝑡
𝑗
) in (28), that is,

using the following values:

𝑈
𝑗

𝑙±1
= 𝑈
𝑗

𝑙
± ℎ𝑈
10
+
ℎ
2

2
𝑈
20
±
ℎ
3

6
𝑈
30
+
ℎ
4

24
𝑈
40
± 𝑂 (ℎ

5
) ,

𝑈
𝑟𝑟

𝑗

𝑙±1
= 𝑈
𝑟𝑟

𝑗

𝑙
± ℎ𝑈
30
+
ℎ
2

2
𝑈
40
± 𝑂 (ℎ

3
) , . . . ,

(29)

we obtain the local truncation error 𝑇̂𝑗
𝑙
= 𝑂(𝑘

4
+ 𝑘
2
ℎ
4
).

Note that the initial and Dirichlet boundary conditions
are given by (2) and (3), respectively. Incorporating the initial
and boundary conditions, we can write the method (27) in
a tri-diagonal matrix form. Since the differential equation
(1) is linear, we can solve the linear system using the Gauss-
elimination (tri-diagonal solver) method [22].

3. Stability Analysis

We can write the finite difference method based on non-
polynomial spline in compression approximation (27) as
follows by neglecting the LTE:

6𝜆
2
[𝑢
𝑗

𝑙+1
− 2𝑢
𝑗

𝑙
+ 𝑢
𝑗

𝑙−1
]

=
𝑘
2

2
[𝑢
𝑡𝑡

𝑗

𝑙+1
+ 𝑢
𝑡𝑡

𝑗

𝑙−1
+ 10𝑢

𝑡𝑡

𝑗

𝑙
]

−
𝑘
2

2
[𝐷
𝑙+1

𝑢̂
𝑟

𝑗

𝑙+1
+ 𝐷
𝑙−1

𝑢̂
𝑟

𝑗

𝑙−1
+ 10𝐷

𝑙
𝑢̂
𝑟

𝑗

𝑙
]

−
𝑘
2

2
[𝐸
𝑙+1

𝑢̂
𝑗

𝑙+1
+ 𝐸
𝑙−1

𝑢̂
𝑗

𝑙−1
+ 10𝐸

𝑙
𝑢̂
𝑗

𝑙
]

−
𝑘
2

2
[𝑓
𝑗

𝑙+1
+ 𝑓
𝑗

𝑙−1
+ 10𝑓

𝑗

𝑙
] ,

𝑙 = 1 (1)𝑁, 𝑗 = 1, 2, . . . , 𝐽,

(30)

where the approximations associated with (30) are defined in
Section 2.

Note that the scheme (30) is of𝑂(𝑘2+ℎ4) accuracy for the
solution of wave equation (1). Since 𝑟

0
= 0, the scheme (30)

fails to compute at 𝑙 = 1 due to zero division. In order to get
a stable non-polynomial cubic spline in compression scheme
of𝑂(𝑘2+ℎ4) accuracy, we need the following approximations:

𝐷
𝑙±1

= 𝐷
𝑙
± ℎ𝐷
𝑟𝑙
+ ℎ
2
𝐷
𝑟𝑟𝑙

± 𝑂 (ℎ
3
) , (31a)

𝐸
𝑙±1

= 𝐸
𝑙
± ℎ𝐸
𝑟𝑙
+ ℎ
2
𝐸
𝑟𝑟𝑙

± 𝑂 (ℎ
3
) , (31b)

𝑓
𝑗

𝑙±1
= 𝑓
𝑗

𝑙
± ℎ𝑓
𝑗

𝑟𝑙
+
ℎ
2

2
𝑓
𝑗

𝑟𝑟𝑙
± 𝑂 (ℎ

3
) , (31c)

where

𝐷
𝑙
= 𝐷 (𝑟

𝑙
) , 𝐷

𝑟𝑙
= 𝐷
𝑟
(𝑟
𝑙
) , 𝐷

𝑟𝑟𝑙
= 𝐷
𝑟𝑟
(𝑟
𝑙
) ,

𝐸
𝑙
= 𝐸 (𝑟

𝑙
) , 𝐸

𝑟𝑙
= 𝐸
𝑟
(𝑟
𝑙
) , 𝐸

𝑟𝑟𝑙
= 𝐸
𝑟𝑟
(𝑟
𝑙
) ,

𝑓
𝑗

𝑙
= 𝑓 (𝑟

𝑙
, 𝑡
𝑗
) , 𝑓

𝑟

𝑗

𝑙
= 𝑓
𝑟
(𝑟
𝑙
, 𝑡
𝑗
) ,

𝑓
𝑟𝑟

𝑗

𝑙
= 𝑓
𝑟𝑟
(𝑟
𝑙
, 𝑡
𝑗
) , . . . .

(32)

Now, with the help of the approximations defined in Section 2
and (31a)–(31c), neglecting high order terms, we can rewrite
the scheme (30) in three-level operator compact implicit
form:

[𝑅
0
+

1

12
(𝛿
2

𝑟
+ 𝑅
1
(2𝜇
𝑟
𝛿
𝑟
))] 𝛿
2

𝑡
𝑢
𝑗

𝑙

= 𝜆
2
[𝑅
2
𝛿
2

𝑟
+ 𝑅
3
(2𝜇
𝑟
𝛿
𝑟
) + 2𝑅

4
] 𝑢
𝑗

𝑙
+∑𝑓,

𝑙 = 1 (1)𝑁, 𝑗 = 1 (1) 𝐽,

(33)
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where

𝑅
0
= 1 +

𝛾

12𝑙
2
, 𝑅

1
=

1

2

𝛾

𝑙
,

𝑅
2
= 1 +

𝛾 (𝛾 − 2)

12𝑙
2

, 𝑅
3
= 𝑅
1
+
𝛾 (6 − 𝛾)

24𝑙
3

,

𝑅
4
= −

𝛾

2𝑙
2
+
𝛾 (6 − 𝛾)

24𝑙
4

,

∑𝑓 =
𝑘
2

12
[(12 +

𝛾

𝑙
2
)𝑓
𝑗

𝑙
+
𝛾ℎ

𝑙
𝑓
𝑗

𝑟𝑙
+ ℎ
2
𝑓
𝑗

𝑟𝑟𝑗
] ,

(34)

and 𝜇
𝑟
𝑢
𝑗

𝑙
= (1/2)(𝑢

𝑗

𝑙+1/2
+ 𝑢
𝑗

𝑙−1/2
) and 𝛿

𝑟
𝑢
𝑗

𝑙
= (𝑢
𝑗

𝑙+1/2
− 𝑢
𝑗

𝑙−1/2
)

are averaging and central difference operators with respect
to 𝑟-direction, and so forth. This implies that (2𝜇

𝑟
𝛿
𝑟
)𝑢
𝑗

𝑙
=

𝑢
𝑗

𝑙+1
− 𝑢
𝑗

𝑙−1
, 𝛿2
𝑟
𝑢
𝑗

𝑙
= 𝑢
𝑗

𝑙+1
− 2𝑢
𝑗

𝑙
+ 𝑢
𝑗

𝑙−1
, 𝛿2
𝑡
𝑢
𝑗

𝑙
= 𝑢
𝑗+1

𝑙
− 2𝑢
𝑗

𝑙
+

𝑢
𝑗−1

𝑙
, and so forth.Thenon-polynomial spline in compression

finite difference scheme (33) has a local truncation error of
𝑂(𝑘
2
+ ℎ
4
) and is free from the terms 1/(𝑙 ± 1), and hence, it

can be solved for 𝑙 = 1(1)𝑁, 𝑗 = 1(1)𝐽 in the region 0 < 𝑟 < 1,
𝑡 > 0.

For stability of the method (33), we follow the technique
used by Mohanty [19]. We may rewrite (33) as

[𝑅
0
+

1

12
(𝑅
2
𝛿
2

𝑟
+ 𝑅
3
(2𝜇
𝑟
𝛿
𝑟
))] 𝛿
2

𝑡
𝑢
𝑗

𝑙

= 𝜆
2
[𝑅
2
𝛿
2

𝑟
+ 𝑅
3
(2𝜇
𝑟
𝛿
𝑟
) + 2𝑅

4
] 𝑢
𝑗

𝑙
+∑𝑓.

(35)

The additional terms are of high orders and do not affect the
accuracy of the scheme.The exact value𝑈𝑗

𝑙
= 𝑢(𝑟
𝑙
, 𝑡
𝑗
) satisfies

[𝑅
0
+

1

12
(𝑅
2
𝛿
2

𝑟
+ 𝑅
3
(2𝜇
𝑟
𝛿
𝑟
))] 𝛿
2

𝑡
𝑈
𝑗

𝑙

= 𝜆
2
[𝑅
2
𝛿
2

𝑟
+ 𝑅
3
(2𝜇
𝑟
𝛿
𝑟
) + 2𝑅

4
]𝑈
𝑗

𝑙

+∑𝑓 + 𝑂(𝑘
4
+ 𝑘
2
ℎ
4
) .

(36)

We assume that there exists an error 𝜀
𝑗

𝑙
= 𝑈
𝑗

𝑙
− 𝑢
𝑗

𝑙
at the

grid point (𝑥
𝑙
, 𝑡
𝑗
). Subtracting (35) from (36), we obtain the

folowing error equation:

[𝑅
0
+

1

12
(𝑅
2
𝛿
2

𝑟
+ 𝑅
3
(2𝜇
𝑟
𝛿
𝑟
))] 𝛿
2

𝑡
𝜀
𝑗

𝑙

= 𝜆
2
[𝑅
2
𝛿
2

𝑟
+ 𝑅
3
(2𝜇
𝑟
𝛿
𝑟
) + 2𝑅

4
] 𝜀
𝑗

𝑙
+ 𝑂 (𝑘

4
+ 𝑘
2
ℎ
4
) .

(37)

For stability of themodified scheme (35), we assume that 𝜀𝑗
𝑙
=

𝐴
𝑙
𝑒
𝑖𝜙𝑗
𝑒
𝑖𝜃𝑙 (where 𝜉 = 𝑒

𝑖𝜙 such that |𝜉| = 1) at the grid point
(𝑟
𝑙
, 𝑡
𝑗
), where 𝜉 is in general complex, 𝜃 is an arbitrary real

number, and𝐴 is a nonzero real parameter to be determined.

Substituting 𝜀
𝑗

𝑙
= 𝐴
𝑙
𝑒
𝑖𝜙𝑗
𝑒
𝑖𝜃𝑙 in the homogeneous part of the

error equation (37), we obtain the amplification factor:

− 4sin2 (
𝜙

2
)

= (𝜆
2
[𝑅
2
{(𝐴 + 𝐴

−1
) cos 𝜃 − 2 + 𝑖 (𝐴 − 𝐴

−1
) sin 𝜃}

+𝑅
3
{(𝐴 − 𝐴

−1
) cos 𝜃 + 𝑖 (𝐴 + 𝐴

−1
) sin 𝜃} + 2𝑅

4
])

× (𝑅
0
+

1

12
[𝑅
2
{(𝐴 + 𝐴

−1
) cos 𝜃 − 2 + 𝑖 (𝐴 − 𝐴

−1
) sin 𝜃}

+ 𝑅
3
{(𝐴 − 𝐴

−1
) cos 𝜃

+𝑖 (𝐴 + 𝐴
−1
) sin 𝜃}] )

−1

.

(38)

Since the left-hand side of (38) is a real quantity, the
imaginary part of the right-hand side of (38) must be zero,
from which we obtain

𝑅
2
(𝐴 − 𝐴

−1
) + 𝑅
3
(𝐴 + 𝐴

−1
) = 0, (39)

or

𝐴 = √
𝑅
2
− 𝑅
3

𝑅
2
+ 𝑅
3

, (40)

where 𝑅
2
± 𝑅
3
> 0. Substituting the values of 𝐴 and 𝐴

−1 in
(38), we get

sin2 (
𝜙

2
) =

𝜆
2
[𝑅
2
+ √(𝑅

2

2
− 𝑅
2

3
) (2sin2 (𝜃/2) − 1) − 𝑅

4
]

2𝑅
0
− (1/3) [𝑅

2
+ √(𝑅

2

2
− 𝑅
2

3
) (2sin2 (𝜃/2) − 1)]

.

(41)

Since 0 ≤ sin2(𝜙/2) ≤ 1, max sin2(𝜃/2) = 1 and
min sin2(𝜃/2) = 0, it follows from (41) that the non-
polynomial spline in compression finite difference scheme
(35) is stable if

0 < 𝜆
2
≤

2𝑅
0
− (1/3) [𝑅

2
− √𝑅
2

2
− 𝑅
2

3
]

𝑅
2
− 𝑅
4
+ √𝑅
2

2
− 𝑅
2

3

, (42)

leading to |𝜉| = 1. It is easy to verify that as 𝑙 → ∞, 0 < 𝜆
2
≤

1.

4. Numerical Illustrations

In this section, we have solved the problem (1)–(3) using
the method described by (27) and compared our results
with those obtained by the numerical method of 𝑂(𝑘2 + ℎ

2
)

accuracy based on non-polynomial spline in compression
approximations and the method 𝑂(𝑘

4
+ ℎ
4
) derived in [16]

for the solution of 1D wave equations in polar form in
different cases. The exact solution is provided. The difference
equation has been solved using a tri-diagonal solver. In order
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to demonstrate the fourth order convergence of the proposed
method, throughout the computation we, have chosen the
fixed value of the parameter𝜎 = 𝑘/ℎ

2
= 3.2. All computations

were carried out using double precision arithmetic.
Note that the proposed non-polynomial spline in com-

pression finite difference method (27) for the 1D wave
equations in polar form is a three-level scheme. The value of
𝑢 at 𝑡 = 0 is known from the initial condition. To start any
computation, it is necessary to know the numerical value of
𝑢 of required accuracy at 𝑡 = 𝑘. In this section, we discuss
an explicit scheme of 𝑂(𝑘2) for 𝑢 at first time level, that is, at
𝑡 = 𝑘 in order to solve the differential equation (1) using the
method (27).

Since the values of 𝑢 and 𝑢
𝑡
are known explicitly at 𝑡 = 0,

this implies that all their successive tangential derivatives are
known at 𝑡 = 0, that is, the values of 𝑢, 𝑢

𝑟
, 𝑢
𝑟𝑟
, . . ., 𝑢

𝑡
, 𝑢
𝑡𝑟
, . . .,

and so forth are known at 𝑡 = 0.
An approximation for 𝑢 of 𝑂(𝑘2) at 𝑡 = 𝑘may be written

as

𝑢
1

𝑙
= 𝑢
0

𝑙
+ 𝑘𝑢
𝑡

0

𝑙
+
𝑘
2

2
(𝑢
𝑡𝑡
)
0

𝑙
+ 𝑂 (𝑘

3
) . (43)

From (1), we have

(𝑢
𝑡𝑡
)
0

𝑙
= [𝑢
𝑟𝑟
+ 𝐺 (𝑟, 𝑡, 𝑢, 𝑢

𝑟
)]
0

𝑙
. (44)

Thus, using the initial values and their successive tangential
derivative values, from (44), we can obtain the value of (𝑢

𝑡𝑡
)
0

𝑙
,

and then ultimately, from (43), we can compute the value of
𝑢 at first time level, that is, at 𝑡 = 𝑘.

Relation (16) is suitable for solving (1) provided it satisfies
the consistency condition.That is, if𝜔 is a root of the equation
tan(𝜔/2) = 𝜔/2. This equation has an infinite number of
roots, the smallest positive nonzero root being given by 𝜔 =

8.986818916 ⋅ ⋅ ⋅ [6].
We solve (1) using themethod (33) in the region bounded

by 0 < 𝑟 < 1, 𝑡 > 0 subject to the following initial conditions:

𝑢 (𝑟, 0) = 0, 𝑢
𝑡
(𝑟, 0) = 𝑟

2
, 0 ≤ 𝑟 ≤ 1, (45)

and the following boundary conditions:

𝑢 (0, 𝑡) = 0, 𝑢 (1, 𝑡) = sinh 𝑡, 𝑡 ≥ 0. (46)

The exact solution is given by 𝑢(𝑟, 𝑡) = 𝑟
2 sinh 𝑡. The

maximum absolute errors (MAE) [23] are tabulated in Tables
1 and 2 at 𝑡 = 5.0 and for 𝛾 = 1, 𝛾 = 2. The exact and the
numerical solutions are plotted in Figure 2(a) at 𝛾 = 2, 𝑡 = 5.

We also solve (1) when 𝐸(𝑟) = 0 using the method (33)
in the region bounded by 0 < 𝑟 < 1, 𝑡 > 0 subject to the
following initial conditions:

𝑢 (𝑟, 0) = 0, 𝑢
𝑡
(𝑟, 0) = cosh 𝑟, 0 ≤ 𝑟 ≤ 1, (47)

and the following boundary conditions:

𝑢 (0, 𝑡) = sin 𝑡, 𝑢 (1, 𝑡) =
1

2
(𝑒 + 𝑒

−1
) sin 𝑡, 𝑡 ≥ 0. (48)

Table 1: The maximum absolute error at 𝛾 = 1, 𝑡 = 5.

ℎ 𝑂(𝑘
2
+ ℎ
4
)-method 𝑂(𝑘

2
+ ℎ
2
)-method

1/8 0.4559(−04) 0.2842(−03)
1/16 0.2850(−05) 0.7133(−04)
1/32 0.1781(−06) 0.1751(−04)
1/64 0.1113(−07) 0.4230(−05)

Table 2: The maximum absolute error at 𝛾 = 2, 𝑡 = 5.

ℎ 𝑂(𝑘
2
+ ℎ
4
)-method 𝑂(𝑘

2
+ ℎ
2
)-method

1/8 0.3865(−04) 0.3736(−03)
1/16 0.2416(−05) 0.9379(−04)
1/32 0.1510(−06) 0.2267(−04)
1/64 0.9442(−08) 0.5137(−05)

Table 3: The maximum absolute error at 𝛾 = 1, 𝑡 = 2.

ℎ 𝑂(𝑘
2
+ ℎ
4
)-method 𝑂(𝑘

4
+ ℎ
4
)-method [16]

1/8 0.3786(−04) 0.4848(−02)
1/16 0.2359(−05) 0.3113(−03)
1/32 0.1443(−06) 0.1677(−04)
1/64 0.8679(−08) 0.8892(−06)

Table 4: The maximum absolute error at 𝛾 = 2, 𝑡 = 2.

ℎ 𝑂(𝑘
2
+ ℎ
4
)-method 𝑂(𝑘

4
+ ℎ
4
)-method [16]

1/8 0.1889(−04) 0.5488(−02)
1/16 0.1137(−05) 0.3862(−03)
1/32 0.6943(−06) 0.2400(−04)
1/64 0.4169(−07) 0.1515(−05)

The exact solution is given by 𝑢(𝑟, 𝑡) = cosh 𝑟 sin 𝑡. The
maximum absolute errors (MAE) [23] are tabulated in Tables
3 and 4 at 𝑡 = 2.0 for 𝛾 = 1, 𝛾 = 2.The exact and the numerical
solutions are plotted in Figure 2(b) at 𝛾 = 1, 𝑡 = 1.

5. Final Remarks

Available numerical methods based on non-polynomial
spline in compression approximations for the numerical
solution of the 1D wave equations in polar form are of𝑂(𝑘2 +
ℎ
2
) accuracy only and require 9-grid points. In this paper,

using the same number of grid points and three evaluations
of the function 𝐺 (which is defined in Section 2), we have
derived a new stable non-polynomial spline in compression
finite difference method of 𝑂(𝑘

2
+ ℎ
4
) accuracy for the

solution of the 1D wave equation (1). For a fixed parameter
𝜎 = 𝑘/ℎ

2, the proposed method behaves like a fourth order
method, which is exhibited from the computed results. The
proposed numerical method for the wave equation in polar
coordinates is conditionally stable.
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Figure 2: (a) Exact and numerical solution at 𝛾 = 2 for 𝑡 = 5; (b) exact and numerical solution at 𝛾 = 1 for 𝑡 = 1.
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