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Black hole (BH) area quantization may be the key to unlocking a unifying theory of quantum gravity (QG). Surmounting evidence
in the field of BH research continues to support a horizon (surface) area with a discrete and uniformly spaced spectrum, but there is
still no general agreement on the level spacing. In the specialized and important BHcase study, our objective is to report and examine
the pertinent groundbreaking work of the strictly thermal and nonstrictly thermal spectrum level spacing of the BH horizon area
quantization with included entropy calculations, which aims to tackle this gigantic problem. In particular, such work exemplifies
a series of imperative corrections that eventually permits a BH’s horizon area spectrum to be generalized from strictly thermal to
nonstrictly thermal with entropy results, thereby capturing multiple preceding developments by launching an effective unification
between them. Moreover, the results are significant because quasi-normal modes (QNM) and “effective states” characterize the
transitions between the established levels of the nonstrictly thermal spectrum.

1. Introduction

BHs are mighty creatures that generate chaos in space-time
physics. In general, the laws of classical and modern physics
break down when attempts are made to rigorously character-
ize the behavior of BHs and their effects. In order to advance
science, fundamental problems such as the BH information
paradox and event horizon firewalls [1–4] must be under-
stood and nullified so the physical laws can be “upgraded”
via the scientificmethod and tested in laboratory experiments
[5].

There is a vast array of modern attacks that aim to
conquer BHs by establishing a unified field theory with a

new set of physical laws. Among these approaches, numer-
ous mainstream unification candidates (and variations of
them) exist, including, superstring theory [6], QG, loop
quantum gravity (LQG) [7–11], Chern-Simons theory [12],
Yukawa 𝑆𝑂(10) theory [13], E8 theory [14], and others.
Frequently, components and ideas from different theories are
combined, adjusted, and “hacked” together (i.e., copy-and-
paste methods) to establish new hybrid theoretical frame-
works with customized capabilities, such as semiclassical
physics, which intertwines aspects of quantum mechanics
and classical mechanics. Currently, none of these candi-
dates are accepted to be complete by mainstream science.
For example, some frameworks like superstring theory [6],
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Yukawa 𝑆𝑂(10) theory [13], and E8 theory [14] are incomplete
because they require more spatial degrees of freedom to
operate than 4D space-time can offer so they cannot be
tested in the laboratory, while other theories are incomplete
because they fail to fully describe paradoxical phenomena
like BHs, which remain imposing and elusive and con-
tinue to violate the modern laws of physics. Hence, the
theories must be subjected to additional stringent scientific
research, scrutiny, debate, and experimentation so they can
continue to evolve and achieve improved representational
capabilities.

In this review paper, we focus on the surface area
and entropy quantization of BH event horizons, where we
identify and examine some key points, issues, and correc-
tions in a chronological narrative of strictly thermal and
nonstrictly thermal results. Years ago, BH emissions and
absorptions were only partially understood in terms of
thermal energy and Hawking radiation [15]—and not all
energy is heat energy—so BHs then were still relatively
murky and restricted in this sense. However, in more recent
years, the trailblazing work by the Parikh-Wilczek team [16]
ignited a revolution in BH physics because they hacked
the formula structure of the strictly thermal tunneling rate
and exploited it to initiate a nonstrictly thermal picture
of BHs that encompasses all energy, thereby circumventing
numerous physical restrictions to further pave the way
towards unification. So for this assignment, we discuss the
finer points of this key generalization and its impact on BH
area and entropy, where the pertinent, groundbreakingworks
of numerous, additional research teams are investigated. As
mentioned above, there is a diverse landscape of candidate
unification theories that may be applied to this particular
BH aspect. Thus, from among the mentioned candidates,
we have selected a semiclassical platform to launch a probe
of BHs that exemplifies the underlying QG theory. For this
work, we prefer this semiclassical, QG-based approach over
existing unification candidates such as superstring theory
[6], Yukawa 𝑆𝑂(10) theory [13], and E8 theory [14] because
their gravitational treatment adds toomany spatial degrees of
freedom. Moreover, a popular alternative to QG is LQG [7–
11], which does have 4D space-time gravity built-in by default
because it fundamentally operates on the principles of general
relativity. Moreover, recent emerging LQG-based approaches
do yield promising results for directly counting physical
states with new quantization techniques and connections
to semiclassical Bekenstein-Hawking entropy [7–11]. For
example we refer the reader to the holography [17, 18], the
origin of thermodynamics [19–21], spin foams [22, 23], and
the many open questions concerning the classical limit of
generalizing static uncharged BHs to encompass charged,
rotating cases.

2. Strictly Thermal Horizon Area and
Entropy Quantization

First, we focus on Hawking temperature and review impera-
tive results concerning the BH area and entropy quantization

for a strictly thermal spectrum and mass-energy level struc-
ture.

2.1. Initial Horizon Area Quantization Boundaries. In the
early 1970s, Bekenstein [24, 25] observed that the (nonex-
tremal) BH horizon area behaves as a classical adiabatic
invariant and therefore conjectured that it should exemplify
a discrete eigenvalue spectrum with quantum transitions [26,
27]. To date, a major objective in BH physics research is
to determine the unique spacing between the BH horizon
area levels because surmounting scientific evidence seems
to indicate that the BH horizon area spectrum is in fact
quantized and uniformly distributed [26, 27]. Thus, our
investigation launches from the particle platform of wave-
particle duality.

When a BH captures or releases a massive point particle,
then the BH’s mass unavoidably increases or decreases,
respectively, which directly influences its horizon area [26,
27]. For the BH’s uncharged particle absorption process, it was
ascertained [25] from Ehrenfest’s theorem that the particle’s
center of mass must follow a classical trajectory and therefore
it was demonstrated that the BH horizon area increase lower
bound is [26, 27]

Δ𝐴 = 8𝜋𝜇𝑏, (1)

where Δ𝐴 is the BH horizon area change, 𝜇 is the particle rest
mass, and 𝑏 is the particle finite proper radius. In a quantum
theory, Heisenberg’s uncertainty principle applies to relativis-
tic quantized particles [26, 27], specifically, the radial position
for the particle’s center of mass is subject to an uncertainty
of 𝑏 ≥ ℏ/𝜇 because it cannot be localized with a degree
of precision that supercedes its own Compton wavelength
[26, 27]. Thus, for the uncharged particle absorption process,
the uncertainty principle is the physical mechanism which
defines the uncharged BH horizon area increase lower bound
as [26, 27]

Δ𝐴 = 8𝜋𝑙
2

𝑝
, (2)

where 𝑙
𝑝

= √𝐺ℏ/𝑐3 is the Planck length in gravitational
units 𝐺 = 𝑐 = 1. However, for the BH’s charged particle
absorption process the “uncertainty principle mechanism”
must be supplemented by a secondary physical mechanism—
a Schwinger discharge for the BH vacuum polarization
process [26, 27]. Hence, for the charged case, this “vacuum
polarization mechanism” lets one bypass the reversible limit
constraint and defines the charged BH horizon area increase
lower bound as [26, 27]

Δ𝐴 = 4 ln 𝑒𝑙
2

𝑝
= 4𝑙
2

𝑝
. (3)

Here, the lower bounds of (2)-(3) are fully consistent with the
analysis of [28, 29].

Thus, as soon as one introduces quantum implications
into the absorption process it becomes evident that (2)-
(3) are in fact universal lower bounds because they are
independent of the BH parameters [26, 27]; this fundamental
lower bound’s universality strongly favors a uniformly spaced
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quantum BH horizon area spectrum [26, 27]. Moreover, it
is striking that, although the results of (2)-(3) emerge from
two distinct physical mechanisms, they are clearly of the
same magnitude order [26, 27] and differ by a factor of 2𝜋

due to the existence of charge, which is further realized in
[28, 29]. Hence, it was concluded that the BH horizon area
quantization condition is of the form [26, 27]

𝐴
𝑛

= 𝛾𝑛𝑙
2

𝑝
; 𝑛 = 1, 2, . . . , (4)

where 𝛾 is a dimensionless constant.
In [26, 27], it was recognized that the exact values of (2)-

(3) can be challenged because they operate on the assertion
that the smallest possible particle radius is precisely equal
to its Compton wavelength and because the particle size is
inherently fuzzy. But it is clear that the 𝛾 in both (2)-(3) cases
must be of the magnitude order 𝛾 ∼ 4 [26, 27]. Moreover,
that “the small uncertainty in the value of 𝛾 is the price
we must pay for not giving our problem a full quantum
treatment” [26, 27]. Therefore, the quantum analysis [26, 27]
shifts from discrete particles to continuous waves due to the
uncertainty of 𝛾; this is allowed because of nature’s wave-
particle duality of mass-energy; one must be able to infer
the wave results from the particle results, and conversely.
Consequently, the QNMs authorize one to explore BH per-
turbations from the perspective of such waves [26, 27, 30–
32]. Specifically, QNMs enable one to characterize a BH’s free
oscillations, where the behavior of the radiated perturbations
is reminiscent to the last pure dying tones of a ringing bell
because the QNM frequencies are representative of the BH
itself [26, 27, 30–32]. The perturbation field QNM states
encode the scattering amplitude’s pole singularities in the
BH background [27]. More specifically, the quantized states
of the perturbation fields outside the BH are encoded with
complex numbers for QNMs, where the BH perturbation
fields transition between states in the “BH perturbation field
state space” over “state time.”The BH states of such complex-
valued QNMs are equipped with the amplitude, real, and
imaginary components. In BH physics and thermodynamics,
it is imperative to be able to encode such QNM states and
transitions for determining the asymptotic behavior of BH
ringing frequencies; this is a challenging physical encoding
problem that requires a proper, rigorous quantum treatment
in order to further demystify and generalize the horizon area
results of (1)–(4).

2.2. Perturbation Field Quasi-Normal Mode States. To attack
the massively complex encoding problem in Hawking’s
strictly thermal radiation spectrum, Maggiore [30] went on
to demonstrate that the behavior of the BH perturbation
field QNM states is identical to that of damped harmonic
oscillators whose real frequencies are encoded as the 2Dpolar
amplitude

|𝜔| = √𝜔
2

R + 𝜔
2

I , (5)

rather than just 𝜔R, such that

𝜔R = √|𝜔|
2

− (
𝐾

2
)

2

, 𝜔I =
𝐾

2

(6)

are the 2DCartesian real and imaginary components, respec-
tively, where 𝐾 is the damping coefficient. In (5)-(6), the
case |𝜔| = 𝜔R for 𝜔I ≪ |𝜔| corresponds to lowly excited,
very long-lived perturbation states, whereas the “opposite”
limit case |𝜔| = 𝜔I for 𝜔R ≪ 𝜔I corresponds to highly
excited, very short-lived perturbation states [30]—so |𝜔| ≃

𝜔I rather than |𝜔| ≃ 𝜔R. The results of (5)-(6) exemplify
the three distinct QNM components—|𝜔|, 𝜔R, and 𝜔I—
that comply with Pythagorean’s theorem of triangles for the
precise determination of physical properties.

In order to study the transition frequencies, one may
use Bohr’s correspondence principle, which was published in
1923, to establish order in the chaos. In [26, 27], it has been
shown that transition frequencies at large quantum numbers
should equal classical oscillation frequencies. Thus, the anal-
ysis [26, 27] focused on the ringing frequencies asymptotic
behavior for the 𝑛 → ∞ limit, which are classified as highly
damped BHperturbation fieldQNM frequencies that operate
under the assertion that such quantum transitions between
states are instantaneous. The transitions do not require time
because it was established that 𝜔 = 𝜔R − 𝑖𝜔I [26, 27], such
that 𝜏 ≡ 𝜔

−1

I is the effective relaxation time which is required
for the BH to return to a state of equilibrium, where 𝜏 is
arbitrarily small as 𝑛 → ∞. On one hand, for each value
of the angular momentum quantum number 𝑙, there exists an
infinite number of QNMs for 𝑛 = 0, 1, 2, . . . with decreasing
relaxation times (so the value of𝜔I increases) [26, 27]. On the
other hand, 𝜔R approaches a constant value as 𝑛 is increased
[26, 27]. Hence, the amplitude of (5) is rewritten for large 𝑛

as
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 = √𝜔2
𝑛R

+ 𝜔2
𝑛I

, (7)

which exhibits a BH energy level structure that is physically
very reasonable, because both the amplitude component |𝜔

𝑛
|

and the imaginary component 𝜔
𝑛I

increase monotonically
with the overtone number 𝑛 [30]. Thus, the context of
equivalent harmonic oscillators 𝑛 = 1 is the least damped
state for the lowest value of |𝜔|, while |𝜔

𝑛
| is the larger state

with a shorter lifetime [30]. The asymptotic behavior of the
highly damped states is difficult to determine because of the
effect of exponential divergence of the QNM eigenfunctions
at the physical boundary of purely outgoing waves at the
tortoise radial coordinate 𝑟

∗
→ ∞ [26, 27]. However, it is

known for the simplest case of a Schwarzschild BH (SBH)
with mass 𝑀 as [26, 27]

𝑀𝜔
𝑛

= 0.0437123 −
𝑖

4
(𝑛 +

1

2
) + 𝑂 [(𝑛 + 1)

−1/2
] , (8)

a characteristic of the BH itself (in the 𝑛 ≫ 1 limit), which is
only dependent upon 𝑀 and is independent of 𝑙 and 𝜎.

Moreover, it was shown in [26, 27] that the numerical
limit Re(𝑀𝜔

𝑛
) → 0.0437123 (as 𝑛 → ∞) agrees

with the quantity ln 3/(8𝜋) and is thereby supported by
thermodynamic and statistical physics. So when equipped
with Δ𝐴 = 4 ln 3𝑙

2

𝑝
from 𝐴(𝑀) = 16𝜋𝑀

2 and 𝑑𝑀 = 𝐸 = ℏ𝜔,
one can identify

𝛾Hod (3) = 4 ln 3 (9)
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for the quantum SBH horizon area spectrum of (4), which is
upgraded to [26, 27]

𝐴
𝑛

= 𝛾Hod (3) 𝑙
2

𝑝
𝑛. (10)

So the wave analysis is consistent with the particle analysis
of the magnitude order 𝛾 ∼ 4 [26, 27]; this result supports
the wave-particle duality of mass-energy with an exactitude
of mechanics, rather than statistics. From the statistical
standpoint, (10) is paramount because it complies with the
semiclassical version of Christodoulou’s reversible process,
which is mechanistic in nature, and is independent of the
thermodynamic relation between the BH horizon area 𝐴

𝑛

and entropy 𝑆BH(𝑛) [26, 27]. The accepted relation between
𝐴
𝑛
and 𝑆BH(𝑛) is pertinent if, for any 𝑛, the constraint

𝛾Hod (𝑘) = 4 ln 𝑘; 𝑘 = 2, 3, . . . (11)

is satisfied, such that 𝑔(𝑛) ≡ 𝑒
𝑆BH(𝑛) is the degeneracy of the

𝑛th area eigenvalue [26, 27]. Hence, the first independent
derivation of 𝑘 was established [26, 27], which still requires
additional contemplation because there is still no general
agreement on the spectrum level spacing. But (11) is still
the only expression that is consistent with the area-entropy
thermodynamic relation, statistical physics, and Bohr’s cor-
respondence principle [26, 27].

The lower-bound universality of (2)-(3) and the entropy
universality suggest that the area spectrum of (10) is valid not
only for SBHs, but also for sophisticated physical structures
such as Kerr BHs (KBH) and Kerr-Newman BHs (KNBH)
[26, 27]. Moreover, an assumption was proposed regarding
the asymptotic behavior of highly damped QNMs of generic
KNBHs [26, 27]. Upon considering the first law of BH
thermodynamics [26, 27]

𝑑𝑀 = Θ (𝑀, 𝑎, 𝑄) 𝑑𝐴 (𝑀) + Ω𝑑𝐽 (12)

for

Θ (𝑀, 𝑎, 𝑄) =
𝑟
+

(𝑀, 𝑎, 𝑄) − 𝑟
−

(𝑀, 𝑎, 𝑄)

4𝐴 (𝑀)
, (13)

Ω (𝑀, 𝑎) =
4𝜋𝑎

𝐴 (𝑀)
, (14)

where the KNBH inner and outer horizons are

𝑟
+

(𝑀, 𝑎, 𝑄) = 𝑀 + √𝑀2 − 𝑎2 − 𝑄2

𝑟
−

(𝑀, 𝑎, 𝑄) = 𝑀 − √𝑀2 − 𝑎2 − 𝑄2,

(15)

such that 𝑎 = 𝐽/𝑀 is the KNBH angular momentum per unit
mass, one can find [26, 27]

𝜔
𝑛R

󳨀→ Θ (𝑀, 𝑎, 𝑄) 𝛾Hod (3) + Ω (𝑀, 𝑎) 𝑚, (16)

where 𝑛 → ∞, such that 𝑚 is the perturbation field’s
azimuthal eigenvalue that corresponds to its phase.

Along this approach, for large 𝑛, the strictly thermal
asymptotic behavior [30] was employed:

8𝜋𝑀𝜔
𝑛

=
𝜔
𝑛

8𝜋𝑀
= ln 3 + 2𝜋𝑖 (𝑛 +

1

2
) + 𝑂 [(𝑛 + 1)

−1/2
] ,

(17)

for the Hawking temperature

𝑇
𝐻

=
ℏ

8𝜋𝑀
(18)

to rewrite (7) as

ℏ
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 = √𝑚
2

0
+ 𝑝2
𝑛
, (19)

for the underlying QNM Pythagorean components

𝑚
0

= 𝜔
𝑛R

= 𝑇
𝐻
ln 3, 𝑝

𝑛
= 𝜔
𝑛I

= 2𝜋𝑇
𝐻

(𝑛 +
1

2
) . (20)

In the very large 𝑛 approximation, the leading term in the
imaginary part of the complex frequencies in (17) becomes
dominant and spin independent, while, strictly speaking,
(17) works only for scalar (spin 0) and gravitational (spin 2)
perturbations, see [30] for details. In the𝑝

𝑛
of (20), recall that

the 2𝜋 mathematically relates a circular radius to a circular
circumference and is the difference between the uncharged
and charged area quantization lower bounds of (2)-(3) that
complies with [28, 29] so one could hypothesize that this
intriguing 2𝜋 critical value may suggest a fundamental rela-
tionship to a circularly symmetric or spherically symmetric
physical topology. The formulation of 𝑝

𝑛
[30] is fascinating

because it harmonizes a quantized particle with antiperiodic
boundary conditions on a circle of circumference length

𝐿 =
ℏ

𝑇
𝐻

(𝑀)
= 8𝜋𝑀. (21)

At this point, preparations were made to reexamine some
aspects of quantum BH physics by assuming the relevant
frequencies are |𝜔

𝑛
|, rather than 𝜔

𝑛R
[30].

Next, in [30] some important quantized spacing results
for the discrete BH area spectrum were recalled. First, the
conjecture of [25] was noted [30], which proposed that the
level spacing is in quantized units of 𝑙

2

𝑝
and thereby resulted

in the SBH area quantum Δ𝐴 = 8𝜋𝑙
2

𝑝
of (2) so we label

𝛾Bek = 8𝜋 as Bekenstein’s dimensionless constant. Second,
Maggiore [30] recognized that the results of [26, 27] revealed
a similar quantization but utilized the SBH QNM properties
to discover the different numerical coefficient, namely, Δ𝐴 =

𝛾Hod(3)𝑙
2

𝑝
of (10).

Although the hypothesis [26, 27] is exciting (primarily
due to some possible connections with LQG), it still exhibits
some complications [30]. Additional analysis on the term
𝛾Hod(3) with its origin in 𝜔

𝑛R
for (17) is in fact not universal

because it does not comply with charged and/or rotating BHs
[30]. For example, in the case of a KBH or KNBH with 𝑎 =

𝐽/𝑀, one finds that the large 𝑛 limit and the limit 𝑎 → 0 do
not commute because if one first considers 𝑎 → 0, then 𝜔

𝑛R

does not reduce to ln 3/(8𝜋𝑀) and instead vanishes as 𝑎
1/3,

whichmeans that the area quantumbecomes arbitrarily small
if one gives the BH an infinitesimal rotation [30]. Similarly,
in the case of a Reissner-Nordström BHs (RNBH) or KNBH,
one finds that 𝜔

𝑛R
changes discontinuously if the limits 𝑄 →

0 and 𝑛 → ∞ are interchanged [30]. Thereafter, a couple
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of additional exploits were pointed out in Hod’s conjecture
[26, 27], so it was initially concluded that it “does not reflect
any intrinsic property of the BH, and the would-be area
quantum vanishes in various instances” and that its “area
quantization holds only for a transition from (or to) a BH in
its fundamental state, while transitions among excited levels
do not obey it” [30]. But, after additional scrutiny and venture
[30], it was determined that all of the above complications
are deleted when, in the conjecture of [26, 27], one replaces
𝜔
𝑛R

with |𝜔
𝑛
| for large 𝑛 and the transition 𝑛 → 𝑛 − 1,

(17), and |𝜔
𝑛
| ≃ 𝜔

𝑛I
to yield the absorbed energy Δ𝑀 =

ℏ[|𝜔
𝑛
| − |𝜔
𝑛−1

|] = ℏ/(4𝑀), such that [30]

Δ𝐴 = 32𝜋𝑀Δ𝑀 = 8𝜋𝑙
2

𝑝
, (22)

which complies with the old results of [25] because 𝛾Bek = 8𝜋.
Thus, given the equal spacing for |𝜔

𝑛
| at large 𝑛, all other

transitions require a larger energy; that is, 𝑛 → 𝑛 − 2

consumes about twice the energy [30]. Even if one dares to
extrapolate at low 𝑛 (where semiclassical reasoning may be
destroyed), the nonvanishing Δ𝐴 of (22) remains consistent
on that magnitude order [30]. Therefore, the final results of
[30] concluded that the spacing of (22) indicates a consistent
SBH horizon area quantization, which implies that 𝑙

𝑝
is the

minimum magnitude order length for the existential and
generalized uncertainty principle.

Consequently, in terms of BH entropy and microstates,
the work of [30] determined that, for large 𝑛, the horizon area
quantum is Δ𝐴 = 𝛾Bek𝑙

2

𝑝
, such that 𝛾Bek = 8𝜋 of [25] replaces

𝛾Hod(3) = 4 ln 3 of [26, 27]. Thus, the total horizon area must
be of the form [30]

𝐴 = 𝑁Δ𝐴 = 𝑁𝛾𝑙
2

𝑝
, (23)

where the area quanta number 𝑁 = 𝐴/Δ𝐴 is an integer but
is not the same as the integer 𝑛 (which is used to label the
BH perturbation field QNM states). Hence, the BH entropy
is defined as [25, 30]

𝑆BH =
𝐴

𝛿
, (24)

where

𝛿 = 4𝑙
2

𝑝
(25)

agrees with the approach of [28, 29] and additionally the
LQG approaches of [9–11] to the same order of magnitude.
Therefore, at level 𝑁(𝑀), it was expected that the number of
possible BH microstates (or “BH microstate space cardinal-
ity”) is [30]

𝑔 (𝑁) ∝ 𝑒
𝐴/𝛿

= 𝑒
𝑁Δ𝐴/𝛿

= 𝑒
𝛾𝑁/4

. (26)

Subsequently, upon fixing the constant for 𝑁 = 1 in (24),
there is only onemicrostate in the state space, namely,𝑔(𝑁) =

1, which gives [30]

𝑔 (𝑁) = 𝑒
(𝛾/4)(𝑁−1)

. (27)

This operates under the required assumption that 𝑔(𝑁) is an
integer, which restricts 𝛾 in the form 𝛾Hod(𝑘) of (11), such that
𝑘 is an integer [30]; the value 𝛾Hod(3) is in the form of 𝛾Hod(𝑘)

but the value 𝛾Bek is not; 𝛾Bek is only in the form of 𝛾Hod(𝑘) if
𝑘 = 𝑒
2𝜋 because

𝛾Bek = 8𝜋 = 4 (2𝜋) = 4 (ln 𝑘) (28)

holds for the periodicity ln 𝑘 = 2𝜋 but clearly violates the “𝑘
must be an integer” or “𝑘-constraint” assertion—we also note
that 𝛾Hod(𝑒) = 4 ln 𝑒 takes a similar form to 𝛾Hod(𝑘) but also
violates the 𝑘-constraint.

These attempts to restrict 𝛾 raise a number of objections
[30]. First, even in the trusted semiclassical framework, 𝑁

is gigantic; therefore 𝑔(𝑁) is the exponential of a colossal
number [30]. Even if the number of microstates must be an
integer, there is no hope that a semiclassical (or even a classi-
cal and statistical) calculation can identify this quantity with
a precision of order one, which is requisite to distinguishing
between an integer and noninteger result [30]. Moreover,
the above 𝑔(𝑁) expression assumes that the horizon area
quantum Δ𝐴 is legal from large 𝑁 down to 𝑁 = 1, where
this semiclassical approximation is unwarranted [30]. So
althoughwe see that (19)-(20) determine equally spaced levels
in the limit of highly excited states, the level spacing for lowly
excited states is not equally spaced [30].

Thus, when the value 𝛾Bek [25] was employed in 𝑆BH(𝑀) =

𝛾Bek𝑁(𝑀)/4, the result [30]

𝑆BH = 2𝜋𝑁 + 𝑂 (1) (29)

was discovered, such that 𝑔(𝑁) ∝ 𝑒
2𝜋𝑁(𝑀), for the leading

order in the large 𝑁 limit. Basically, (29) gives a discrete
spectrum which indicates that the entropy is an adiabatic
invariant in accordancewith Bohr’s correspondance principle
[30]. All of this replicates the BH behavior and perturbation
field states in terms of highly damped harmonic oscilla-
tors whose real frequencies are the amplitude-modulus |𝜔

𝑛
|

(instead of𝜔
𝑛R
) for the area quantizationΔ𝐴 = 𝛾Bek𝑙

2

𝑝
(instead

of Δ𝐴 = 𝛾Hod(3)𝑙
2

𝑝
). At this point, we also note that Δ𝐴 =

𝛾Bek𝑙
2

𝑝
was also obtained in the alternative approach of [33]

without the use of QNMs—another remarkable result that
supports this development.

3. Nonstrictly Thermal Horizon Area
and Entropy Quantization

Second, we focus on corrections to the Hawking temperature
and review additional significant results regarding the BH
area and entropy quantization for a nonstrictly thermal
spectrum and mass-energy level structure.

3.1. Corrections to the Hawking Temperature and Bekenstein-
Hawking Area and Entropy Law. Parikh and Wilczek [16]
launched some outstanding corrections to the Hawking
temperature by reverse engineering the formula structure of
the semiclassical tunneling rate and deploying it to spark
a nonstrictly thermal picture of BHs based on a dynam-
ical geometry. More specifically, they demonstrated that
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Hawking’s radiation spectrum cannot be strictly thermal
[16], where such a nonstrictly thermal character indicates
that the BH spectrum is also nonstrictly continuous. By
taking into account the conservation of energy with an
exact calculation of the action for a spherically symmetric
tunneling particle, the Parikh-Wilczek team defined a SBH’s
emission probability as [16]

ΓPW ∼ exp [−
𝜔

𝑇
𝐻

(1 −
𝜔

2𝑀
)] (30)

(in 𝐺 = 𝑐 = 𝑘
𝑏

= ℏ = 1/4𝜋𝜖
0

= 1 Planck units),
which includes the new term𝜔/2𝑀 for the thermal deviation
correction [16].

Thereafter, given the results of [16] and associated works
(see [34] and the references therein), Banerjee andMajhi gave
an additional tunneling probability correction by considering
the back reaction effect of the BH space-time metric [34].
In particular, they demonstrated that a SBH’s tunneling
probability can be written as [34]

ΓBM ∼ exp [−8𝜋𝑀𝜔 + 4𝜋𝛼 (
2𝑀𝜔

𝑀2 + 𝛼
)]

= exp[− (
8𝜋𝑀
3

𝑀2 + 𝛼
) 𝜔] = exp [−

𝜔

𝑇
ℎ

]

(31)

from equation (33) in [34], where𝛼 = 1/8𝜋 is a dimensionless
parameter (corresponding to the prefactor −1/2 of the QG
calculations) and their revised Hawking temperature is [34]

𝑇
ℎ

= 𝑇
𝐻

(1 +
𝛼

𝑀2
) , (32)

such that the new (1 + 𝛼/𝑀
2
) term is the correction due to

the (one loop) back reaction with self-gravitation [34]. Here,
the Banerjee-Majhi team expressed the corrected Bekenstein-
Hawking entropy as [34]

𝑆BM =
𝐴

4
− 8𝜋𝛼 ln𝑀

− 64𝜋
2
𝛼
2

[
1

𝐴
−

16𝜋𝛼

2𝐴2
+

(16𝜋𝛼)
2

3𝐴3
− ⋅ ⋅ ⋅ ]

+ const. (independent of𝑀)

= 𝑆BH − 4𝜋𝛼 ln 𝑆BH

−
16𝜋
2
𝛼
2

𝑆BH
[1 −

4𝜋𝛼

2𝑆BH
+

(4𝜋𝛼)
2

3𝑆
2

BH
− ⋅ ⋅ ⋅ ]

+ const. (independent of𝑀)

(33)

from equation (28) in [34], where the original entropy is
𝑆BH = 4𝜋𝑀

2
= 𝐴/4 and the horizon area is 𝐴 = 16𝜋𝑀

2.
In (33) the nonleading corrections are identified as a series of
inverse powers of 𝐴 (or 𝑆BH) [34]. Moreover, the presented
results of (31)–(33) apply to a SBH but are general enough to
encompass other cases as well [34].

Henceforth, the authors of [34] go beyond the semiclassi-
cal SBH approximation via the Hamilton-Jacobi method and

implement the single quantized particle action corrections
for additional such BH cases in a sequel paper [35]. More
precisely, in order to adjust a BH’s Hawking temperature
and Bekenstein-Hawking area and entropy law, they demon-
strate that the selection of a simple proportionality constant
reproduces the one loop back reaction effect in space-
time via conformal field theory methods [35]. For example,
the Banerjee-Majhi team [35] engaged the Hamilton-Jacobi
method to reexpress a SBH’s Bekenstein-Hawking entropy of
(33) as

𝑆BM = 𝑆BH + 4𝜋𝛽
1
ln 𝑆BH +

16𝜋
2
𝛽
2

𝑆BH
+ ⋅ ⋅ ⋅ . (34)

From (71) in [35] by including additional quantum cor-
rections and eliminating 𝐴, such that 𝛽

𝑖
= 𝛼
𝑖 from (31)

in [35] and the revised 𝛼 from equation (34) in [35] are
both dimensionless parameters. Similarly, the Bekenstein-
Hawking entropy for an anti-de Sitter SBH was also given in
(75) of [34] as

𝑆BM = 𝑆BH + 4𝜋𝛽
1
ln 𝑆BH + ⋅ ⋅ ⋅ , (35)

where 𝛽
1

= −1/4𝜋 for the leading order logarithmic
correctionwas obtained via a statisticalmethod [35]. Also, we
note that the back reaction semiclassicalQG results of [34, 35]
are fully compliant with the self-consistent, spatially isotropic
perturbation corrections in de Sitter space-time for the one
loop vacuum polarization of the Bunch-Davies vacuum state
given by Pérez-Nadal [36], where a spatially flat Robertson-
Walker space-time is driven by a cosmological constant that
is nonconformally coupled to a massless scalar field.

Furthermore, the said Hamilton-Jacobi incursion [35]
is exercised in more recent investigations [37, 38], where
additional modifications to the Hawking temperature and
Bekenstein-Hawking area and entropy law are achieved: in
[37] the results of [35] are further applied to a scalar particle
to examine the fermion tunneling of a Dirac particle as it
is blasted into a BH’s event horizon, whereas in [38] the
approach [35] is also implemented and analyzed for the boson
(photon) tunneling across a BH’s event horizon, such that
the coefficient of the leading order correction of entropy is
related to the trace anomaly [39, 40]. In both works [37, 38],
the newer outcomes are consistent with those of the original
loop back reaction effect [34, 35].

In an independent but related approach for obtaining the
area and entropy corrections for BHs inHo ̆rava-Lifshitz grav-
ity, Majhi deployed a density matrix to compute the radiation
spectrum for a perfect black body in the semiclassical limit
[41]. In this analysis, the reported temperature is proportional
to the surface gravity of a BH in general relativity and the first
law of BH thermodynamics is utilized to define the entropy
as [41]

𝑆Majhi =
1

4
(𝐴 −

𝑎Ω
𝑎

Λ
ln 𝐴

𝐴
0

) . (36)

From (20) in [41], wherein Einstein space Λ is the cosmolog-
ical constant, 2𝑎 is the constant scalar curvature, 𝐴 = Ω

𝑎
𝑟
2

ℎ

is the horizon area of the horizon radius 𝑟
ℎ

= √𝑎/3, 𝐴
0
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is the integration constant of the length square dimension,
and the coordinate component Ω

𝑎
is obtained from the

Ho ̆rava-Lifshitz line element of (1) in [41]. Ultimately, the
level spacing of the area and entropy is achieved, which are
characterized in terms of QNMs [41]. So on the one hand, the
results indicate an equispaced entropy spectrum even though
the spacing value is not the same [41], whereas on the contrary
the level spacing of the BH’s area spectrum is not equidistant
because theBH’s entropy is disproportional to its horizon area
[41]; in either case, both outcomes comply with the Einstein-
Gauss-Bonnet theory [41]. Such insights revealed in the work
of [41] set the stage for the upcoming QNM aspects of the
effective state discussion in the next section.

3.2. Perturbation Field Quasi-Normal Mode Effective States.
The striking corrections constructed by the Parikh-Wilczek
team [16] not only generalize Hawking’s radiation to a
nonstrictly thermal, nonstrictly continuous BH spectrum,
but also generate a natural correspondence betweenHawking
radiation and the BH perturbation field QNM states; this
supports the idea that BHs result in highly excited states
in an underlying unitary QG theory [31, 32, 42]. More-
over, the strictly thermal spectrum deviation results of [5]
strongly suggested that single particle quantum mechanical
approaches may be essential for finding potential solutions to
the BH information puzzle. Here, in relation to all of this, we
discuss the new, developing notions of effective temperature
and effective state [31, 32, 42–44] because they reveal an
important semiclassical QG characterization of BH area and
entropy quantization in terms of perturbation field QNM
states and transitions.

Thus, after a careful and extensive examination of the
nonstrictly thermal, nonstrictly continuous BH energy spec-
trum and the spherically symmetric particle tunneling results
[16] by Corda [31, 32, 42], the conventional Hawking tem-
perature 𝑇

𝐻
(𝑀) of (18) was replaced by defining the SBH’s

effective temperature of (3) in [31, 32] as

𝑇
𝐸SBH

(𝑀, −𝜔) =
2𝑀

2𝑀 + (−𝜔)
𝑇
𝐻

=
1

4𝜋 (2𝑀 + (−𝜔))

=
1

8𝜋𝑀
𝐸

(𝑀, −𝜔)
=

1

2𝜋𝑅
𝐸SBH

(𝑀, −𝜔)

=
1

𝛽
𝐸SBH

(𝑀, −𝜔)

(37)

for the emission of an uncharged particle with energy-
frequency 𝜔 so the SBH contracts, where 𝑀 is the SBH’s
initial mass before the emission,𝑀−𝜔 is the SBH’s final mass
after the emission, 𝑀

𝐸
is the SBH’s effective mass defined by

(5) in [31, 32] as

𝑀
𝐸

(𝑀, −𝜔) = 𝑀 +
−𝜔

2
= 𝑀 −

𝜔

2
, (38)

𝑅
𝐸SBH

is the SBH’s effective horizon defined by (5) in [31, 32]
as

𝑅
𝐸SBH

(𝑀, −𝜔) = 2𝑀
𝐸

(𝑀, −𝜔) , (39)

and 𝛽
𝐸
is the SBH’s effective Botzmann factor defined in (12)

of [42]. The new effective quantities 𝑇
𝐸SBH

, 𝑀
𝐸
, 𝑅
𝐸SBH

, and
𝛽
𝐸SBH

are average quantities which characterize the effective
state of a discrete process rather than a continuous process
[31, 32, 42]. Thus, for example, (37)–(39) indicate that the
circular antiperiodic boundary conditions of (21) can be
replaced with the effective horizon circumference

𝐿
𝐸SBH

(𝑀, −𝜔) =
1

𝑇
𝐸SBH

(𝑀, −𝜔)
= 8𝜋𝑀

𝐸
(𝑀, −𝜔)

= 𝛽
𝐸SBH

(𝑀, −𝜔) = 4𝜋𝑅
𝐸SBH

(𝑀, −𝜔)

=
2𝜋

𝜅
𝐸SBH

(𝑀, −𝜔)
,

(40)

which is simply the geometric equivalence of Boltzmann’s
effective physical quantity 𝛽

𝐸SBH
, such that the fundamentally

related 𝜅
𝐸SBH

is the SBH’s effective surface gravity. Subse-
quently, the results of (37)–(39) were instrumental in the
establishment of two additional effective quantities [42]: the
SBH’s effective line element from (14) in [42]:

𝑑𝑠
2

𝐸SBH
= − (1 −

𝑅
𝐸SBH

(𝑀, −𝜔)

𝑟
) 𝑑𝑡
2

+
𝑑𝑟
2

1 − (𝑅
𝐸SBH

(𝑀, −𝜔) /𝑟)

+ 𝑟
2

(sin2𝜃𝑑𝜙
2

+ 𝑑𝜃
2
) ,

(41)

which encompasses the dynamical geometry of the SBH
during the emission or absorption of the particle. Through
a rigorous examination of Hawking’s arguments [39, 45], the
Euclidean form of (18) in [42] was successfully presented as

𝑑𝑠
2

𝐸SBH
= 𝑥
2
[

𝑑𝜏

4𝑀 (1 − 𝜔/2𝑀)
]

2

+ (
𝑟

𝑅
𝐸
(𝑀, −𝜔)

)

2

𝑑𝑥
2

+ 𝑟
2

(sin2𝜃𝑑𝜙
2

+ 𝑑𝜃
2
) ,

(42)

which is regular at 𝑥 = 0 and 𝑟 = 𝑅
𝐸
(𝑀, −𝜔) and permits one

to rigorously obtain (41). In [39, 45] it was shown that 𝜏 serves
as an angular variable with the periodicity of 𝛽

𝐸SBH
= 𝐿
𝐸SBH

in
(40) with the underlying antiperiodic boundary conditions.

Henceforth, the procedure of [46] led to the corrected
physical states for bosons and fermions from (15) in [42] as

|Ψ⟩boson = 1 − exp(
−𝜔

𝑇
𝐸

(𝑀, −𝜔)
)

1/2

× Σ
𝑛
exp−𝜔4𝜋𝑛𝑀

𝐸
(𝑀, −𝜔)

󵄨󵄨󵄨󵄨󵄨
𝑛
Left
out ⟩⊗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑛
Right
out ⟩

|Ψ⟩fermion = 1 + exp(
−𝜔

𝑇
𝐸

(𝑀, −𝜔)
)

−1/2

× Σ
𝑛
exp−𝜔4𝜋𝑛𝑀

𝐸
(𝑀, −𝜔)

󵄨󵄨󵄨󵄨󵄨
𝑛
Left
out ⟩⊗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑛
Right
out ⟩ ,

(43)
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which, respectively, correspond to the emission probability
distributions

⟨𝑛⟩boson =
1

exp (−𝜔/𝑇
𝐸

(𝑀, −𝜔)) − 1
,

⟨𝑛⟩fermion =
1

exp (−𝜔/𝑇
𝐸

(𝑀, −𝜔)) + 1

(44)

from (16) in [42]. At this point, we note that, in order to
compute the SBH effective parameters for the absorption of
an uncharged particle with energy-frequency𝜔, the −𝜔 argu-
ment of (37)–(42)may be quickly replacedwith+𝜔; if wewish
to reference both emission and absorption simultaneously in
such formulas, it is straightforward to specify ±𝜔.

Next, Corda’s attack [31, 32] deployed (37) to rewrite (20)
in the corrected form

𝑚
𝑛

= 𝑇
𝐸

(𝑀, −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨) ln 3,

𝑝
𝑛

= 𝑇
𝐸

(𝑀, −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨) 2𝜋𝑖 (𝑛 +
1

2
) ,

(45)

which takes into account the nonstrictly thermal behavior of
the SBH, where

𝜔
𝑛

= 𝑚
𝑛

+ 𝑝
𝑛

+ O (𝑛
−1/2

) . (46)

We stress that, although (45) and (46) have only been
intuitively derived [31, 32], they have been rigorously derived
in the appendix of [47]. In [47] it has been also shown that
in the very large 𝑛 approximation, the leading term in the
imaginary part of the complex frequencies in (46) becomes
dominant and spin independent, while, strictly speaking,
(46) works only for scalar and gravitational perturbations;
see [47] for details. Then, considering the leading term in the
imaginary part of the complex frequencies, (24) in [31, 32]
gives

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 = 𝑀 − √𝑀2 −

1

2
(𝑛 +

1

2
) (47)

for emission. In (47) it was observed that the emission 𝑛 →

𝑛 − 1 gives the energy variation of (29) in [31, 32] as

Δ𝑀
𝑛

=
󵄨󵄨󵄨󵄨𝜔𝑛−1

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 = −𝑓 (𝑀, 𝑛) (48)

for the spacing of (22) as

Δ𝐴SBH (𝑀, Δ𝑀
𝑛
) = 32𝜋𝑀Δ𝑀

𝑛

= −32𝜋𝑀 × 𝑓 (𝑀, 𝑛) ≈ −𝛾Bek

(49)

in the very large 𝑛 limit, which is the same order ofmagnitude
as the original area quantization result [25]; the 𝑓(𝑀, 𝑛) of
(48)-(49) was constructed in (30) of [31, 32]. We recall that
the SBH’s horizon area 𝐴SBH is related to its mass 𝑀 via the
relation 𝐴SBH = 16𝜋𝑀

2 [25]. From this, one observes that if
𝐴SBH is quantized as |Δ𝐴| = 𝛾Bek [25, 30] and |Δ𝐴| = 𝛾Hod(3)

[26, 27], then the SBH’s total horizon area must be [31, 32]

𝐴SBH (𝑀, 𝑛) = 𝑁SBH (𝑀, 𝑛)
󵄨󵄨󵄨󵄨Δ𝐴SBH (𝑀, 𝑛)

󵄨󵄨󵄨󵄨

= 16𝜋𝑀
2

= 4𝜋𝑅
2

SBH,

(50)

for the SBH’s event horizon at 𝑅SBH = 2𝑀, such that (33) in
[31, 32] is

𝑁SBH (𝑀, 𝑛) =
𝐴SBH (𝑀, 𝑛)

󵄨󵄨󵄨󵄨Δ𝐴SBH (𝑀, 𝑛)
󵄨󵄨󵄨󵄨

=
16𝜋𝑀

2

32𝜋𝑀Δ𝑀
𝑛

=
𝑀

2𝑓 (𝑀, 𝑛)
,

(51)

where the well-known SBH’s Bekenstein-Hawking entropy
[15, 24, 25] was rewritten as [31, 32]

𝑆SBH (𝑀, 𝑛) =
𝐴SBH (𝑀, 𝑛)

4

= 8𝜋𝑁SBH (𝑀, 𝑛) 𝑀
󵄨󵄨󵄨󵄨Δ𝑀
𝑛

󵄨󵄨󵄨󵄨

= 8𝜋𝑁SBH (𝑀, 𝑛) 𝑀 × 𝑓 (𝑀, 𝑛) ,

(52)

which indicates the crucial result that 𝑆SBH is a function of the
quantum overtone number 𝑛 [31, 32].

On the other hand, it is a common and general belief
that there is no reason to expect that the Bekenstein-Hawking
entropy will be the whole answer for a correct unitary theory
of QG [48]. For a better understanding of a BH’s entropy
one needs to go beyond Bekenstein-Hawking entropy and
identify the subleading corrections [48]. Hence, the quantum
tunneling approach can be used to obtain the subleading
corrections to the second order approximation [49, 50],
where one observes that the BH’s entropy

𝑆total = 𝑆BH − ln 𝑆BH +
3

2𝐴
(53)

contains three distinct parts: the usual Bekenstein-Hawking
entropy, the logarithmic term, and the inverse area term [49,
50]. In fact, if one wants to satisfy the unitaryQG theory, then
the logarithmic and inverse area termsmust be requested [49,
50]. Note that the coefficient of the leading order correction
depends on the nature of the theory. Apart from a coefficient,
this correction to the BH’s entropy is consistent with the one
of LQG [49, 50], where the coefficient of the logarithmic
term has been rigorously fixed at 1/2[49, 50]. Therefore, the
expression of (52) for Bekenstein-Hawking entropy permits
us to rewrite (53) as [31, 32]

𝑆totalSBH = 8𝜋𝑁𝑀 ⋅ 𝑓 (𝑀, 𝑛) − ln [8𝜋𝑁𝑀 ⋅ 𝑓 (𝑀, 𝑛)]

+
3

64𝜋𝑁𝑀 ⋅ 𝑓 (𝑀, 𝑛)
.

(54)

In the top line of (52), observe that denominator 4, which
divides the numerator 𝐴

𝑆𝐵𝐻
to compute the resulting 𝑆SBH, is

reminiscent of the 𝛿 from [25, 28] in (24)-(25). Additionally,
note that the results of (49) and (52) indicate that the SBH’s
Bekenstein-Hawking entropy change is

Δ𝑆SBH (𝑀, 𝑛) =
Δ𝐴SBH (𝑀, 𝑛)

4
, (55)

where clearly a change of negative entropy (Δ𝑆SBH < 0) recurs
for absorption transitions because energy is conserved in 4D
space-time.
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Therefore, in order to incorporate the emerging SBH
effective state framework, (50)–(52) become

𝐴
𝐸SBH

(𝑀, Δ𝑀
𝑛
) = 𝑁

𝐸SBH
(𝑀, Δ𝑀

𝑛
)

󵄨󵄨󵄨󵄨󵄨
Δ𝐴
𝐸SBH

(𝑀, Δ𝑀
𝑛
)
󵄨󵄨󵄨󵄨󵄨

= 16𝜋𝑀
2

𝐸
(𝑀, Δ𝑀

𝑛
) = 4𝜋𝑅

2

𝐸SBH
(𝑀, Δ𝑀

𝑛
) ,

(56)

𝑁
𝐸SBH

(𝑀, Δ𝑀
𝑛
) =

𝐴
𝐸SBH

(𝑀, Δ𝑀
𝑛
)

󵄨󵄨󵄨󵄨󵄨
Δ𝐴
𝐸SBH

(𝑀, Δ𝑀
𝑛
)
󵄨󵄨󵄨󵄨󵄨

=
16𝜋𝑀

2

E (𝑀, Δ𝑀
𝑛
)

32𝜋𝑀
𝐸

(𝑀, Δ𝑀
𝑛
) 𝑛 × 𝑓 (𝑀, 𝑛)

=
𝑀
𝐸

(𝑀, Δ𝑀
𝑛
)

2𝑓 (𝑀, 𝑛)
,

(57)

𝑆
𝐸SBH

(𝑀, Δ𝑀
𝑛
) =

𝐴
𝐸SBH

(𝑀, Δ𝑀
𝑛
)

4

= 𝜋𝑅
2

𝐸SBH
(𝑀, Δ𝑀

𝑛
)

= 8𝜋𝑁
𝐸SBH

(𝑀, Δ𝑀
𝑛
) 𝑀
𝐸

(𝑀, Δ𝑀
𝑛
) |Δ𝑀|

= 8𝜋𝑁
𝐸SBH

(𝑀, Δ𝑀
𝑛
) 𝑀
𝐸

(𝑀, Δ𝑀
𝑛
)

× 𝑓 (𝑀, 𝑛)

=
𝑓 (𝑀, 𝑛)

𝑇
𝐸

(𝑀, Δ𝑀
𝑛
)
.

(58)

One also obtains the total effective entropy as

𝑆total𝐸SBH
(𝑓 (𝑀, Δ𝑀

𝑛
)) =

𝑓 (𝑀, 𝑛)

𝑇
𝐸

(𝑀, Δ𝑀
𝑛
)

− ln[
𝑓 (𝑀, 𝑛)

𝑇
𝐸

(𝑀, Δ𝑀
𝑛
)
]

+
3𝑇
𝐸

(𝑀, Δ𝑀
𝑛
)

8𝑓 (𝑀, 𝑛)
.

(59)

Hence, the effective state quantities of (56)–(59) recognize
the seemingly pertinent, disjoint aspects of the candidate
horizon area theories of Bekenstein [24, 25], Hod [26, 27],
andMaggiore [30] by replacingHawking’s strictly thermal𝑇

𝐻

[15, 45] with the nonstrictly thermal 𝑇
𝐸
[31, 32] to establish a

preliminary generalization and unification.
Thereafter, subsequent work initiated an effective state

framework generalization from SBHs [31, 32] to KBHs [43],
which was largely inspired by the discoveries of [51–54]. It
is known that the quantifiable difference between a SBH
and a KBH is the angular momentum components [43].
Hence, for this the KBH’s effective angular momentum is
𝐽
𝐸
(𝑀, Δ𝑀

𝑛
) = 𝑀

𝐸
(𝑀, Δ𝑀

𝑛
)𝛼
𝐸
(𝑀, Δ𝑀

𝑛
) [43], where the

KBH’s effective specific angular momentum from equation
(3.13) in [43] is expressed as

𝛼
𝐸

(𝑀, Δ𝑀
𝑛
) =

𝐽
𝐸

(𝑀, Δ𝑀
𝑛
)

𝑀
𝐸

(𝑀, Δ𝑀
𝑛
)

(60)

for the additional KBH’s effective angular momentum com-
ponents

Δ
𝐸

(𝑀, Δ𝑀
𝑛
) = 𝑟
2

− 2𝑀
𝐸

(𝑀, Δ𝑀
𝑛
) 𝑟 + 𝛼

2

𝐸
(𝑀, Δ𝑀

𝑛
) ,

Σ
𝐸

(𝑀, Δ𝑀
𝑛
) = 𝑟
2

+ 𝛼
2

𝐸
(𝑀, Δ𝑀

𝑛
) cos2𝜃

(61)

from (3.14)-(3.15) in [43] that authorized the identification of
the KBH’s effective outer and inner horizons

𝑅
+𝐸KBH

(𝑀, Δ𝑀
𝑛
)

= 𝑀
𝐸

(𝑀, Δ𝑀
𝑛
) + √𝑀

2

𝐸
(𝑀, Δ𝑀

𝑛
) − 𝛼
2

𝐸
(𝑀, Δ𝑀

𝑛
),

𝑅
−𝐸KBH

(𝑀, Δ𝑀
𝑛
)

= 𝑀
𝐸

(𝑀, Δ𝑀
𝑛
) − √𝑀

2

𝐸
(𝑀, Δ𝑀

𝑛
) − 𝛼
2

𝐸
(𝑀, Δ𝑀

𝑛
),

(62)

and the corresponding KBH’s effective line element

𝑑𝑠
2

𝐸𝐾𝐵𝐻
= − (1 −

2𝑀
𝐸

(𝑀, Δ𝑀
𝑛
) 𝑟

Σ
𝐸

(𝑀, Δ𝑀
𝑛
)

) 𝑑𝑡
2

−
4𝑀
𝐸

(𝑀, Δ𝑀
𝑛
) 𝛼
𝐸

(𝑀, Δ𝑀
𝑛
) 𝑟sin2𝜃

Σ
𝐸

(𝑀, Δ𝑀
𝑛
)

𝑑𝑡𝑑𝜙

+
Σ
𝐸

(𝑀, Δ𝑀
𝑛
)

Δ
𝐸

(𝑀, Δ𝑀
𝑛
)
𝑑𝑟
2

+ Σ
𝐸

(𝑀, Δ𝑀
𝑛
) 𝑑𝜃
2

+ (𝑟
2

+ 𝛼
2

𝐸
(𝑀, Δ𝑀

𝑛
) + 2𝑀

𝐸
(𝑀, Δ𝑀

𝑛
)

× 𝛼
2

𝐸
(𝑀, Δ𝑀

𝑛
) 𝑟sin2𝜃) sin2𝜃𝑑𝜙

2
,

(63)

respectively, which takes into due account the KBH’s dynam-
ical geometry as it emits or absorbs particles [43]. From there,
(60)–(62) permitted the definition of the KBH’s effective
(outer) horizon area of (3.19) in [43] as

𝐴
+𝐸KBH

(𝑀, Δ𝑀
𝑛
)

= 4𝜋 (𝑅
2

+𝐸KBH
(𝑀, Δ𝑀

𝑛
) + 𝛼
2

𝐸
(𝑀, Δ𝑀

𝑛
))

= 8𝜋 (𝑀
2

𝐸
(𝑀, Δ𝑀

𝑛
)

+√𝑀
4

𝐸
(𝑀, Δ𝑀

𝑛
) − 𝐽
2

𝐸
(𝑀, Δ𝑀

𝑛
)) ,

(64)
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the KBH’s effective temperature of (3.20) in [43] as

𝑇
+𝐸KBH

(𝑀, Δ𝑀
𝑛
)

=
𝑅
+𝐸KBH

(𝑀, Δ𝑀
𝑛
) − 𝑅
−𝐸KBH

(𝑀, Δ𝑀
𝑛
)

𝐴
+𝐸

(𝑀, Δ𝑀
𝑛
)

= (√𝑀
4

𝐸
(𝑀, Δ𝑀

𝑛
) − 𝐽
2

𝐸
(𝑀, Δ𝑀

𝑛
))

× (4𝜋𝑀
𝐸

(𝑀, Δ𝑀
𝑛
)

× (𝑀
2

𝐸
(𝑀, Δ𝑀

𝑛
)

+√𝑀
4

𝐸
(𝑀, Δ𝑀

𝑛
) − 𝐽
2

𝐸
(𝑀, Δ𝑀

𝑛
)))

−1

(65)

and the KBH’s effective area quanta of (3.22) in [43] as

Δ𝐴
+𝐸KBH

(𝑀, Δ𝑀
𝑛
)

= 16𝜋𝑀
𝐸

(𝑀, Δ𝑀
𝑛
)

× [

[

1 + (1 −
𝐽
2

𝐸
(𝑀, Δ𝑀

𝑛
)

𝑀
4

𝐸
(𝑀, Δ𝑀

𝑛
)
)

−1/2

]

]

Δ𝑀
𝑛

(66)

for the KBH’s effective area quanta number of equation (3.23)
in [43] as

𝑁
+𝐸KBH

(𝑀, Δ𝑀
𝑛
) =

𝐴
+𝐸KBH

(𝑀, Δ𝑀
𝑛
)

󵄨󵄨󵄨󵄨󵄨
Δ𝐴
+𝐸KBH

(𝑀, Δ𝑀
𝑛
)
󵄨󵄨󵄨󵄨󵄨

=
𝑀
𝐸

(𝑀, Δ𝑀
𝑛
)

2𝑓 (𝑀, 𝑛)
,

(67)

which enabled the KBH’s effective Bekenstein-Hawking
entropy of (3.24) in [43] to be identified as

𝑆
+𝐸KBH

(𝑀, Δ𝑀
𝑛
) =

𝐴
+𝐸KBH

(𝑀, Δ𝑀
𝑛
)

4

= 8𝜋𝑁
+𝐸KBH

(𝑀, Δ𝑀
𝑛
) 𝑀
𝐸

(𝑀, Δ𝑀
𝑛
)

× 𝑓 (𝑀, 𝑛) .

(68)

Thus, for 𝐽
𝐸

≪ 𝑀
2

𝐸
, it was confirmed in [31, 32] that (64)–(68)

reduce to the SBH case of (50)–(58).
Consequently, following the QNM KBH effective state

framework [43], the constructions were generalized to a
nonextremal RNBH version [44]. For this implementation, a
new definition of Δ𝑀

𝑛
for RNBH QNMs was formulated to

construct the new RNBH effective quantities [44]. Starting
from (40) in [44] the RNBH’s effective charge was defined for
small 𝑄 as

𝑄
𝐸

(𝑄, 𝑞) =
𝑄 + (𝑄 ± 𝑞)

2
, (69)

where𝑄 is the RNBH’s initial charge before the transition and
𝑄 ± 𝑞 is the RNBH’s final charge after the transition.The BH’s
𝑀
𝐸
of (38) and the RNBH’s𝑄

𝐸
of (69) can be used to identify

the RNBH’s effective line element as

𝑑𝑠
2

𝐸RNBH
= (1 −

2𝑀
𝐸

(𝑀, Δ𝑀)

𝑟
+

𝑄
2

𝐸
(𝑄, 𝑞)

𝑟2
) 𝑑𝑡
2

−
𝑑𝑟
2

1 − (2𝑀
𝐸

(𝑀, Δ𝑀) /𝑟) + (𝑄
2

𝐸
(𝑄, 𝑞) /𝑟2)

− 𝑟
2
𝑑𝜃
2

− 𝑟
2sin2𝜃𝑑𝜙

2
.

(70)

Next, for a quantum transition between the levels 𝑛 and 𝑛 − 1,
the RNBHQNMdefinition ofΔ𝑀

𝑛
in [44] and the𝑄

𝐸
of (69)

were deployed to define the RNBH’s effective outer and inner
horizons from (60) in [44] as

𝑅
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞)

= 𝑀
𝐸

(𝑀, Δ𝑀
𝑛
) + √𝑀

2

𝐸
(𝑀, Δ𝑀

𝑛
) − 𝑄
2

𝐸
(𝑄, 𝑞)

𝑅
−𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞)

= 𝑀
𝐸

(𝑀, Δ𝑀
𝑛
) − √𝑀

2

𝐸
(𝑀, Δ𝑀

𝑛
) − 𝑄
2

𝐸
(𝑄, 𝑞),

(71)

the RNBH’s effective (outer) horizon area as [44]

𝐴
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞)

= 4𝜋𝑅
2

+𝐸RNBH
(𝑀, Δ𝑀

𝑛
, 𝑄, 𝑞)

= 4𝜋(𝑀
𝐸
(𝑀, Δ𝑀

𝑛
) + √𝑀

2

𝐸
(𝑀, Δ𝑀

𝑛
) − 𝑄
2

𝐸
(𝑄, 𝑞))

2

,

(72)

the RNBH’s effective horizon area change as [44]

Δ𝐴
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞) =

2Δ𝑀
𝑛
𝑞 + 𝜋𝑄

3

(𝑀2 − 𝑄2)
3/2

, (73)

the RNBH’s effective Bekenstein-Hawking entropy as [44]

𝑆
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞) =

𝐴
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞)

4
, (74)

the RNBH’s effective Bekenstein-Hawking entropy change as
[44]

Δ𝑆
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞) =

Δ𝐴
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞)

4
,

(75)

and the RNBH’s effective quantum area number as [44]

𝑁
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞) =

𝐴
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞)

󵄨󵄨󵄨󵄨󵄨
Δ𝐴
+𝐸RNBH

(𝑀, Δ𝑀
𝑛
, 𝑄, 𝑞)

󵄨󵄨󵄨󵄨󵄨

.

(76)

Thus, for 𝑄
2

𝐸
≪ 𝑀
2

𝐸
, it was confirmed in [44] that (72), (74),

and (76) reduce to the corresponding effective quantities of
the SBH case for (56)–(58).
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4. Conclusion

In this review paper, we reported and examined the pertinent
groundbreaking work of the strictly thermal and nonstrictly
thermal spectrum level spacing of the BH horizon area and
entropy quantization from a semiclassical QG approach. For
this, we chronologically reviewed a series of imperative cor-
rections that eventually permits the Hawking radiation and
the Bekenstein-Hawking horizon area and entropy spectrum
to be generalized from strictly thermal to nonstrictly thermal
with QNMs and effective states [31, 32, 42–44], which are
significant because they further exemplify the underlyingQG
theory. In general, all of the works presented in this review are
important to physics because the characteristic physical laws
of BHs must be understood in order to resolve, for example,
the puzzles imposed by the BH information paradox and
firewalls [1–5] in nature. Henceforth, the convergence of such
outcomes has launched an effective unification that begins to
merge, generalize, and simplify an array of strictly thermal
and nonstrictly thermal quantization approaches to a single,
consolidated approach of effective states that acknowledges
further insight into the physical structure, behavior, and
effects of BHs.

First, we discussed numerous approaches that initiated
universal upper and lower bounds on the area quanta for
nonextremal BHs that emit or absorb particles, which may
or may not be charged. We reviewed the mechanisms and
predicted quanta for both uncharged and charged particles,
along with the relevant aspects of wave-particle duality for
the BH mass-energy spectrum. Therefore, we conveyed the
importance of linking the discrete particles to continuous
waves with perturbation field QNMs that encode the BH’s
asymptotic behavior of spectral states and transitions. Subse-
quently, we identified a series of damped harmonic oscillator
QNM configurations and strictly thermal corrections that
were systematically deployed to encode a BH’s behavior
and quantization of area and entropy. Next, we shifted to
the strictly thermal spectrum deviation corrections [16] that
inspired numerous crucial follow-up explorations [4, 34, 35,
37–40] with a subsequent application of QNMs and effective
states [31, 32, 42–44].

In our opinion, the BH area and entropy quantization
work that we chronologically reviewed in this paper high-
lights a series of striking scientific results that are beneficial
for tackling the gigantic problems imposed by BHs in the
domain of cutting-edge space-time physics. In the future,
such findings should be subjected to additional rigorous
analysis, debate, experimentation, and hard work via the
scientific method. In particular, we suggest that future work
should focus on applying the nonstrictly thermal spectrum
[16, 34, 35, 37–40] and QNM effective state framework [4,
31, 32, 42–44] to additional classes of BHs and alternative
unification approaches.
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