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Abstract In this work we consider a phenomenologi-
cal model for leptogenesis in the context of a Standard
Model Extension with an axial-like background coupling to
fermions that violates both Lorentz and CPT symmetries.
The latter is motivated by a background geometry of the early
Universe involving a particular kind of torsion, arising from
the Kalb–Ramond antisymmetric tensor field which appears
in the gravitational multiplet of string theory, although we
do not restrict ourselves to this framework. It is shown that
leptogenesis can occur even at tree level and with only one
generation of right-handed heavy Majorana neutrinos, due to
CP and CPT violation introduced by the background geome-
try. Important issues for the model, including (a) its compati-
bility with a conventional-like cosmology and (b) current-era
phenomenology (characterised by very stringent bounds on
the allowed amount of torsion) are pointed out, and poten-
tial ways of resolving them, within the framework of string-
theory models, are discussed.

1 Motivation and summary

Baryogenesis represents a long-standing problem and is a
very active research area in modern cosmology. A solution
for baryogenesis would explain why the primordial Universe,
which was dominated by radiation, evolved into the present
matter dominated Universe. Many approaches, proposed in
the literature, are reviewed in [1–7]. A standard measure of
the abundance of baryons over that of antibaryons is defined
by the ratio [8]

Y�B = nB − nB̄

nγ
= (6.1 ± 0.3)× 10−10 (1)

where nB is the number density of baryons, nB̄ is the number
density of antibaryons and nγ is the density of photons (pro-
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portional to the entropy density s). This number was deter-
mined with accurate measurements of the CMB radiation by
the experiments WMAP [9] and Planck [10]. However, there
is no experimental evidence for primordial antimatter in the
visible Universe. Similarly, the generation of an asymmetry
between leptons and antileptons is known as leptogenesis.
This is expected to be of the same order of magnitude as
Y�B . If B, the net baryon number, is conserved in Nature,
the matter asymmetry can only originate from an asymmetric
initial condition B �= 0. However, such an asymmetry would
rapidly diminish during inflation, and extreme fine tuning of
the initial condition would become necessary. This is highly
unsatisfactory from a theoretical point of view. Consequently
a mechanism for the dynamical generation of a baryon asym-
metry is required. In the seminal paper [11–14], Sakharov
identified three sufficient conditions that must be satisfied in
order to produce a net baryon number.

1. The theory must allow for interactions that violate B con-
servation. These interactions must become effective at
high-energy scales in order to guarantee the stability of
the proton.

2. Both discrete symmetriesC (charge conjugation) andCP
(where P denotes parity) are violated. In fact C violation
is not enough, as correlations between the spins of parti-
cles and antiparticles lead to identical cross sections for
conjugated processes [15] when the theory is CP sym-
metric.

3. A departure from thermal equilibrium must occur: a
CPT invariant theory (where T denotes time reversal)
does not allow 〈B〉 �= 0 at thermal equilibrium.

A detailed review of Sakharov’s conditions in different
baryogenesis models can be found in [3,4]. The third
Sakharov condition implicitly assumes that the underlying
field theory is invariant under the discrete symmetry opera-
tor � ≡ CPT . This assumption is usually valid due to the
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CPT theorem [16]:� is an invariance of local Lorentz invari-
ant quantum field theories. � invariance is not always valid,
for example (1) in models of spontaneous baryogenesis (see
e.g. [17,18]) and (2) through interactions with external fields
[19] where the matter asymmetry is produced in equilibrium.
Recently it was emphasised by Greenberg that CPT violation
also implies Lorentz violation [20].

On closer inspection the Standard Model (SM) can be seen
to satisfy the Sakharov conditions:

• At the classical level the Lagrangian of SM has global
U (1) chiral symmetries, which lead to B conservation
as well as L conservation for individual generations. At
the quantum level, however, the currents of these global
symmetries are anomalous [21–24]: B + L is anoma-
lous but B − L is an exact symmetry of the quantum
theory. Hence, in this framework, non-conservation of L
implies non-conservation of B and leptogenesis implies
baryogenesis. It was shown in [24] that processes which
violate B+ L correspond to transitions between inequiv-
alent gauge-field vacua, known as instantons [25,26].
However, the probability of tunnelling is suppressed by
an exponential factor governed by the potential barrier
between vacua. The potential barrier can be overcome at
high temperature [27]. This scenario, where leptogene-
sis implies baryogenesis, holds clearly within models in
which SM can be embedded.

• Invariance with respect to C is manifestly broken in
SM; invariance with respect to CP is broken by complex
phases in the Yukawa couplings.

• The expansion of the Universe provides an out-of-
equilibrium situation, A first order electroweak phase
transition can also provide a non-equilibrium situation at
the transition temperature. However, from the observed
value of the Higgs mass, the transition is predicted to
be continuous and, for this reason, it cannot lead to a
significant departure from equilibrium [28,29].

The SM, although it satisfies the Sakharov conditions,
leads to a prediction for Y�B which is several orders of mag-
nitude smaller than its observed value [27]. Extra sources of
CP violation beyond SM are needed. An important example
of physics beyond the Standard Model is the oscillation [30]
between different neutrino flavours; such oscillations require
small non-zero neutrino mass differences which can be gen-
erated by the seesaw mechanism [31–35]. Three right-handed
massive neutrinos are required in the seesaw mechanism [31–
35] for the generation of the light (active) neutrino masses
in the SM, which are much smaller than the masses of the
right-handed-neutrino sector.

Fukugita and Yanagida [36,37] used the extension of SM
required by the seesaw mechanism to propose a model for
leptogenesis: the lepton abundance is produced by the decay

of heavy right-handed Majorana neutrinos [and so represents
physics beyond the Standard Model (BSM)]. The difference
in the branching ratios of the channels of production of lep-
tons and antileptons is equal to the imaginary part of the
interference term of tree-level and one-loop diagrams for the
decay processes. For the interference to generate a non-zero
CP violating phase, at least two generations of right-handed
neutrinos are needed (see [36] and formulae therein).1 The
model of Fukugita and Yanagida connects an explanation of
leptogenesis to the seesaw mechanism. The model thus repre-
sents an economical extension of SM. However, the amount
of CP violation required is hard to generate.

In fact, any theory of cosmology that does not explain
baryogenesis can be considered as incomplete. The current
explanations do not generate sufficient baryogenesis and so
highlight the need for additional mechanisms for the gen-
eration of a baryon asymmetry, involving supersymmetry,
extra-dimensional models etc. Gravitational effects are not
incorporated in SM. Quantum gravity and the SM can, how-
ever, coexist within the framework of string theory.

Gravity in string theory [38] occurs as part of a massless
multiplet (“gravitational”) comprising a spin-two massless
field that is identified as the graviton, a scalar field, the dila-
ton, and a spin-one antisymmetric tensor fieldBμν = −Bνμ,
the Kalb–Ramond (KR) field [39]; this will have interesting
consequences. Although there are different types of string
theory, the low-energy actions that emerge contain these
massless fields. The effective action associated with the grav-
itational multiplet can be studied in lowest order in perturba-
tion theory in the Regge slopeα′ = 1/M2

s (with Ms the string
mass scale). The Regge slope is inversely proportional to the
string tension. However, by working to all orders in α′, it is
possible to find a non-perturbative fixed point [40] which can
have important consequences for leptogenesis: there is a tor-
sion background which is constant in cosmic time and, in the
presence of fermions, couples to the axial fermion current.

In this work we will use some ingredients of the grav-
itational sector of string theory [38] to propose a poten-
tially new mechanism for baryogenesis via leptogenesis,
but our considerations will not make detailed use of string-
theory models, since they have some unresolved problems
[41]. Such microscopic considerations will be the subject
of future work. The geometry due to a background Kalb–
Ramond field can lead to a Lorentz and CP violating interac-
tion with fermions [42,43] in theories with chiral anomalies.
The corresponding field strength Hμνρ = ∂[μBνρ] (where
[. . . ] denotes antisymmetrisation of the respective indices)
is proportional to the torsion of the background geometry,
and is universally coupled to fermions via the affine con-

1 A pedagogical discussion of the necessity (in the absence of torsion)
of interference between tree-level and one-loop diagrams can be found
in [5].
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Fig. 1 Tree- (left) and one-loop (right) decay amplitudes, correspond-
ing to the Yukawa term that couples a right-handed neutrino to the
standard model lepton sector. Analogous diagrams describe the decay
in antileptons. Continuous undirected lines represent right-handed neu-

trinos, lines with an arrow are used to represent SM leptons, whilst
dashed lines correspond to the SM Higgs. The left diagrams are under-
stood to be evaluated in the presence of a KR background field. The
right diagram is the standard result of [36], leading to Leptogenesis

nection. Such couplings (in specified backgrounds) belong
to the class of interactions considered in the extension of
the SM proposed in [44] and can be both Lorentz, CP and
CPT violating. Moreover, in four space-time dimensions, the
dual of the H field strength, εμνρσ Hμνρ , may be represented
as exp(2φ)∂σb(x), where b(x) is a pseudoscalar field—the
‘Kalb–Ramond’ (KR) axion.

At this point it should be noticed that the role of quantum
fluctuations of the KR axion in theories with chiral anomalies
has been previously considered in the context of the gener-
ation of chiral Majorana neutrino masses [45] beyond the
seesaw mechanism,2 but not within the context of baryo-
genesis per se. We will argue in the present paper that the
right-handed Majorana neutrinos, occurring in a Fukugita–
Yanagida type leptogenesis model, will couple (along with all
the other fermions) universally to a CPT-violating KR torsion
background; this coupling will provide, through the decays
of the Majorana neutrinos to SM sector in the presence of
such backgrounds, new and universal sources of CP viola-
tion that could lead to leptogenesis, which can then transform
to baryogenesis via SM B − L conserving processes. If the

2 In these scenarios the quantum fluctuations of the four-dimensional
torsion arising from string theory give rise to a physical KR axion-like
field. This field couples, with the divergence of the axial fermion cur-
rents (non-zero due to the chiral anomalies), as well as with ordinary
axion fields, assumed in the spectrum, via the respective kinetic terms.
Standard axions couple, via appropriate chirality changing Yukawa
interactions, to massless chiral neutrino fields. Without the need for
any specific number of right-handed neutrinos, such Yukawa couplings
generate Majorana masses for the chiral neutrino fields of the SM sec-
tor through higher-loop anomalous graphs involving graviton fields, We
could then embed our mechanism for leptogenesis into such a scenario,
with just one right-handed neutrino but with the assumption that masses
for all the left-handed neutrinos are generated via this new mechanism.

KR torsion field had been large enough in the early Universe,
we will show that sufficient leptogenesis can occur even with
only one right-handed neutrino. A further feature is that the
lepton asymmetry can be obtained even by only considering
tree-level Feynman diagrams, unlike the standard leptogen-
esis scenarios, where CP violation arises at one-loop level.
The diagrams represent the decays of a right-handed neutrino
to a Higgs particle and a light left-handed lepton or the corre-
sponding antilepton (because of Yukawa couplings). In order
to study consistently such decays, the external lines of the per-
tinent Feynman diagrams must be treated non-perturbatively
in the external field strength of the KR field background.
When more generations of right-handed neutrinos are con-
sidered, there is an additive tree-level modification to the
standard (one-loop) expression of the asymmetry derived in
(cf. Fig. 1). On embedding our theory into the type-I seesaw
models, we would naturally consider three right-handed neu-
trinos. However, if the masses of these heavy right-handed
neutrinos are hierarchical, our considerations for leptogen-
esis would reduce to considering the lightest of these right-
handed neutrinos.

The model should still be considered phenomenologi-
cal. There remain important issues that should be addressed
before the model can be considered to be realistic; these relate
to the microscopic dynamics of the torsion field. In the cur-
rent work we outline these problems. A particularly pressing
issue, is to understand the reason for the virtual absence of
such a leptogenesis-producing torsion field today: there are
very stringent bounds imposed by a plethora of experimental
tests of the SME.

In Sect. 2 we describe our phenomenological model: in
addition to the SM fields, the model requires an extra right-
handed Majorana neutrino, in the presence of an axial vec-
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tor background for the fermions. The background violates
both Lorentz and CPT symmetry. The model belongs to a
class of models contained within the framework of the Stan-
dard Model Extension (SME). The right-handed neutrino
couples to the SM sector via appropriate Yukawa couplings.
These lead to decays of the right-handed neutrino to Higgs
and active neutrinos, depicted in Fig. 1, which take place
in the presence of a constant axial-background field in the
observer’s frame. Such decays provide, already at tree level,
extra sources for CP violation, which play an important rôle
for leptogenesis, as discussed in Sect. 3. In Sect. 4 we discuss
the possibility that a microscopic field-theoretic explanation
for the constant axial background may be provided by the
Kalb–Ramond H -torsion field in an early epoch of the Uni-
verse. Important issues for the torsion model, concerning cos-
mology and current phenomenology (e.g. the absence of any
evidence for the existence of torsion today or its effects on
the cosmic microwave background) are discussed in Sect. 5,
where we also suggest potential ways of resolving some
of them. Finally, conclusions and outlook are presented in
Sect. 6. Some technical aspects of our work are given in
several appendices, where we also discuss generic proper-
ties of field theories in space-time backgrounds with torsion,
including dispersion relations, spinor chirality and helicity
properties of Majorana spinors. These properties are required
for understanding the precise way in which leptogenesis is
realised in our model.

2 Standard model extension with one right-handed
neutrino in the presence of axial backgrounds

In this section we consider a phenomenological minimal
extension of the Standard Model, with one right-handed mas-
sive (of mass M) Majorana neutrino field in the presence of
constant axial backgrounds, Bμ. The right-handed neutrino
sector of such a model is described by

L = i N /∂N − M

2
(NcN + NNc)

− N /Bγ 5N − Yk Lk φ̃N + h.c. (2)

N is the Majorana field and Lk is a lepton field, with k a
generation index. The adjoint of the Higgs field is defined by
the relation

φ̃i = εi jφ j (3)

We note that, since our primary motivation here is to iden-
tify the axial-background field with the totally antisymmetric
part of a torsion background (cf. Appendix A), one should
also consider the coupling of the axial field Bμ to all other
fermions of the SM sector, ψ j ( j = leptons, quarks) via a

universal minimal prescription. Hence, the coupling with
all fermionic species is the same: ψ j γ

5 /B ψ j . Specifically,
as we shall see in Sect. 4, the identification of the torsion
background with a homogeneous and isotropic cosmologi-
cal Kalb–Ramond field in a string-theory-inspired model will
lead to axial backgrounds with non-trivial temporal compo-
nents only

B0 = const �= 0, Bi = 0, i = 1, 2, 3. (4)

This will always be understood in what follows. In Appendix
B we discuss properties of spinors coupled to such constant
axial backgrounds (4), which prove very useful for a better
understand of the associated leptogenesis scenarios studied
in the next Sect. 3.

Since in SM the leptons have definite chirality, the Yukawa
interactions can be rewritten as

LYUK = −Yk Lk φ̃

(
1 + γ 5

2

)
N − Y ∗

k N φ̃
†

(
1 − γ 5

2

)
Lk .

(5)

Using the properties of the charge conjugation matrix and
the Majorana condition, it is again seen to be equivalent to

LYUK = −Yk Lk φ̃

(
1 + γ 5

2

)
N − Y ∗

k L
c
k φ̃

†

(
1 − γ 5

2

)
N .

(6)

It should be noted that the two hermitian conjugate terms in
the Yukawa Lagrangian are also CPT conjugate. This is to
be expected on the basis of the CPT theorem. In fact CPT
violation is introduced only by interactions with the back-
ground field. In the absence of the background, the squared
matrix elements obtained from tree-level diagrams for the
two decays would be the same [46]. From the form of the
interaction Lagrangian in Eq. (6), it is straightforward to
obtain the Feynman rules for the diagrams giving the decay
of the Majorana particle in the two distinct channels. It also
allows us to use positive frequency spinors both for the
incoming Majorana particle and for the outgoing leptons.

Let us now turn to the study of the tree-level decay
processes of a Majorana right-handed neutrino into lep-
tons and Higgs fields, depicted in Fig. 1. The total four-
momentum is conserved in the decay. We use p to denote
the four-momentum of the Majorana particle, k and q for the
four-momentum of the Higgs and the outgoing (anti)lepton,
respectively.

Ep,r = Eq,s + Ek (7)

	p = 	q + 	k (8)
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Note that the energy of the fermions displays an explicit
dependence on the helicity. Even assuming the decay prod-
ucts to be massless (which is legitimate, since leptons are
actually massless in the unbroken electroweak phase and
the Higgs mass parameter is expected to be much smaller
compared to the other parameters with dimension of mass),
kinematics has to be studied case by case, considering all the
possible combinations of the external lines helicities. How-
ever, the analysis is much easier if one assumes that the right-
handed neutrino is initially at rest. A discussion of the general
case, along with a method to find approximate solutions, is
given in Appendix C. In this case the following relations
hold:

Ep=0 =
√
B2

0 + m2, Ek = |	k|, Eq,s = |B0 + λs |	q||.
(9)

Momentum conservation also gives |	k| = |	q|.
We are then lead to consider two distinct cases, depending

on the magnitude of the momentum:

Case (a) B0 + λs |	q| > 0
From s = 2 it follows that m2 = 0; hence, for the decay

of a massive particle, only s = 1 is allowed and

|	q| = �− B0

2
. (10)

In the last formula we introduced the quantity �, defined as

� =
√
B2

0 + m2.

Case (b) B0 + λs |	q| < 0
From s = 1 it follows that m2 = 0. Therefore, for the

decay of a massive particle, s = 2 is the only allowed case
and

|	q| = �+ B0

2
. (11)

We can finally turn to the calculation of the decay ampli-
tudes, starting with the process N → l−φ. Ur will denote
the spinor wave function of the decaying particle and us that
of the lepton produced by the decay.

Mrs = −iY us(q)

(
1 + γ 5

2

)
Ur (p)

= −iY ξ
′†
s

√
qs · σ − B0

√
p · σ + B0 ξr (12)

= iY ξ
′†
s ξr

√
Eq,s − |	qs |λs − B0

√
Ep,r + B0 + λr | 	p|.

(13)

The notations qs , Es are used to stress the dependence on
the helicity of the four-momentum of the outgoing lepton,
and similarly for the incoming particle. Helicity eigenstates

corresponding to the outgoing lepton are primed. This is nec-
essary since the momenta 	p and 	q are not parallel, which
amounts in our formalism to the use of two distinct axes for
the quantisation of the two spins. It is useful for what follows
to calculate the scalar products of the two spinors appearing
in (13). We choose the following helicity eigenstates for the
decaying particle with spin along the third spatial direction:

ξ2 =
(

0
1

)
, ξ1 =

(
1
0

)
. (14)

The corresponding helicity eigenstates, for the outgoing lep-
ton emitted at angles θ, φ (in spherical co-ordinates) are

ξ
′
2 =

(−e−iφ sin θ/2
cos θ/2

)
, ξ

′
1 =

(
cos θ/2

eiφ sin θ/2

)
. (15)

Since Eq,s = |B0 + λs |	qs ||, in the amplitude we have to con-
sider two cases, in the same way as we did for the kinematics.

Case (a) (B0 + λs |	q| > 0)
In this case the first square root in (13) vanishes identically,

leading to

Mrs = 0. (16)

Case (b) (B0 + λs |	q| < 0)

Mrs = −iY ξ
′†
s ξr

√−2(B0 + λs |	qs |)
√
Ep,r + B0 + λr | 	p|.

(17)

In the case in which the right-handed neutrino is at rest,
one knows from kinematics that only s = 2 is allowed and

|	q| = �+ B0

2
. (18)

Therefore

Mr2 = −iY ξ
′†
2 ξr

√
−2

(
B0 − �+ B0

2

)√
�+ B0 (19)

= −iY ξ
′†
2 ξr

√
(�− B0)(�+ B0) = −iYmξ

′†
2 ξr .

(20)

It is important to stress that, as one can see from the last for-
mula, when the spatial part of the total momentum vanishes
the decay amplitude is just the standard one.

Calculations for the conjugate decay channel N → l+φ
are completely analogous to the previous ones.

The transition amplitude is given by

Mrs = −iY ∗us(q)
(

1 − γ 5

2

)
Ur (p)

= −iY ∗ξ†
s

√
qs · σ + B0

√
p · σ − B0 ξr . (21)
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It is non-vanishing only in case (a), and it reduces to

Mrs = −iY ∗ξ ′†
s ξr

√
2(B0 + λs |	qs |)

√
Ep,r − B0 − λr | 	p|.

(22)

In the special case when 	p = 0 [remember that case (a)
implies that only s = 1 is allowed] this expression simplifies
to

Mr1 = −iY ∗mξ
′†
1 ξr . (23)

We next proceed to discuss leptogenesis induced by a con-
stant B0 background (4), which, as discussed later, might be
induced by H -torsion in string-cosmology [40].

3 Axial-background-induced CP violation
and leptogenesis

In this section we proceed to calculate the relevant quanti-
ties needed for an estimate of the lepton asymmetry induced
by the axial background (4) within the framework of the
Lagrangian (2).

For cosmological applications the thermally averaged
decay rate [47] is relevant. This is given by

∑
rs

∫
d�N ,rd�l,sd�φ fN (pN , r)(2π)

4

δ(4)(pN ,r − pl,s − pφ)|Mrs(N → lφ)|2, (24)

where we have used the following notation for the Lorentz-
invariant measure:

d�X,r = d3 pX
2EX,r (2π)3

. (25)

The momenta in the integrand depend explicitly on the spin
of the incoming and outgoing particles; hence we separately
evaluate each term in the sum (weighted by the respective
distribution function). Evaluation of the integrals in the lab-
oratory frame is preferred since going to the centre of mass
frame, would introduce spatial components of Bμ. Since we
will be considering temperatures lower than the mass of the
decaying particle it is a good approximation to consider the
decaying particle to be at rest.

The zero temperature decay rate is obtained by integrat-
ing the squared amplitude multiplied by a kinematic factor.
The latter results from the integration over momenta of the
outgoing particles, enforcing energy-momentum conserva-
tion through a delta function. This leads to the integration
measure

∫
d�l,sd�φ(2π)

4δ(4)(pN ,r − pl,s − pφ)

=
∫

d�

16π2

|	k|
Eq + Ek

(
1 + λ B0|q|

) (
1 − |p|

|k| cos θ
) (26)

where d� is the solid angle element, 	k is the momentum of
the Higgs particle, 	q is the lepton momentum and λ is the
lepton helicity. When 	p = 0 the measure reduces to

∫
d�

16π2

|	k|
�+ λB0

. (27)

We now make the simplifying assumption that the decay-
ing particle is at rest, which is a good approximation for
temperatures T satisfying T ≤ m. From four-momentum
conservation it follows that

|	k| = |	q| = �− λB0

2
, (28)

where λ is the helicity of the (anti)lepton produced in the

decay and� =
√
B2

0 + m2 is the energy of the initial particle.

It is worth noting that only the case |	q|+λB0 > 0 is allowed
for the decay of a massive particle at rest, since the opposite
sign in the inequality implies that m2 = 0. (The instability
of massless particles is a peculiar feature of Lorenz violating
theories but is not relevant for our model.) In this special
case one has for both channels N → l−φ and N → l+φ that
the squared matrix element, averaged over the initial spin,
has the value |Y |2m2/2. This would seem to lead to a trivial
result, implying that it is impossible to generate a lepton
asymmetry with this mechanism when the temperature drops
to a value comparable to the energy of the decaying particle.
However, this conclusion is incorrect, since there is a non-
trivial dependence of the kinematic factor on the background
field. We have for the channel N → l−φ the decay rate

�1 =
∑
k

|Yk |2
32π2

m2

�

�+ B0

�− B0
, (29)

while, for the other channel, N → l+φ, the decay rate is

�2 =
∑
k

|Yk |2
32π2

m2

�

�− B0

�+ B0
. (30)

It is interesting to see that the decay rate of one process is
obtained from the other upon flipping the sign of B0. The
total decay rate is

� = �1 + �2 =
∑
k

|Yk |2
16π2

�2 + B2
0

�
. (31)

123



Eur. Phys. J. C (2015) 75 :514 Page 7 of 21 514

It is worthwhile observing that this mechanism can produce a
lepton asymmetry even with only one right-handed neutrino,
whereas the standard leptogenesis scenario [36] requires at
least three generations. Moreover, the occurrence of leptoge-
nesis here is just due to decay processes at tree level, since
the required CP violation is introduced by the background
field that enters in the external lines of Feynman diagrams.

The decay process goes out of equilibrium when the total
decay rate drops below the expansion rate of the Universe,
which is given by the Hubble constant [48]

� � H = 1, 66 T 2N 1/2m−1
P . (32)

Here N is the effective number of degrees of freedom of all
elementary particles and mP is the Planck mass. From the
last equation one can estimate the decoupling temperature
TD , in terms of the unknown parameters �, |Y | and B0, is

TD � 6.2 · 10−2 |Y |
N 1/4

√
mP(�2 + B2

0 )

�
. (33)

In order for the inverse decay to be suppressed by the Boltz-
mann factor, we have to impose the further requirement
that TD ≤ � when � � H (delayed decay mechanism
[36,48,49]). From this condition one can determine a lower
bound for the mass m. In fact we are lead to the following
inequality:

z(�2 + B2
0 ) ≤ �3, (34)

where z = 3.8 · 10−3 mP |Y |2
N 1/2 . If we require that the bound is

satisfied for all values of B0 we get

m2 ≥ 1.09 z2. (35)

For us the Yukawa coupling Y is a free parameter. If we
assume |Y | ≈ 10−5, N ≈ 102, we get an order of magnitude
estimate for the lower bound of m ≈ 100 TeV.

The lepton number density produced can then be estimated
in the following way. By assumption all the neutrinos are at
rest before the decay; hence with branching ratios of the
decays are given by r = �1

�
and 1 − r . The decay of a single

neutrino produces the lepton number

�L = r − (1 − r) = 2r − 1 = 2�B0

�2 + B2
0

. (36)

Multiplying this quantity by the initial abundance of right-
handed Majorana neutrinos at the temperature TD one gets
an approximate estimate of the lepton number density. The
density of the Majorana neutrinos is given by

nN =
∑
λ

1

(2π)3

∫
d3 p f (p, λ) (37)

where, as usual, β is the inverse temperature, λ denotes the
helicity and f (p, λ) is the corresponding Fermi–Dirac dis-
tribution function. At high temperatures this is well approx-
imated by the Maxwell–Boltzmann function. Therefore we
set

f (p, λ) = e−β
√

m2+(p+λB0)2 . (38)

We can rewrite (37) as

nN = 1

2π2

∑
λ

(I2(−λB0, β,m)− 2λB0 I1(−λB0, β,m)

+ B2
0 I0(−λB0, β,m)). (39)

The functions in round braces are defined as follows:

In(a, β,m) =
∫ ∞

a
dp pne−β

√
m2+p2

. (40)

Retaining only terms that are at most linear in B0 we see that
the term proportional to I0 drops and I1 can be evaluated at
the zeroth order in B0.3 Moreover, we have

I1(0, β,m) = 1 + βm

β2 e−βm (41)

and

I2(−λB0, β,m) = e−βm

×
[

−λB0 m

β
+

√
π

2

(
m

β

) 3
2

Erfc

(
−λB0

√
β

2m

)]
. (42)

The last formula, Eq. (42), is valid in the non-relativistic limit√
m2 + p2 � m + p2

2m . The complementary error function is
defined as the integral of the Gaussian function

Erfc(z) = 2√
π

∫ ∞

z
du e−u2

. (43)

Since

Erfc′(z) = −2 e−z2

√
π

, (44)

3 For an alternative derivation, not involving Erf functions, one can
consider the approximate expression

In(a, β,m) �
∫ ∞

0
dp(p + a)n f (p) exp(−β p)

where f (p) = e−β√
a2+m2

[
1 + p

(
β − αβ√

α2+m2

)
+ 1

2 p
2((

β − αβ√
α2+m2

)2 − βm2

(α2+m2)
3/2

)]
.
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on expanding around B0 = 0, I2 reduces to,

I2(−λB0, β,m) = e−βm
√
π

2

(
m

β

) 3
2 + O(B2

0 ). (45)

It is now straightforward to see that, performing the sum over
helicities in (39), one recovers the usual expression for the
density of a non-relativistic species

nN = e−βm
(

m

2πβ

) 3
2 + O(B2

0 ). (46)

We assume that the right-handed neutrino density distribu-
tion follows closely the equilibrium distribution for T ≥ TD
and drops rapidly to zero at lower temperatures T ≤ TD;
furthermore the density of the sterile neutrino (normalised
to the entropy density) is well approximated by a step func-
tion. Therefore we see, upon multiplying (36) by nN , that
the total lepton asymmetry produced in the full decay of the
right-handed neutrino is given by

�LT OT = (2r − 1)nN = 2�B0

�2 + B2
0

nN (47)

The lepton asymmetry �LT OT

nγ
is expected to be of the same

order of magnitude of the baryon asymmetry (1). An order
of magnitude estimate of the ratio B0

m can be found making
use of the approximation TD � m and retaining only first
order terms in B0

m .
Recalling that the photon number density is

nγ � 2ζ(3)

π2 T 3 � 0.24 T 3 (48)

and that

�L

nγ
� 10−10, (49)

we estimate the ratio of the background field to the mass of
the sterile neutrino to be

B0

m
� 10−8. (50)

The small value of this ratio also allows us to justify a pos-
teriori the neglect of higher powers of B0 in the formulae
above. From the lower bound for the mass of 100 TeV found
in (35), for the case where Y = O(10−5), we get an approxi-
mation for the smallest possible magnitude of the background
field required in order for this mechanism to be effective
B0 � 1 MeV. If other mechanisms contributed to the lepton
asymmetry in the Universe, or the Yukawa couplings assume
smaller values, the minimum value of B0 would be smaller

than the one given here. Baryogenesis is then assumed to
proceed via B − L conserving processes in the SM sector of
the model.

In order to get a more accurate estimate of B0, the relevant
Boltzmann equation will need to be studied. This requires a
good approximation for the thermally averaged decay rates
(24) of all the relevant processes and will be the subject of
future research. Nevertheless, in Appendix D we construct
the Boltzmann equation, with the simple purpose of demon-
strating the differences induced by the background B0 �= 0.

4 Field theory models with Kalb–Ramond torsion,
chiral anomalies and constant axial backgrounds

In this section we suggest that the constant axial background
B0 of the previous sections may correspond to a totally anti-
symmetric Kalb–Ramond field that is a generic background
in sigma model effective actions for string theory. For early
eras, where gravitational effects are strong, it is interesting
to study the behaviour of the gravitational multiplet which
comprises the graviton, Kalb–Ramond field and dilaton. A
detailed phenomenology which involves a string-theoretic
construction encompassing a proper discussion of compact-
ification, the emergence of the known particles and a con-
sistent understanding of dark energy is beyond the scope of
this work. Hence we will take a phenomenological approach
whereby we will rely on calculations which have some valid-
ity in the early Universe to motivate the torsion background
that we have introduced in our phenomenological model.
As the Universe cools the parameter related to torsion in the
model will be (phenomenologically) taken to suitably dimin-
ish. [There are many processes which can be relevant for the
thermal history: fermions and gauge fields need to be con-
sidered, for example, in addition to the gravitational sector.
An example of the evolution of torsion whose magnitude
diminishes with time is given in [50] where tree-level string
cosmology equations are solved. It is conceivable that, in
the presence of fermions and gauge fields and higher order
contributions (in the Regge slope, α′) to the string-effective
action, this behaviour may survive.] Detailed discussions on
such aspects of the model are left for a future work.

Gravity is represented by the curvature of space-time
and, in general relativity, the connection on space-time is
taken to be torsion-free and metric-compatible. Hence it is
uniquely determined to be the Levi-Civita connection (which
is uniquely determined by the metric). More generally, in the
tetrad formulation, we have two independent 1-forms,

ea ≡ eaμ (x) dxμ, ωa
b ≡ ωa

bμ (x) dxμ, (51)

with eaμ(x) the vielbein and ωa
bμ(x) the Lorentz (spin) con-

nection,
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We can introduce two related 2-forms: the curvature 2-
form Ra

b = dωa
b + ωa

c ∧ ωc
b and the torsion 2-form T a =

dea + ωa
b ∧ eb. If T a vanishes then ωa

b and ea are not inde-
pendent. From the principle of general covariance we know
that we have an SO(3, 1) local invariance (manifest in the
tetrad formalism). We can go from Lorentz and space-time
indices via

γ μ(x) = eμa (x)γ
a, gμν(x) = ηabe

a
μ(x)e

b
ν(x),

eμa ebμ = ηab (52)

where γ μ(x) is the Dirac matrix, gμν(x) is the metric and
ηab is the Minkowski metric.

The torsion [51–54], in terms of space-time indices, is a

rank

(
1
2

)
tensor, antisymmetric in the lower indices T λ

μν =
−T λ

νμ. No clear evidence exists for a classical torsion field.
Nevertheless, there has recently been some recent interest in
torsion phenomenology (see for example [53–57]). As we
will see, one good (theoretical) reason exists for the space-
time connection having a non-vanishing torsion: the gravita-
tional multiplet of string theory [58].

4.1 Kalb–Ramond torsion and constant axial backgrounds

In the Einstein frame, to first order in the string amplitude,
the bosonic part of the low-energy effective action (in four
large target-space-time dimensions) is given by [58]

S = 1

2κ2

∫
d4x

√−g

× (
R − 2∂μφ∂μφ − e−4φHλμνH

λμν − V (φ)
)
, (53)

where 1
κ2 ≡ M2

s �
c

8π = 1
8πG , with G the four-dimensional

(gravitational) constant, M2
s is the string mass scale, �c

the (dimensionless) compactification volume in units of the
Regge slope α′ of the string and V (φ) is a dilaton potential.
The field Hλμν appearing in the formula represents the field
strength of the Kalb–Ramond field, Bμν , and is defined in
analogy with the electromagnetic tensor Hλμν = ∂[λBμν].
Square brackets denote antisymmetrisation over the enclosed
indices. It is important to note that the sum of the graviton
and the Kalb–Ramond terms in (53) can be rewritten as the
scalar curvature R of a new connection [58], which is no
longer symmetric in its last two indices, defined as

�
λ

μν = �λμν + e−2φHλ
μν �= �

λ

νμ. (54)

In the string-effective action this can be extended to include
corrections [59–62] of higher order in α′ . The antisymmetry
of Hλ

μν in its lower indices, shows the role of the field strength

as a torsion tensor [51–54]. This suggests that this new con-
nection (54) might be more fundamental than the Levi-Civita
connection, and leads to different predictions whenever the
Kalb–Ramond field is in a non-trivial configuration. We will
adopt this point of view which has motivated the construction
of our model. In [42,43] a potential rôle of the H field for
leptogenesis was emphasised. Here we will elaborate further
on this issue.

The connection in (54) allows one to formulate the dynam-
ics of matter fields minimally coupled to the gravitational and
torsion background. The case of a Dirac spinor will be con-
sidered. (Non-minimal couplings of matter fields to torsion
have also been considered in [53,54].) The definition of the
covariant derivative of a spinor requires the introduction of
the tetrad {eμa ∂μ}.

In the local Lorentzian frame given by the tetrad, the action
is the same as the flat one in minimal coupling, provided that
ordinary derivatives are replaced by covariant ones ∂a → �∇a

(with respect to the new connection). This is obtained by
requiring that �∇aψ transforms under a boost of the tetrad
according to the spinor and vector indices it carries [51,52].
The result that one finds in this way is the following:

�∇aψ = eμa

(
∂μ + i

2
�ωbμc�

bc
)
ψ. (55)

In the formula above �ab = i
4

[
γ a, γ b

]
is the generator of

the Lorentz group representation on four-spinors, while �ωaμb

is the Ricci rotation coefficient, defined as

�ωab
μ = eaν�∇μe

bν = eaν
(
∂μe

bν + �
ν

μλe
bλ

)
. (56)

Therefore the action is

SDirac = 1

2

∫
d4x

√−g i

× (
ψγ a�∇aψ − �∇aψγ

aψ + 2imψψ
)
. (57)

The second term is usually not written in flat space, as its
contribution is equal to the first term plus a surface integral.
However, the situation is different when space-time is not
flat. In fact the second term is needed in order preserve uni-
tarity, allowing for the cancellation of an anti-hermitian term
involving the trace of the Ricci coefficients �ωa

ac.
The physical content of the new terms contained in the spin

connection becomes clearer on rewriting the Dirac action
(57) in the following way:

SDirac =
∫

d4x
√−gψ

(
iγ a∂a + B̂dγ

5γ d − m
)
ψ

≡ Sfree
Dirac +

∫
d4x

√−g B̂μ J
5μ, J 5μ ≡ �ψγμγ 5ψ

(58)
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where the axial vector B̂d is defined by

B̂d = 1

4
εabcdeμa �ωbμc= 1

4
εabcdeμa ebν

(
∂μe

ν
c +e−2φH ν

μλ e
λ
c

)
.

(59)

In this last step we have used (56), (54) and the symmetry
�λμν = �λνμ of the torsion-free Christoffel symbol,

In the special case of either flat (Minkowski) or Robertson–
Walker space-times (which do not contain off-diagonal met-
ric elements mixing temporal and spatial components), the
axial vector B̂d is non-trivial and constitutes just the dual of
the torsion tensor

B̂d = −1

4
εabcd e−2φ Habc. (60)

In four space-time dimensions

B̂μ = ∂μb, (61)

where b(x) is a pseudoscalar field [also termed the Kalb–
Ramond (KR) axion field].

However, for a generic space-time there is also a deriva-
tive coupling of the spinor to the tetrad. Such an effective
interaction with the gravitational background is not the only
complication in dealing with spinors in curved space since
the kinetic term involves the tetrad ∂a ≡ eμa ∂μ and is there-
fore dependent on the space-time point. The important point
here is that Dirac (and similarly Majorana) spinors are natu-
rally coupled to an axial field derived from the gravitational
multiplet of string theory. As we have noted, this interaction
leads to interesting cosmological consequences.

For a bosonic string theory (with four uncompactified
dimensions) in non-trivial cosmological backgrounds, a
world-sheet description has been provided by a sigma model
that can be identified with a Wess–Zumino–Witten type con-
formal field theory [40]. This construction has led to exact
solutions (valid to all orders in the Regge slope, α′) for cos-
mological bosonic backgrounds with non-trivial metric, anti-
symmetric tensor and dilaton fields. Such solutions, in the
Einstein frame, consist of (1) a Robertson–Walker metric
with a scale factor a(t) ∼ t where t is the cosmic time, (2) a
dilaton field φ that scales as φ(t) ∼ −lna(t), and (3) a KR
axion field scaling linearly with the cosmic time, b ∝ t with
b denoting the background value of b (cf. (61)). The resulting

background axial vector B̂
d

has only a non-trivial temporal
component

b ∼ const t, ∂μb ∼ εμνρσ e−2φ Hνρσ , (62)

and

B̂
0 ∝ ḃ = constant (63)

in the Robertson–Walker frame.

4.2 Torsion and fermions

Motivated by calculations of string amplitudes involving
fermions, we will consider that the above gravitational back-
ground (with an asymmetric Christoffel symbol) charac-
terises the minimal coupling of fermions (in lowest order
in α′). Lorentz invariance does not hold in the presence of
the torsion background. If there are Lorentz-violating non-
vanishing components of vacuum expectations of fermionic
currents, the maintenance of rotational symmetries implies
that only the temporal components of currents are allowed to
condense. In the presence of fermions coupled to the torsion
H -field as in (58), the four-dimensional low-energy effec-
tive action gives the following equations of motion for the
graviton and antisymmetric tensor:

graviton : Rμν − 1

4
H αβ
μ Hναβ = 8πG

×
(
Tψ
μν − 1

2
gμνT

ψ + dilaton-derivative terms + · · ·
)
,

antisymmetric tensor :
× ∂μ

(√−ge−2φ [
Hμνρ − εμνρσ J

5 σ + · · · ]) = 0, (64)

where . . . denotes higher order terms inα′ in the gravitational
part of the action, Tψ

μν is the stress-energy tensor of fermionic

matter and Tψ = gμνTψ
μν . There is of course an equation of

motion for the dilaton which provides additional constraints
for the background. In order to simplify the analysis we will
assume a constant dilaton below.

It is conceivable, as we shall argue, that in the presence
of high temperature and densities of fermions (relevant for
the early Universe), one may have (Lorentz-violating) per-
turbative fixed points corresponding to a constant H -torsion.
Indeed, from the equation for the antisymmetric tensor field
(assuming a constant dilaton) we observe that it can be solved
upon using the pseudoscalar dual field b defined in (62):

∂μ
(√−g

[
εμνρσ (∂

σb − c̃ J 5 σ )+ O(
(∂b)3

)]) = 0, (65)

where c̃ is a constant of proportionality. From the above equa-
tions (in truncated form) it is clear that the fermion conden-
sate can be a source of torsion, Hence the non-perturbative
solution (63), derived in [40] is still qualitatively valid since,
from (65), we have

ḃ = c̃〈J 5
0 〉 = c̃〈ψ†

i γ
5ψi 〉 = constant �= 0, (66)

where i runs over appropriate fermion species.
In [63] a calculation in strong coupling gauge theory sup-

ported the formation of axial vector fermion condensates.
At weak gauge coupling the condensates cease to form. The
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gauge coupling and string coupling are related in string model
building of the fundamental interactions. If the dilaton, rather
than being a constant becomes more negative with time (as in
the explicit solutions from bosonic string theory that we have
earlier considered), the string coupling and gauge coupling
decrease with time; so there will be a time (and a critical
value of g, gc) when the gauge coupling will be too weak to
support a condensate. This is of course qualitative: currently
we can only speculate that the value of gc is achieved in the
era of leptogenesis. For a fundamental mechanism we would
need to be quantitative but this has not been achieved.

There is another serious problem at the microscopic level
related to the cosmological constant and the need for fine tun-
ing, a generally unsolved problem. The time dependent pseu-
doscalar, with constant rate (66) induces a vacuum-energy
term of the type of a positive cosmological constant once
fluctuations around the background are allowed (see foot-
note). There are ways that negative contribution might arise
to cancel the positive contribution but this remains specula-
tion (and will be discussed elsewhere). Hence we do not have
a microscopic derivation but rather a microscopic motivation
for postulating our torsion background.

In summary, our backgrounds with torsion are non-
thermal [43], and, characterise phenomenological string-
inspired cosmologies; the effect of CP-violation, induced by
such backgrounds, on lepton asymmetry is the main point of
this article. In late eras, when the axial-current condensate
becomes vanishingly small, from (65) we find [upon ignor-
ing (as subleading) the higher order O((∂b)3) terms] that the
rate of change of the b field diminishes with the cosmic time
as the cube of the scale factor

ḃ ∼ 1/a3(t). (67)

We will make use of this result in Sect. 5, when we discuss the
history of this Universe after the leptogenesis epoch.4 This
integration in the path integral implies the incorporation of
quantum fluctuations which lead to the appearance of repul-
sive four-fermion terms in the effective action. In our detailed
analysis of leptogenesis we considered just the background

4 At the level of the effective action (53), it can be seen that the H -field
is non-propagating. As a consequence, in the path-integral approach to
quantum theory, we can integrate out the antisymmetric torsion field
strength Hμνρ . However, in the context of a full string-inspired low-
energy theory effective action, integrating out the torsion H -field is
non-trivial: the action contains an infinity of higher-derivative interac-
tions, for example those containing (∇H)2 terms [59–61], that make the
H -field a fully fledged propagating field with complicated interactions,
of infinite order in α′ (which are not known in closed form). Neverthe-
less, for our purposes here we shall assume weakly varying H -fields
and hence one can restrict oneself to the lowest-order effective action
(53) where the H -torsion can be integrated out, as a non-propagating
field, mirroring the case of ordinary torsion in Einstein–Cartan theory,
reviewed in Appendix A.

torsion field; however, for an estimate of the energy budget
of the Universe these fluctuations need to be included. The
split of the B̂ field can be made explicit into the background

B̂
μ

and quantum fluctuations, B̂μ,

B̂μ = B̂
μ + B̂μ (68)

where the background satisfies (63). The result for the rel-
evant factor of the path integral after integration over the
quantum fluctuations B̂ reads

Z ∝
∫

Dψ Dψei S̃(B̂)+i
∫

d4x
√−g 3

16 κ
2 J 5

μ J 5μ
(69)

where S̃(B̂) = S(B̂) + Sfree
Dirac + ∫

d4x
√−g B̂μ J 5μ is the

action in the presence of the background torsion, given by
the sum of (53), and (58). There is more related discussion
in Appendix A.

5 Open issues of H-torsion-induced leptogenesis
and ways to resolve them

In a microscopic model an H -torsion-induced background
B0 of the above magnitude of 1 MeV would correspond to
a large positive contribution to the cosmological constant,
on account of the current-current term in the effective action
(69); if uncancelled, this vacuum energy would modify the
standard cosmology in the radiation dominated eras of the
early Universe. There are possibilities whereby these fluc-
tuations might be cancelled. Within the context of brane
world quantum field theories there may be anti-de Sitter type
contributions from the bulk. In such cases, there are nega-
tive vacuum-energy contributions to the (four-dimensional)
brane vacuum. Such contributions may suppress the B0-
induced vacuum-energy contributions to acceptable levels
so that the standard cosmology may apply (cf. Eq. (53)). In
the context of axial condensates there is a phase transition
whereby the gauge coupling is too weak for their formation
[63].

Thus it is likely that, as the Universe cools down, the
Lorentz-violating condensates, which require strong cou-
plings and high densities in order to be formed, are destroyed
via a suitable phase transition. At this transition the B field
vanishes. In our scenario this temperature needs to be lower
than the decoupling one for leptogenesis. The destruction of
the fermion condensate at a temperature T � TD , would
imply that the Kalb–Ramond-torsion-axion field b no longer
varies linearly with the cosmic time but diminishes with the
scale factor as in (67). If one assumes a cooling law for
the Universe, of the form a ∼ T−1, then the B0 torsion
field would scale with the temperature as T 3, for T ≤ TD
in this scenario. Taking that into account, the temperature
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of the Universe today (from the CMB measurements) is
TCMB = 2.725 K = 0.2348 meV, and assuming that the
perturbative fixed point is dominant at temperatures of the
order of T � TD = 100 TeV, we obtain a cooling law for the
torsion B0-field of the form

B0 = c0 T
3, c0 = 1 MeV(100 TeV)−3 = 10−42 meV−2.

(70)

Thus, in such a scenario, the value of B0 today would be of
order

B0 today = O(10−44)meV, (71)

which is much too small for any experimental detection.
These and other considerations require further evaluation.
For the purposes of this work we will just consider the model
with a background field which in the present era, away from
the leptogenesis era, is effectively absent. Hence detailed
models will need to confirm that the corresponding tempera-
ture, at which such a destruction can happen, is much higher
than the O(100) GeV temperature at which the lepton asym-
metry is transferred to baryon asymmetries due the B − L
conserving processes in the SM sector of the model. This is
an important issue for future study.

It should be noted that precision atomic experiments
have placed stringent upper bounds on B0 ≤ O(10−2) eV,
within the context of experimental tests of the SME. see
also: [44,64,65]. Another important issue is the effect of
the constant antisymmetric torsion on the cosmic microwave
background (CMB) radiation spectrum. If we assume that the
CMB spectrum is largely due to fluctuations at the surface
of last scattering, which occurs at redshifts z = O(103),
then we observe that at the corresponding temperatures
T = TCMB (1 + z) ∼ 103 TCMB, the value of

B0 last scat ∼ 109 B0 today = O(10−35) meV, (72)

as follows from (70). This is very small to produce any
observable effects in the CMB spectrum as can be seen from
the following argument: one may consider higher-derivative
terms in the effective action of photons propagating in a
torsion background (as is the case in string-effective theo-
ries). One then encounters, among others, higher-covariant-
derivative-with-torsion terms of the form appearing in the
Lorentz-violating electrodynamics [66,67], whose effects on
cosmic microwave background radiation have been classi-
fied. Among those terms are terms of the form T αλ

ρ Fαν ∂λ F̃ρν

and T σγ
δ Fσν ∂γ Fδν , where Tμνρ is the torsion field and F̃μν

is the dual of the photon field strength Fμν . Such terms may
be constrained by the mixing of electric (E-) and magnetic
(B-) type polarisations of the CMB due to induced bire-
fringence. With the strength of the Kalb–Ramond torsion in

(72), the possible effects are well within the corresponding
bounds.

In general, the association of the Kalb–Ramond torsion
with a pseudoscalar axion-like field, implies constraints of
the interactions of this field with electromagnetic fields
through the anomaly Eq. (A12). In our model, the coupling
of this interaction turns out to be the gravitational coupling
(A11), and thus such effects are very small, compatible with
the current phenomenology.

6 Conclusions and outlook

In this work we have given a concrete phenomenological
model for leptogenesis based on our earlier work [42,43] on
the rôle of string-inspired Kalb–Ramond torsion in leptoge-
nesis. Unlike the case of torsionless Riemannian manifolds,
the presence of torsion associated with the totally antisym-
metric Kalb–Ramond field strength, can imply for certain
backgrounds, a lepton-number asymmetry in the early Uni-
verse: a consequence of different decay rates of heavy right-
handed neutrinos at early epochs into leptons and antileptons.
This difference is induced exclusively by the torsion, which
can be constant in the (Einstein) Robertson–Walker frame.
Our approach exploits a tree-level CP violating asymmetry,
in contrast to the standard approach to leptogenesis where
the asymmetry appears first at one-loop level.

We give only an order of magnitude estimate (in flat space-
times) of the induced asymmetry. More detailed estimates,
obtained from solving the Boltzmann equations in the pres-
ence of torsion, need to be done in future. Nevertheless, for
completeness, in the current article we have also sketched the
modifications induced by the torsion field in the collisionless
Boltzmann equation and derived the associated particle dis-
tribution function, which was found to be well behaved for
non-zero values of the temporal component of the axial vec-
tor.

Our simplified model for leptogenesis involves a single
flavour of a heavy Majorana neutrino and the Yukawa cou-
pling Y that couples it to the standard model lepton sec-
tor. It is possible to consider more complicated models in
which there is a mixing between the fluctuations of the tor-
sion pseudoscalar field and the usual axion fields. Yukawa
interactions of these fields with the left-handed neutrino sec-
tor can produce dynamical generation of Majorana neutrino
masses via higher-loop anomalous graphs [45]. Embedding
of such a scenario in detailed microscopic string models may
lead to restrictions on the allowed constant values of the
torsion.

We would also like to comment that our model is discussed
within the framework of thermal equilibrium leptogenesis.
As discussed in Appendix B, the coupling of fermions to the
axial field Bμ induces different dispersion relations for states
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with opposite helicity. The density of a given particle species
is indeed given by

n = g

(2π)3

∫
d3 p f (p), (73)

where g is the number of degrees of freedom and f (p) the
probability distribution function in momentum space. For
fermions this is a Fermi–Dirac function

f (p) = 1

exp E(p)
kT + 1

. (74)

When Lorentz-violating interactions give leptons and antilep-
tons different energies for corresponding values of the
momentum and helicity quantum numbers (analogous to the
discussion of equilibrium baryogenesis in [44]), then the lep-
ton asymmetry can be calculated as

nL − nL = g

(2π)3

∫
d3 p ( fL(p)− fL(p)). (75)

In [44] interactions are considered that lead to a uniform
shift of the energy levels. The shift can be interpreted as a
chemical potential that happens to be different for particles
and antiparticles due to CPT violation. However, the present
case is different, since particles and antiparticles with the
same helicity have the same dispersion relation and hence the
same density. There is a difference in density just between
positive and negative helicity states, regardless of the fact that
they belong to the same or to different particle species. For
this reason there is no lepton asymmetry at equilibrium that
can be justified on the basis of the CPT-violating interaction
in the Lagrangian (58).

However, there is an asymmetry at equilibrium between
right-handed neutrinos and anti-neutrinos that can be inter-
preted as a particle-antiparticle asymmetry. The right-handed
neutrino is a weak isospin singlet, and is therefore allowed
to have a Majorana mass. Since a Majorana particle is C-
conjugated, the only way to distinguish a neutrino from its
antineutrino is via CP conjugation, or equivalently by the
helicity. Therefore the asymmetry between opposite helic-
ity right-handed neutrino states amounts to an asymmetry
between the density of neutrinos and antineutrinos. How-
ever, this cannot be interpreted in terms of a lepton asymme-
try, since the right-handed Majorana neutrino has no definite
lepton number. The way this asymmetry might contribute to
leptogenesis is only through the decay of the right-handed
neutrino, i.e. when this neutrino states are converted to other
states having a definite lepton number. This constitutes the
mechanism considered in our paper.

There are several open issues associated with the torsion-
induced leptogenesis scenario presented here. One of them

concerns the order of the vacuum energy during the lepto-
genesis era, which could affect the cosmological evolution
in a serious way. Such vacuum energies should be small. In
principle, this can be guaranteed in brane Universe models
by a cancellation of the (large) kinetic energy of the tor-
sion KR field on the brane (required for leptogenesis) by the
anti-de Sitter (negative) contributions to the brane world vac-
uum energy due to structures in the bulk space. Detailed, and
phenomenologically realistic, string/brane models, where
such cancellations are demonstrated explicitly, are left for
future investigations. Another important issue is that any
trace of the torsion field today has to be very small in
order to avoid violation of the very stringent experimen-
tal bounds. This implies the necessity for mechanisms in
the early Universe by which the torsion disappears or it is
diminished significantly in the current era. A possible mech-
anism is the phase transitions that destroys the axial current
fermion condensates responsible for non-zero torsion [63];
this possibility awaits detailed confirmation within specific
models.

In general, though, despite its problems, we believe that
the novel mechanism for geometry-induced leptogenesis we
propose in this work has its merits and deserves further stud-
ies in the future.
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Appendix A: Fermions and (quantum) torsion: generic
properties

In this section we make connection with the well-known [53,
54] field-theoretic result that a theory of fermions in a space-
time with torsion (Einstein–Cartan theory) results in a four-
fermion interaction after integrating out torsion in a path inte-
gral. This is easily understood by the fact that the torsion is
a non-propagating field in the Einstein–Cartan theory, where
the gravitational field dynamics is described only by a gener-
alised scalar curvature term coupled to Dirac fermions (which
may or may not be charged)
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SEC = 1

8πG

∫
d4x

√−g
(�R(�ω)− Sψ

)
,

Sψ = i

2

∫
d4x

√−g
(�ψγμ�Dμψ − (�Dμ

�ψ)γ μψ)
(A1)

where �Dμ = �∇μ − ieAμ, is the covariant derivative of with
e the fermion charge and Aμ an electromagnetic field. The
overline above the covariant derivative, i.e. �∇μ, denotes the
presence of torsion, which is introduced through the modified
spin connection �ω :

�ωaμb = ωaμb + Kaμb, (A2)

where Kaμb is the contorsion tensor (as usual Greek let-
ters denote components in the coordinate basis, while Latin
indices refer to the tetrad basis). The contorsion tensor is
related to the torsion two-form T = de + �ω ∧ e via [51–
54,62]:

K λ
μν = 1

2

(
T λ
μν + T λ

μ ν + T λ
ν μ

)
. (A3)

Apart from the standard terms in manifolds without torsion,
the presence of torsion in the covariant derivative in the Dirac-
like action (A1) leads, to an additional term involving the
total axial current (the sum runs over all fermion species k)
Jμ5 ≡ ∑

k
�ψk γ

μ γ 5 ψk :

Sψ � −3

4

∫
d4√−g Sμ

∑
k

�ψk γ
μ γ 5 ψk = −3

4

∫
S ∧ �J5

(A4)

where S = �T is the dual of T: Sd = 1
3!ε

abc
dTabc. In (A4),

and in what follows, we adopt for notational convenience the
language of differential forms to describe the effective action
of fermions in a curved space-time with torsion.

We next remark that the torsion tensor can be decom-
posed into its irreducible parts [53,54], of which Sd is the
pseudoscalar axial vector:

Tμνρ = 1

3

(
Tνgμρ − Tρgμν

) − 1

3!εμνρσ Sσ + qμνρ, (A5)

with εμνρσqνρσ = qνρν = 0. This implies that the contorsion
tensor undergoes the following decomposition:

Kabc = 1

2
εabcd S

d + K̂abc (A6)

where K̂ includes the trace vector Tμ and the tensor qμνρ
parts of the torsion tensor.

The gravitational part of the action can then be written as:

SG = 1

2κ2

∫
d4x

√−g(R + �̂)+ 3

4κ2

∫
S ∧ �S, (A7)

where �̂ = K̂ λ
μν K̂

νμ
λ− K̂μν

ν K̂ λ
μλ , with the hatted notation

defined in (A6).
In a quantum setting, where one integrates over all fields,

the torsion terms appear as non-propagating fields and thus
they can be integrated out exactly. The authors of [62] have
observed though that the classical equations of motion iden-
tify the axial-pseudovector torsion field Sμ with the axial
current, since the torsion equation yields

Kμab = −1

4
ecμεabcd �ψγ5γ

dψ (A8)

From this it follows that d �S = 0, leading to a conserved
“torsion charge” Q = ∫

�S. To maintain this conservation in
quantum theory, one has to postulate

d �S = 0, (A9)

at the quantum level, which can be achieved by the addition of
judicious counter terms (see [62]). This constraint, in a path-
integral formulation of quantum gravity, is then implemented
via a delta function constraint, δ(d �S), and the latter via the
well-known trick of introducing a Lagrange multiplier field
�(x) ≡ (3/2κ2)1/2b(x). Hence, the relevant torsion part of
the quantum-gravity path integral would include a factor

Z ∝
∫

DS Db exp

[
i
∫

3

4κ2 S ∧ �S − 3

4
S ∧ �J5

+
(

3

2κ2

)1/2

b d�S

]

=
∫

Db exp

[
−i

∫
1

2
db ∧ �db + 1

fb
db ∧ �J5

+ 1

2 f 2
b

J5 ∧ �J5

]
, (A10)

where

fb = (3κ2/8)−1/2 = MP√
3π

, J 5μ =
∑
k

�ψk γ
μ γ 5 ψk,

(A11)

and the non-propagating S field has been integrated out.
The reader should notice that, as a result of this integra-
tion, the corresponding effective field theory contains a non-
renormalizable repulsive four-fermion axial current-current
interaction.

We may partially integrate the second term in the expo-
nent on the right-hand-side of (A10) and take into account the
well-known field-theoretic result that in QED the axial cur-
rent is not conserved at the quantum level, due to anomalies,
but its divergence is obtained by the one-loop result:
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∇μ J
5μ = e2

8π2 F
μν F̃μν − 1

192π2 R
μνρσ R̃μνρσ ≡ G(A, ω).

(A12)

Observe that in (A12) the torsion-free spin connection has
been used. This can be achieved by the addition of proper
counter terms in the action [62], which can convert the
anomaly from the initial G(A,�ω) to G(A, ω). Using (A12)
in (A10) one can then obtain for the effective torsion action
in QED∫

Db exp

[
−i

∫
1

2
db ∧ �db − 1

fb
bG(A, ω)

+ 1

2 f 2
b

J5 ∧�J5

]
. (A13)

Thus, we observe that the torsion lead to repulsive four-
fermion interactions involving the axial current. Crucial to
the above derivation was, however, the postulation of the
conservation of the torsion charge at the quantum level, as
expressed by the constraint d�S = 0. The resulting axion field
has originated from the Lagrange multiplier field implement-
ing this constraint. In the subsequent section we consider the
cosmological implications of this result. The reader should
notice that the form of the action (A13) is like the one that can
be derived from string-theory considerations with the Kalb–
Ramond field as torsion (69), thereby establishing the close
parallel of the two approaches.

The previous considerations imply that, in a four-
dimensional space-time with a non-vanishing KR torsion,
the effective field theory of N species of massive fermions
ψi , i = 1, . . . N , will be necessarily interacting via con-
taxt axial-current–current four-fermion terms, given by the
Lagrangian [53,54] (69):

Le−1 = i

2
eμa

(
ψ jγ

aψ j;μ − ψ j;μγ a ψ j

)
+ ψ j (γ

5 /̃B − m( j))ψ j

+ 3κ2

16
(ψ jγμγ

5ψ j ) (ψ�γ
μγ 5ψ�)+ · · · , (A14)

where eμa are the vierbeins, e is the vierbein determinant, the
suffix ; denotes the covariant derivative with respect to the

torsion-free space-time connection, B̃μ ≡ B̂μ, is the axial
background, and the . . . denote higher order terms that are
present in the string-inspired theory. Summation over the
fermion flavour indices j, � = 1, . . . N is understood. In our
approach the non-renormalizable four-fermion interactions
arise on integrating out the torsion field (as noted in (69)).

We shall consider both Dirac and Majorana spinors in the
framework of the interacting theory (A14). In order to discuss
the effects of torsion on particle-antiparticle induced asym-
metry, we consider the equations of motion for the spinors

(and their charge conjugates) that follow from the Lagrangian
(A14). The four-fermion interaction term will induce a cubic
term in the equations of motion for the fermions. Such non-
linear equations first appeared in the 1970s work of Hehl
and Datta [68] and are now known eponymously. Under the
assumption of formation of a (Lorentz-violating) fermionic
condensate of the axial current, the Hehl–Datta equation is
linearised.

It was recently argued [55] that Dirac fermions may lead
to C- and CPT-violating differences between the fermion-
antifermion populations in the finite temperature environ-
ment of the early Universe. However, the author did not con-
sider that, after integrating out the torsion, the effective four-
fermions interaction is such that all the fermionic species
must contribute to one and the same condensate. This will
turn out to be important for our purposes. We will consider
the non-linear equations stemming from (A14) for both the

Dirac spinor and the charge-conjugate spinor ψc = Cψ
T

,
where T indicates matrix transposition, and C is the (unitary)
charge conjugation matrix, C = iγ 2γ 0, in standard notation
(no sum over j index):

i eμaγ
aψ j ;μ − m( j)ψ j + γ 5 /̃B ψ j

+ 3 κ2

8

(
ψ� γ

5 γa ψ�
)
γ 5γ a ψ j = 0

i eμaγ
aψc

j ;μ − m( j)ψc
j + γ 5 /̃B ψc

j

− 3 κ2

8

(
ψ

c
�γ

5 γa ψ
c
�

)
γ 5γ a ψc

j = 0, (A15)

where, to obtain the second line, we used the Dirac equa-
tion obtained from (A14) for the Dirac conjugate spinor,
took the transpose “T ”, and acted upon from the left with
the C-conjugation operator, using −C γ T

μ C−1 = −γμ and
C γ 5 T C−1 = γ 5. We also used5

ψ
c
�γ

5 γa ψ
c
� = −ψ� γ

5 γa ψ�. (A16)

In a Hartree–Fock approximation, we may linearise the equa-
tions (A15) by replacing the fermion bilinear in the non-linear
terms with its vacuum expectation value Fμ ≡ 〈ψγ 5γμψ〉.
For isotropic situations, as is the case we are interested in,
only its temporal component is non-trivial, and denotes the
appropriate fermion chiral densities (summed up over all
species).

5 Notice that, since the Hehl–Datta equation is a classical equation, the
object ψ(x) represents a wave function in spinor space rather than a
field operator. In this sense, to arrive at (A16) only matrix transposition
for fermion bilinears has been employed without changing sign, which
would be the case if one dealt with second-quantised grassmann field
operators ψ . In the latter case, the axial current, of course, does not
change sign under charge conjugation, as we shall see in subsequent
sections.
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F0 = 〈ψ†
� γ

5ψ�〉 ≡ ρR − ρL , Fi = 0. (A17)

The linearised Hehl–Datta equations (A15) become (assum-
ing also only a B̃0 �= 0 component, for concreteness,
as appropriate for our string-inspired case (62), which we
restrict ourselves to here)

i eμaγ
aψ j;μ − mψ j −

(
B̃0 + 3 κ2

8
F0

)
γ 0 γ 5 ψ j = 0

i eμaγ
aψc

j;μ − mψc
j −

(
B̃0 + 3 κ2

8
F0

)
γ 0 γ 5 ψc

j = 0.

(A18)

In [55], the difference in sign of the cubic fermion terms in
(A15), between the fermions and their Dirac conjugate, have
been interpeted as leading to different dispersion relations for
constant background torsion and through this baryogenesis
in the early Universe. Unfortunately we do not agree with
this interpretation. In terms of (A16) we observe that in a
Hartree–Fock approximation the isotropic condensate of the
chiral current (interpreted as torsion) couples to matter and
antimatter with the same sign, and hence there is no induced
difference in the corresponding dispersion relations.

Moreover, a Majorana spinor, of interest to us in the con-
text of the model (2), can be defined as ν = ψ + ψc and
is, by construction, a mass eigenstate, satisfying the Majo-
rana condition νc = ν, entailing that a Majorana fermion is
its own antiparticle and is chargeless. From this condition,
we observe that Majorana spinors do not contribute to the
condensate F0. Of course the torsion mixes the Majorana
neutrinos with all other fermion species, and thus non triv-
ial backgrounds F0 are experienced in general by Majorana
fermions in such space times with torsion. It follows directly
from the definition that a Majorana spinor satisfies the same
Eq. (A18). We observe that the quantities F0 are in general
temperature dependent.

The above discussion demonstrates, therefore, that the
constant axial background (4) of the phenomenological
model (2) may be traced back to a microscopic string-theory-
inspired model with Kalb–Ramond cosmological torsion,
with non-trivial temporal components from the point of view
of a cosmological observer given by the combination

B0 ≡
(
B̃0 + 3 κ2

8
F0

)
, Bi = 0, (A19)

where only temporal components of Bμ are non-zero, in
accordance with previous considerations (A17), (63), (66). In
(A19), B̃0 includes contributions to constant H -torsion back-
ground pertaining to the non-perturbative (exact in α′) anal-
ysis of [40]. The considerations in Sect. 3 therefore, imply
that in the presence of such constant torsion backgrounds,

leptogenesis in the fermion sector can occur, yielding phe-
nomenologically acceptable values for the lepton asymmetry
if B0 of order 1 MeV at 100 TeV temperatures are attained.
The model, however, is far from being complete, when the
background field B0 is viewed as a string inspired dynamical
torsion.

Appendix B: Some properties of spinors coupled
to an axial-background field

Let one consider the effective theory of spinors on flat space-
time6 given by (58)

SDirac =
∫

d4x
√−gψ

(
iγ μ∂μ + Bμγ

5γ μ − m
)
ψ

(B1)

To avoid cumbersome notation Bμ here will denote the most
general background torsion, including finite density conden-
sates of the axial current, which violate Lorentz symmetry,
in the finite density and temperature of the early Universe,

Bμ ≡
(
B̃μ + 3 κ2

8
Fμ

)
, (B2)

where only temporal components of Bμ are assumed to be
non-zero.

This action belongs to the class of theories termed SME
and considered in [44]. When the torsion is constant through-
out space-time the interaction term leads to the spontaneous
breakdown of Lorentz symmetry. The interaction terms with
coefficients Bμ are known to be both Lorentz and CPT vio-
lating in that case.

Dispersion relations of fermions in a constant axial
background

When Bμ is constant, it makes sense to look for plane-wave
solutions of the equations of motion. The dispersion relations
thereby obtained are written in terms of the fourvectorsUμ =
pμ − Bμ and Vμ = pμ + Bμ as

UμU
μ VνV

ν − 2m2 UμV
μ + m4 = 0. (B3)

Hence for a fixed spatial momentum p there are four different
values of the energy. Due to C-invariance of the operator
ψγ 5γμψ the energy levels come in pairs with opposite sign.
The relations found are the same as one would find when
looking for the poles of the fermion propagator in [44,69].

6 From now on we will use the metric signature (− + ++), which is
most widely used in the particle physics community.
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At this point we would like to observe that the disper-
sion relations in the paper [70–73] (pa ± Ba) = m2 (written
in the tetrad frame in curved space, but supposedly valid
also in flat space if one allows for torsion) are in general
not compatible with (B3) for massive fermions. In partic-
ular they are not in the case B = 0, B0 �= 0. The pecu-
liar form of (B3) is essentially due to the chiral nature of
the coupling. Because of the very definition of a fermion
mass term, there is neither a natural way of splitting the
two chiral components in the massive case nor identifying
them with particles and antiparticles. Also it is not clear
under what conditions the field Ba can be constant through-
out on a curved space-time, and even how plane-wave solu-
tions found in the non-holonomic basis. For a further dis-
cussion of this subject see [74], where the incorrectness of
[70–73] is shown to follow from the non-tensorial transfor-
mation properties of the pseudovector Ba . The latter is a
peculiar property of curved space-times, since on flat space-
times the only contribution to the connection comes from
the torsion tensor. As such, the strong equivalence principle
implies that, in Riemannian spaces without torsion, locally
one can always find a frame where the space-time is flat,
thus eliminating Ba , which therefore cannot contain covari-
ant information such as the one leading to leptogenesis. In
contrast, the presence of a torsion field leads to a proper axial
vector background coupled to fermions, which under certain
circumstances may be constant in some frame, leading to
CP- and CPT-violating Leptogenesis, e.g. the case of stringy
cosmologies [40], where there is a constant antisymmetric
tensor field strength background in the Robertson–Walker
frame.

From now on, unless otherwise specified, the constant field
Bμ will be taken parallel to the time axis. This field value rep-
resents a vector vacuum expectation value that is responsible
for the spontaneous breakdown of particle Lorentz invari-
ance (as defined in [44]). A reason for this choice can be
found in the papers [40,43], where solutions for the Kalb–
Ramond field in the expanding Universe are explicitly given.
In fact, in that case Hμνρ = e2φεμνρσ ∂

σb(x) and the axion
field b(x) is linear in time, thus entailing a purely timelike
Bμ. The positive frequency spinors are given by

ur (p) =
(√

Er − B0 − λr | 	p| ξ r√
Er + B0 + λr | 	p| ξ r

)

=
(√

Er − B0 − 	p · 	σ ξ r√
Er + B0 + 	p · 	σ ξ r

)
. (B4)

ξ r ( 	p) are the usual helicity eigenspinors

	p · 	σ
| 	p| ξ r = λr ξ

r , r = 1, 2 (B5)

where λr ≡ (−1)r−1. The spinors are taken to be orthonor-
mal, i.e. ξ r†ξ s = δrs . Er is the energy corresponding to λr
via the relation

E2
r = m2 + (B0 + λr |p|)2. (B6)

The last equation is a particular case of (B3), corresponding
to B = 0. This result agrees with the formulae in [44,75].

On the other hand, negative-frequency solutions are given
by

vs(p) =
(√

Es + B0 − 	p · 	σ ξ s

−√
Es − B0 + 	p · 	σ ξ s

)
. (B7)

Notice that here the corresponding dispersion relations
appear to be inverted if compared to the previous case. In
other words, E1 corresponds to s = 2 and E2 to s = 1. This
is to be expected on the basis of Dirac’s hole theory.

The spinors satisfy the following normalisation condi-
tions:

urus = 2m δrs, vrvs = −2m δrs, (B8)

or equivalently

u†
r us = 2Er δrs, vrvs = 2Er δrs . (B9)

It is important to stress that these solutions only hold in the
frame where Bμ is purely temporal. Furthermore, as a con-
sequence of broken particle Lorentz invariance, the spinor
wave function of a particle with momentum p cannot be
obtained by boosting the solution for a spinor at rest.

The Dirac field operator is a straightforward generalisation
of the standard one and is constructed from the plane-wave
solutions of the Dirac equation [76]

ψ(x) =
∫

d3 p

(2π)3
∑
r=1,2

1√
2Er

×
(
arpu

r (p)e−i px + br†
p vr (p)eipx

)
. (B10)

The only difference with the standard case is that here the
energy depends on the helicity. As usual, canonical equal-
time anti-commutation relations must be imposed on the
fields and this leads in turn to the fermionic oscillator alge-
bra of the creation and annihilation operators arp, ar †

p and brp,

br †
p .

Inequivalence of helicity and chirality in the presence of an
axial background

It is well known that, in the massless limit, the action of the
chirality and the helicity operator on plane-wave solutions
of the standard Dirac equation is the same. One can then
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ask whether this basic result still holds in the CPT-violating
theory considered. It turns out that the answer is negative, as
it is readily seen with a simple example.

Let us consider a positive frequency, positive helicity
spinor, as given by Eq. (B4), with m = 0

u1 =
(√

E1 − B0 − | 	p|ξ1√
E1 + B0 + | 	p|ξ1

)
. (B11)

We have from (B6)

E1 = |B0 + | 	p|| . (B12)

When B0 is non-zero, this leads to two different cases,
depending on the sign of the argument of the absolute value
function. Therefore, if B0 + | 	p| ≥ 0 the spinor has right chi-
rality, while B0 + | 	p| < 0 implies that it has left chirality!
Obviously when B0 = 0 the second case is forbidden, hence
re-establishing the usual correspondence.

Appendix C: Kinematics of the decay of the right-handed
neutrino to first order in the external field

In this appendix we illustrate how the kinematics of the right-
handed Majorana neutrino decay processes considered in
Sect. 2 can be studied using simple perturbative techniques.
We shall consider the case N −→ l−φ for definiteness. The
other decay mode can be studied in an analogous way and
will not be presented here. All we need to know is that the
total energy and the total momentum are both conserved in
the process

EN ,r = El−,s + Eφ, (C1)

p = q + k. (C2)

Lorentz violation, due to the external background field B0

(4), introduces corrections in the first equation through the
dependence of the energies of the decaying neutrino and of
the lepton on the helicity and on the background field.

EN ,r =
√
m2 + (p + λr B0)2 (C3)

El−,s = |B0 + λsq| = −(B0 + λsq) (C4)

Here p and q represent, respectively, the norms of the spatial
vectors p and q. The final step in the last equation follows
from (16), where we showed that only if the argument of the
absolute value is negative can the amplitude be different from
zero. In principle, one can solve this system of equations for
q, k and θpq (the angle formed by the vectors p and q) in
terms of p, of the helicities, the external field B0 and the

angle θpk (formed by p and k). However, as it stands, it is
hard to find a solution for the system of equations (C3).

It is convenient to treat the corrections coming from
Lorentz violation as perturbations (which is justified if B0 �
m, T ) and define the solutions of the system as the sum of
the unperturbed ones plus perturbations,

k = k0 + k1, (C5)

q = q0 + q1, (C6)

θpq = θ0
pq + θ1

pq . (C7)

Introducing the adimensional parameter ε = B0
m , that will

play the role of an expansion parameter, we write down the
energy of the Majorana neutrino to first order in ε

EN ,r = E0
N

(
1 + ελrα

p

m

)
+ O(ε2). (C8)

Having defined α = m2

(E0
N )

2 . We get the linearised system of

equations

k1 − λs q
1 = C, (C9)

sin θpk k
1 + sin θ0

pq q1 + q0 cos θ0
pq θ

1
pq = 0, (C10)

cos θpk k
1 + cos θ0

pq q1 − q0 sin θ0
pq θ

1
pq = 0, (C11)

which has the following solution:

k1 = C

1 + λs cos
(
θpk − θ0

pq

) , (C12)

q1 = − C cos
(
θpk − θ0

pq

)
1 + λs cos

(
θpk − θ0

pq

) , (C13)

θ1
pq = − C sin

(
θpk − θ0

pq

)
q0

(
1 + λs cos

(
θpk − θ0

pq

)) . (C14)

The definition of C is

C = ελrα
p

m
E0
N + (1 + λs)q

0 + B0. (C15)

In the centre of mass frame θpk = θ0
pq+π , implying that only

λ = −1 is allowed and the usual correspondence between
helicity and chirality is re-established. This is in agreement
with Eq. (16), which was derived independently.

Appendix D: Towards a more quantitative estimate of
lepton abundance: Boltzmann equation in the presence
of B0 �= 0 axial background

The Boltzmann equation [47] essentially expresses the action
of the Liouville operator L̂[ f ] on the phase-space density of
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the species χ , f (	x, | 	p|, t), in terms of the so-called collision
operator C[ f ], monitoring the deviation from equilibrium in
the reactions that the species χ participates (for an applica-
tion of the Boltzmann equation to simple model of baryoge-
nesis see e.g. [77]). We assume for concreteness one single
dominant species, with mass mχ .

In the non-relativistic (Newtonian) case, the Liouville
operator is a total time derivative, time is universal, and 	x(t),
	p(t) depend on time (phase-space trajectory of the particle):
so its action on f (	x, | 	p|, t) is given by

L̂[ f ] = d

dt
f = ∂

∂t
f + 	v · 	∇ f + 	F

mχ

· ∇	v f (D1)

where 	v = d	x/dt is the velocity, and 	F = d 	p/dt is the
(Newtonian) force acting on the particle.

The extension of (D1) to the general-relativistic case that
will allow treatment in the Robertson–Walker Universe is
straightforward. Essentially, the Newtonian total time deriva-
tive of the non-relativistic case is replaced by a total deriva-
tive with respect to the proper time. The resulting Liouville
operator is essentially,

L̂[ f ] → mχ

d

dτ
f = mχu

α∂α f + mχ

dpα

dτ

∂

∂pα
f, (D2)

where uμ is the four-velocity and pμ = mχuμ the four-
momentum. In (D2) we took into account that any depen-
dence of the phase-space density f on the proper time τ is
through the dependence of xμ(τ), pα(τ ) on τ .

Based on our discussion so far, then, the combination
∂
∂t f + 	v · 	∇ of the Newtonian case is replaced in general
relativity by uα∂α , whilst the ‘force’ term is expressed in
terms of the Christoffel symbols by means of the geodesic
equation,

mχ

dpα

dτ
= −�μαβ pα pβ. (D3)

Notice that the torsion (antisymmetric part of the Christoffel
symbol) does not enter the geodesic equation. Nevertheless,
as we shall discuss below, the equation is still modified by
the presence of the B0 vector, due to the modified dispersion
relations (B6) for the various helicity states.

The result for the general-relativistic Liouville operator
is, therefore,

L̂[ f ] =
[
pα∂α − �αμν p

μ pν
∂

∂pα

]
f. (D4)

For a homogeneous and isotropic Robertson–Walker Uni-
verse, with a scale factor a(t), we have f = f (t, | 	p|).
Equivalently, upon using the RW-space-time on-shell con-
dition for the massive species χ , f = f (E, t), where E

denotes the energy of the particle and t is the co-moving
frame RW cosmic time. On using the Christoffel symbols
for the Robertson–Walker metric, we obtain from (D4):

L̂[ f ] = E
∂ f

∂t
− ȧ

a
| 	p|2 ∂ f

∂E
. (D5)

The number density of species nχ is defined as:

nχ = g

8π3

∫
d3 p f (E, t) (D6)

where g is the number of degrees of freedom of the species
χ . Dividing (D5) by E , integrating over all momenta and
using the definition (D6), we obtain

dnχ
dt

− ȧ

a

g

8π3

∫ ∞

0
d| 	p|d� | 	p|4

E

∂| 	p|
∂E

∂ f

∂| 	p| (D7)

where in the last step we have spilt the momentum integra-
tion into momentum-amplitude (| 	p|) and angular (�) parts,
and transformed the E-differentiation to a | 	p|-differentiation.
Consider now the abundance of a particular helicity state
χ = r , nr . Using the dispersion relations (B6) we obtain

∂| 	p|
∂Er

= Er

| 	p| + λr B0
, λr = ±1.

with the notation | 	p|2 ≡ pi p j hi j , where hi j is the spatial
part of the RW metric in the standard notation. For concre-
teess and consistency with astrophysical observations (if one
neglects the small value of the cosmological constant), we
may assume that the Universe is spatially flat, in which case
hi j = δi j .

Notice that, depending on the sign of B0, the quantity
| 	p| + λr B0 may vanish. However, the integrand of (D7) is
regular, as ∂ f/∂| 	p| ∝ | 	p| + λr B0, for the Boltzmann (ther-
mal) distribution at temperature T

f (Er ; T ) = 1

eEr /T + 1
,

assuming zero chemical potential for the relativistic right-
handed neutrinos of helicity r for simplicity, with Er given
by (B6). With this in mind, we can expand (D7) in powers
of B0 (small compated to the temperature TD) and integrate
by parts to arrive at a modified Boltzmann equation for the
number density of a helicity state r in the form

g

8π3

∫
d3 p

E
C[ f ] = dnr/dt + g

8π3

ȧ

a

×
∫

d| 	p|d� ∂

∂| 	p|
( | 	p|4

| 	p| + λr B0

)
f

� dnr/dt+3Hnr − g

2π2 2λr B0

∫
d| 	p| | 	p| f + O(B2

0 ),

(D8)
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where H = ȧ
a is the Hubble parameter of the Universe. If

we restrict ourselves to small B0/T � 1, which is to be
expected from our qualitative estimates in the previous sub-
section, then we may ignore any B0 dependence of f in the
last integral of the right-hand-side of (D8), and thus replace
f by the standard Boltzmann distribution of a particle of
mass m with energy E(B0) = √

m2 + | 	p|2. On defining the
dimensionless variable | 	p|/T ≡ u, we obtain the modified
Boltzmann

dnr/dt + 3Hnr − g

2π2 2λr
B0

T
T 3

∫
du u f (E(B0 = 0), u)

= g

8π3

∫
d3 p

E(B0 �= 0)
C[ f ] + O(B2

0 ) (D9)

where on the right-hand side the B0 dependent energy is used.
Equation (D9) holds for any given species, with a suitable

collision operator. In particular, for the right-handed neu-
trino, we may sum the contributions coming from opposite
helicities and get an equation for the total density.

dnN
dt

+ 3HnN = g

8π3

∫
d3 p

E
C̃[ f ] + O(B2

0 ) (D10)

The collision operator must include contributions for the
direct and inverse decays, as well as for the processes with
�L = 1, 2 considered in [8,37].
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