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The inertial navigation systems (INS)/wireless sensor network (WSN) integration system formobile robot is proposed for navigation
information indoors accurately and continuously. The Kalman filter (KF) is widely used for real-time applications with the aim
of gaining optimal data fusion. In order to improve the accuracy of the navigation information, this work proposed an adaptive
extended Kalman smoothing (AEKS) which utilizes inertial measuring units (IMUs) and ultrasonic positioning system. In this
mode, the adaptive extendedKalman filter (AEKF) is used to improve the accuracy of forwardKalman filtering (FKF) and backward
Kalman filtering (BKF), and then the AEKS and the average filter are used between two output timings for the online smoothing.
Several real indoor tests are done to assess the performance of the proposed method. The results show that the proposed method
can reduce the error compared with the INS-only, least squares (LS) solution, and AEKF.

1. Introduction

Automation indoor mobile robots have increasingly been
used in a wide range of applications [1]. The ability to
obtain their navigation information (such as position and
velocity) has become one key issue. Although the global
positioning system (GPS) is widely used for navigation
applications, it is essential for outdoor navigation, and
there is also a growing need for accurate navigation infor-
mation indoors [2]. Consequently, this topic has received
significant scientific research attention over the past few
decades.

In order to achieve accurate navigation information
indoors, a number of methods for localization with various
sensors and precision were proposed [1–3]. For instance, in
[4], an RFID-based position and orientation measurement
system for mobile objects was proposed by Shirehjini et
al.; in [5] Park proposed an indoor location system using
ZigBee; in [6], Saad et al. proposed high-accuracy reference-
free ultrasonic location estimation. All the above-mentioned
attempts employ reference node (RN) with known location
to complete the localization of blind node (BN). Its principle

is similar to global positioning systems (GPS), but the
communication technology used by Beacon-based solutions
is short-range radio, such as WiFi, UWB, RFID, ZigBee,
and ultrasound. The shortcoming of the above-mentioned
attempts is that the localization accuracy has to maintain a
high density of RNs, which is not useful for large localization
area.

To outdoor navigation, in order to achieve continuous
navigation, inertial navigation systems (INS) have been
used for the compensation to the GPS outage since it is
capable of providing positioning information independently
[7]. For example, a novel hybrid of least squares support
vector machine (LS-SVM) and Kalman filter for GPS/INS
integration was proposed by Xu et al. in [8]. To indoor
navigation, Ruiz et al. employed inertial measuring units
(IMUs)/radio frequency identification (RFID) integration
navigation for pedestrian indoor navigation in [2]. However,
INS solution is poor in long-term self-contained navigation
since the accuracy deteriorates with time [9, 10].

In the integrated system, the integration filter should be
carefully designed since it is the core of system. As one of
the most popular information fusion algorithms, Kalman
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filter (KF) is widely used in integrated system. However,
although it is able to achieve the optimal estimation of
states in multiinput and multioutput (MIMO) systems [11],
KF is not suitable for nonlinear systems since the noises
of system and measurement should be corrupted by white
noise and the state estimation is approached with the mini-
mization of the covariance of the estimation error. Then, the
extended KF (EKF) is proposed to overcome this problem
by using Taylor series expansion [10]. However, the EKF
is difficult to track the accurate state during the target’s
fast movement since it employs a fixed priori estimates for
the process and measurement noise covariances during the
whole estimation process [12]. Thus, the AEKF is proposed
to update the covariance of process noise and measure-
ment noise in current. In order to obtain high accuracy
of information fusion, smoothing algorithms have been
widely used in integrated navigation systems [13]. Rauch-
Tung-Strieble smoothing (RTSS) is widely used in navigation
applications due to its robustness and effectiveness [14]. Liu
et al. proposed two-filter smoothing (TFS) and applied it
in INS/GPS integration for postprocessing applications in
[15]. Meanwhile, the results proposed in [15] show that the
TFS has the advantage to be applicable in cases of nonlinear
dynamics that may occur in some land-vehicle navigation
(LVN) applications. TFS is performed by combining the
results of forward Kalman filtering (FKF) and backward
Kalman filtering (BKF) by minimizing the smoother error
covariance.

This work proposed the design and implementation of
adaptive extended Kalman smoothing (AEKS) on INS/WSN
integration system for mobile robot indoors. In this mode,
the adaptive extended Kalman filter (AEKF) is employed to
improve the forward filtering output accuracy, and the back
filter is used to smooth the forward filtering output. In order
to achieve online smoothing, the AEKS and the average filter
are used between two output periods. The remainder of the
paper is organized as follows: Section 2 gives the adaptive
extended Kalman smoothing for integration system.The real
indoor tests and performance are illustrated in Section 3.
Finally, the conclusions are given.

2. Adaptive Extended Kalman Smoothing for
Integration System

2.1. Integration Model. Figure 1 displays the configuration of
the integrated system. In this mode, the integrated model
which is proposed in [16] is employed for the integrated
system in this work. The continuous-time process model of
the system is illustrated as follows:
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The observation vectors of the filter are formed by
differencing the WSN and INS velocities (𝑉INS, 𝑉WSN) and
the distances between the robot and the 𝑖th RN (𝑑INS

𝑖
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).
The measurement equation at time 𝑘 is illustrated as follows:
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And (Δ𝑉
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) is the difference of the WSN and INS

velocities in east and north direction, respectively, and 𝜐
𝑘
is

the Gaussian process noise. It is assumed that 𝜔
𝑘
and 𝜐

𝑘
are

independent zero-mean white Gaussian sequences with
covariances Q and R.

2.2. Adaptive Extended Kalman Filter. Consider the nonlin-
ear system given by (1) and (2); the AEKF used in this paper
involves the following recursive relations:
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Here, 𝑑
𝑘−1

= (1 − 𝑏)/(1 − 𝑏𝑘), 0 < 𝑏 < 1.

2.3. Online Adaptive Extended Kalman Smoother. In this
work, in order to achieve high accuracy, adaptive two-
extended-filter smoothing (ATEFS) is proposed. Consider
the nonlinear system given by (1) and (2); the FKF employs
the AEKF mentioned in Section 2.2, and the BKF is utilizing
a set of equations as follows:
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where 𝑑
𝑘−1

= (1−𝑏)/(1−𝑏𝑘), 0 < 𝑏 < 1.Then, the smoothing
estimate, that is, the combination of the FKF update and the
BKF prediction, will be fixed as
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Here, 𝑘 = 1, 2, . . . , 𝑁. Order for online smoothing, the
AEKS and the average filter are used between two output
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moments. When the integration filter needs to output the
navigation solution, BKF is used to smooth the FKF output.
The output of the BKF is used to compute the INS output
estimation, and then the average of the INS output estimation
between two output moments is sent as navigation solution.
The process of online AEKS is shown in Figure 2.

3. Indoor Localization Tests and Performance

3.1. Real Indoor Test Environment. In order to assess the
performance of the proposed method, two real indoor tests
were done. The real indoor test environment is shown in
Figure 3. In this work, one robot and 6 RNs are employed for
the test. Both the robot and the RN are marked in Figure 3.
As shown in Figure 4, the robot is the carrier of the IMU and
the ultrasonic sender. It is able to collect the data of IMU and
the distances between the robot and the RNs by using the PC
fixed on the robot. In this work, the RN is used to receive the
signal of the ultrasonic ranging sent by the ultrasonic sender
and calculate the distance between the RNs and robot. It is
also able to send the sensor data to the ultrasonic senderwhen

Code wheel

Steering gear

IMU

Ultrasonic sender

Figure 4: The prototype of the robot.

it gets the command. The sample time used in this work is
0.02 s.

Figure 5 displays the trajectories of the real tests. The
robot runs from the beginning point (denoted by a black
square) to the end point (denoted by a black circle) with
0.33m/s. Meanwhile, the RNs are denoted by yellow circles
in Figure 5.

3.2. The Position Errors of the Proposed Method. In this
section, the position errors are discussed.The position errors
for the AEKF, average filter of AEKF (average AEKF), and
the proposed method are shown in Figure 6. In the figures,
the AEKF solution is depicted in blue, the green line repre-
sents the average AEKF solution, and the proposed method
employs the green line.

The east and north position errors of the first trajec-
tory are shown in Figures 6(a) and 6(b), respectively. In
Figure 6(a)(A), it can be seen that the AEKF is able to keep
the east position error about 0.0400m, and it decreases
the mean east position errors by about 58.30% and 82.63%
compared with least squares (LS) solution and the INS-only
solution, respectively. The average AEKF outputs the average
value of the AEKF solution between two output moments,
and the results show that it is able to reduce the mean
east position errors to 0.0389m. Figure 6(a)(B) shows the
east position errors for the average AEKF solution and the
proposed method. It is easy to see that the proposed method
is effective to reduce the east position error, and the results
show that the mean east position of the proposed method is
0.0370m. To the north position errors of the first trajectory,
from Figure 6(b), it is easy to see that the proposed method
solution also has the lowest error. The mean north position
of the proposed method is 0.0262m, and it reduces the mean
north position errors by about 5.2% and 1% compared with
the AEKF solution and the average AEKF solution.

Figures 6(c) and 6(d) show the east and north position
errors of the second trajectory, respectively. In Figure 6(c), it
is easy to see that the proposed method solution also has the
lowest error. The mean east position of the proposed method
is 0.0253m, and it reduces the mean north position errors by
about 25.56% and 14.08% compared with the AEKF solution
and the average AEKF solution. The north position errors of
the second trajectory are shown in Figure 6(d), and similar
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Figure 5: The trajectory of the real test.

Table 1: The position errors of the trajectories.

The first trajectory The second trajectory
Mean east position

error (m)
Mean north

position error (m)
Mean east position

error (m)
Mean north

position error (m)
INS-only 0.2308 0.1412 0.1270 0.2418
LS 0.0961 0.0616 0.0808 0.0557
AEKF 0.0401 0.0276 0.0340 0.0310
off-line AEKS 0.0362 0.0239 0.0273 0.0241
Average AEKF 0.0389 0.0264 0.0294 0.0253
The proposed method 0.0370 0.0262 0.0253 0.0218

Table 2: The velocity errors of the trajectories.

The first trajectory The second trajectory
Mean east velocity

error (m/s)
Mean north

velocity error (m/s)
Mean east velocity

error (m/s)
Mean north

velocity error (m/s)
INS-only 0.0868 0.0847 0.0768 0.0788
LS 0.0368 0.0627 0.0470 0.0541
AEKF 0.0329 0.0436 0.0382 0.0391
off-line AEKS 0.0308 0.0371 0.0275 0.0297
Average AEKF 0.0320 0.0438 0.0421 0.0407
The proposed method 0.0273 0.0361 0.0274 0.0267

to the first trajectory, the average AEKF solution reduces the
position error from 0.0310mmeasured by AEKF to 0.0253m;
then the proposed method improves the accuracy to 0.0218,
and it reduce the mean north position errors by about
13.87%. The proposed method used in the second trajectory
is significantly effective than that used in the first trajectory.

The performance for the INS-only, LS, AEKF, offline AEKS,
average AEKF, and the proposed method is shown in Table 1.

3.3. The Velocity Errors of the Proposed Method. The velocity
errors are discussed in this section. Figure 7 displays the
position errors for the AEKF, average filter of AEKF (average
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Figure 6: The position errors for the AEKF, average AEKF, and the proposed method.

AEKF), and the proposed method. Similar to Figure 6, the
AEKF solution is depicted in blue, the green line repre-
sents the average AEKF solution, and the proposed method
employs the green line.

Figures 7(a) and 7(b) display the east and north velocity
errors of the first trajectory, respectively. In Figure 7(a), it can
be seen that the proposed method has the lowest error. The
results show that it decreases themean east position errors by
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Figure 7: The velocity errors for the AEKF, average AEKF, and the proposed method.

about 27.74% and 62.06% compared with LS solution and the
INS-only solution, respectively. To the north velocity errors
of the first trajectory, from the Figure 7(b)(A), it can be seen
that the average AEKF is more effective than the AEKF, and
the results show that the mean north velocity of the average

AEKF is 0.0436m/s. Figure 7(b)(B) shows the north velocity
errors for the average AEKF and the proposed method, it
can be seen that the proposed method decreases the mean
north position errors from 0.0436m/s to 0.0361m/s.The east
and north velocity errors of the second trajectory are shown
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in Figures 7(c) and 7(d), respectively. From the figures, it
can be seen that the proposed method has the lowest error,
and the mean velocity errors of the second trajectory in east
direction and north direction is 0.0274m/s and 0.0267m/s.
The performance for the INS-only, LS, AEKF, offline AEKS,
average AEKF, and the proposed method is shown in
Table 2.

4. Conclusions

This work proposed the design and implementation of AEKS
on INS/WSN integration system for mobile robot indoors.
In this mode, the AEKF is employed to improve the forward
filtering output accuracy, and the back filter is used to smooth
the forward filtering output. In order to achieve online
smoothing, the AEKS and the average filter are used between
two output period. Two real indoor tests have been done
to assess the performance of the proposed method, and the
experimental results show that proposed method is the most
effective method to estimate the navigation information and
give the optimal state estimation.
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