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Abstract The coupled gravitational-electromagnetic quasi-
normal resonances of charged rotating Kerr–Newman black
holes are explored. In particular, using the recently published
numerical data of Dias et al. (Phys Rev Lett 114:151101,
2015), we show that the characteristic relaxation times τ ≡
1/�ω0 of near-extremal Kerr–Newman black holes in the
regime Q/r+ ≤ 0.9 are described, to a very good degree of
accuracy, by the simple universal relation τ × TBH = π−1

(here Q, r+, and TBH are respectively the electric charge,
horizon radius, and temperature of the Kerr–Newman black
hole, and ω0 is the fundamental quasinormal resonance of
the perturbed black-hole spacetime).

1 Introduction

The influential uniqueness theorems [1–7] have revealed that
all asymptotically flat stationary black-hole solutions of the
coupled Einstein–Maxwell theory are uniquely described by
the Kerr–Newman spacetime metric [8–10]. These elegant
theorems therefore suggest that an asymptotically flat per-
turbed black-hole spacetime would eventually relax into a
stationary Kerr–Newman solution, which is characterized by
only three externally observable conserved parameters: the
black-hole mass M , its angular momentum J ≡ Ma, and its
electric charge Q.

The response of a perturbed black-hole spacetime to exter-
nal perturbations is characterized by a unique set of damped
(complex) oscillations, known as black-hole ‘quasinormal
ringing’. These damped spacetime resonances are the char-
acteristic ‘sound’ of the black-hole spacetime itself. They
have therefore attracted considerable interest over the last
four decades from both physicists and mathematicians (see
[11–13] for excellent reviews).
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The characteristic black-hole quasinormal resonances cor-
respond to linearized wave fields propagating in the curved
spacetime with the boundary conditions of purely outgoing
waves at spatial infinity and purely ingoing waves cross-
ing the black-hole horizon [14]. These physically motivated
boundary conditions single out a discrete spectrum (here
m and l are respectively the azimuthal harmonic index and
the spheroidal harmonic index of the black-hole perturba-
tion mode) {ω(n;m, l)}n=∞

n=0 of complex (damped) black-
hole resonances. The fundamental (least damped) black-
hole quasinormal resonance determines the characteristic
timescale

τrelax ≡ 1/�ω(n = 0) (1)

for the decay (relaxation) of generic perturbation modes in
the black-hole spacetime.

It should be emphasized that in most situations of physi-
cal interest, the black-hole eigen-frequencies (the character-
istic black-hole quasinormal resonances) are not known in
a closed analytical form. In particular, for most black-hole
spacetimes one is forced to solve the black-hole perturba-
tion equations numerically in order to explore the physical
properties of the complex resonance spectra.

Near-extremal Kerr black holes are unique in this respect.
In particular, their fundamental resonances are characterized
by the remarkably simple analytical relation [15–29]:

�ω(n) = 2πTBH

(
n + 1

2
− iδ

)
; n = 0, 1, 2, . . . , (2)

where (we use natural units in which G = c = h̄ = 1;
here M, Ma, Q, and r± are respectively the mass, angular
momentum, electric charge, and horizon-radii of the black
hole)

TBH = r+ − r−
4π(r2+ + a2)

(3)
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is the Bekenstein–Hawking temperature of the black hole,
and δ is the characteristic eigenvalue of the angular black-
hole perturbation equation [the angular Teukolsky equation.
See [30] for details. See, in particular, equations (2.7) and
(6.3) of [30]].

The remarkably compact formula (2) was derived analyti-
cally in [15,16]. It is worth noting that this formula is univer-
sal in the sense that it is independent of the spin-parameter s
of the perturbation mode. In particular, the relation (2) pro-
vides a quantitative universal description for the relaxation
properties of gravitational (s = 2), electromagnetic (s = 1),
and scalar (s = 0) perturbation fields in the rotating neutral
Kerr black-hole spacetime.

As for the more general case of charged rotating Kerr–
Newman black holes, the simple relation (2) was estab-
lished analytically only for the simplest case of scalar
(s = 0) perturbation fields. Much less is known about the
quasinormal resonance spectra associated with the coupled
gravitational-electromagnetic perturbations of generic (rotat-
ing and charged) Kerr–Newman black holes. Our limited
knowledge about the quasinormal spectra of generic Kerr–
Newman black holes is a direct consequence of the fact that
all attempts to decouple the gravitational and electromagnetic
perturbations of charged rotating Kerr–Newman black-hole
spacetimes have so far failed [8].

Recently, there have been some important numerical stud-
ies of the quasinormal resonance spectra which character-
ize the charged rotating Kerr–Newman black-hole space-
times [31–35] (using the numerical results of [34], it was
shown in [35] that charged Kerr–Newman black holes, like
neutral Kerr black holes [15], are characterized by the
simple relation �ω → m�H, where �H is the angular-
velocity of the black-hole horizon). In particular, in a very
interesting work, Dias, Godazgar, and Santos [36] have
recently provided detailed numerical results for the charac-
teristic quasinormal resonances associated with the coupled
gravitational-electromagnetic perturbations of generic Kerr–
Newman black holes.

In the present paper we shall analyze these numerically
computed [36] complex black-hole resonances. In particular,
we shall show that the coupled gravitational-electromagnetic
perturbations of near-extremal Kerr–Newman black holes
are described extremely well by the relation (2) (it is worth
emphasizing again that, for charged rotating Kerr-Newman
black holes, the simple relaxation spectrum (2) was derived
analytically only for the particular case of scalar (s = 0) per-
turbation modes. This restriction to the scalar case is a direct
consequence of the fact that all attempts to decouple the grav-
itational and electromagnetic perturbations of generic (that
is, charged and rotating) Kerr–Newman black holes have
so far failed [8]). This interesting result (to be established
below) suggests that neutral Kerr black holes and charged

Table 1 Quasinormal resonances of near-extremal charged rotating
Kerr–Newman black holes. The data shown refer to the fundamen-
tal l = m = 2 gravitational-electromagnetic perturbation mode with
�ω0 = 0.01 M−1 [36]. We display the dimensionless ratio �ω0/πTBH
for various values of the dimensionless black-hole charge parameter
Q/r+, where TBH = (r+ − r−)/4π(r2+ + a2) is the temperature of
the corresponding Kerr–Newman black hole. One finds that, for near-
extremal Kerr–Newman black holes in the regime Q/r+ ≤ 0.9 (this is
the regime of black-hole electric charges studied numerically in [36]),
the quasinormal resonance spectra are characterized, to a good degree
of accuracy, by the universal relation �ω0/πTBH → 1−

Q/r+ �ω0/πTBH

0.2 0.978

0.3 0.987

0.4 0.972

0.5 0.980

0.6 0.945

0.7 0.987

0.8 0.972

0.9 0.999

Kerr–Newman black holes share the same universal relax-
ation properties in the near-extremal TBH → 0 regime.

2 Coupled gravitational-electromagnetic resonances
of Kerr–Newman black holes

Most recently, Ref. [36] has provided detailed numerical
results for the fundamental (least damped) quasinormal res-
onances of charged rotating Kerr–Newman black holes. We
have examined these numerically computed black-hole res-
onances in an attempt to reveal a possible universal pattern
which characterizes the relaxation properties of these charged
rotating black-hole spacetimes.

In Table 1 we present the black-hole resonances of near-
extremal Kerr–Newman black holes [36]. The data shown
in Table 1 refer to the fundamental l = m = 2 (here m
and l are respectively the azimuthal harmonic index and
the spheroidal harmonic index of the black-hole perturba-
tion mode) gravitational-electromagnetic black-hole quasi-
normal resonances with M�ω0 = 0.01. In particular, we
display the dimensionless ratio �ω0/πTBH for various val-
ues of the dimensionless black-hole charge parameter Q/r+.

Interestingly, the numerical data presented in Table 1 pro-
vide compelling evidence that the relaxation rates of generic
(that is, charged and rotating) Kerr–Newman black holes in
the regime Q/r+ ≤ 0.9 (this is the regime of black-hole
electric charges studied numerically in [36]) are governed by
the simple universal relation

�ω(n = 0) → πTBH as TBH → 0. (4)
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3 Summary

Our scientific knowledge about the resonance spectra of
generic (that is, charged and rotating) Kerr–Newman black
holes is not as good as our knowledge about the correspond-
ing quasinormal spectra of rotating neutral Kerr black holes.
This unsatisfactory state of affairs stems from the fact that
all attempts to decouple the gravitational and electromag-
netic perturbations of the Kerr–Newman black-hole space-
time have so far failed [8].

Thus, in order to study the coupled gravitational-
electromagnetic quasinormal spectra of generic Kerr–
Newman black holes, one is forced to solve numerically
a set of two coupled partial differential equations [8]. In
this paper we have analyzed these numerically computed
[36] black-hole resonances. In particular, we have provided
compelling evidence that the characteristic relaxation times,
τ ≡ 1/�ω0, of perturbed Kerr–Newman black-hole space-
times in the regime Q/r+ ≤ 0.9 (this is the regime of black-
hole electric charges studied numerically in [36]) are char-
acterized by the compact universal relation

τ × TBH → π−1 as TBH → 0, (5)

where TBH is the Bekenstein–Hawking temperature of the
Kerr–Newman black hole [see Eq. (3)]. The relation (5)
suggests that neutral Kerr black holes and charged Kerr–
Newman black holes share the same universal relaxation
properties in the near-extremal TBH → 0 regime.

We believe that it would be physically interesting (and
mathematically challenging) to find an analytical explanation
(it is worth emphasizing that Ref. [15] has already provided
an analytical explanation for the simple asymptotic behavior
(5) in the specific case of neutral near-extremal Kerr black
holes) for the numerically suggested universal behavior (5)
which characterizes the near-extremal Kerr–Newman black-
hole spacetimes.
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