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This paper mainly studies a generalized double Poisson-Geometric insurance risk model. By martingale and stopping time
approach, we obtain adjustment coefficient equation, the Lundberg inequality, and the formula for the ruin probability. Also the
Laplace transformation of the time when the surplus reaches a given level for the first time is discussed, and the expectation and its
variance are obtained. Finally, we give the numerical examples.

1. Introduction

In insurance mathematics, the classical risk model has been
the center of focus for decades [1–3]. The surplus 𝑈(𝑡) in the
classical model at time 𝑡 can be expressed as

𝑈 (𝑡) = 𝑢 + 𝑐𝑡 −

𝑁
1
(𝑡)

∑

𝑖=1

𝑌
𝑖
, (1)

where 𝑢 = 𝑈(0) > 0 is the initial capital, 𝑐 > 0 is the constant
rate of premium, and {𝑁

1
(𝑡), 𝑡 ≥ 0} is a Poisson process, with

Poisson rate 𝜆
1

> 0 denoting the number of claims up to
time 𝑡. The individual claim sizes 𝑌

1
, 𝑌
2
, . . ., independent of

{𝑁
1
(𝑡), 𝑡 ≥ 0}, are independent and identically distributed

nonnegative random variables with common distribution
function 𝐹(𝑦) with mean 𝜇

𝑌
, variance 𝜎

2

𝑌
, and moment

generating function𝑀
𝑌
(𝑟) = 𝐸[𝑒

𝑟𝑌
].

But in the Poisson process, the expectation and variance
are equal. This is obviously not consistent with actual situa-
tion. So recently there is a huge amount of literature devoted
to the generalization of the classical model in different ways.
Lu and Li [4] consider a Markov-modulated risk model in
which the claim interarrivals, claim sizes, and premiums are
influenced by an external Markovian environment process.
Tan and Yang [5] discuss the compound binomial risk model
with an interest on the surplus under a constant dividend
barrier and periodically paying dividends. Vellaisamy and

Upadhye [6] study the convolution of compound negative
binomial distributions with arbitrary parameters. The exact
expression and also a random parameter representation are
obtained. Cossette et al. [7] present a compound Markov
binomial model, which is an extension of the compound
binomial model. The compound Markov binomial model is
based on the Markov Bernoulli process which introduces
dependency between claim occurrences. Recursive formulas
are provided for the computation of the ruin probabilities
over finite- and infinite-time horizons. A Lundberg exponen-
tial bound is derived for the ruin probability, and numerical
examples are also provided. Yang and Zhang [8] investigate
a Sparre Andersen risk model in which the inter-claim times
are generalized Erlang(n) distributed. Czarna and Palmowski
[9] focus on a general spectrally negative Levy insurance
risk process. For this class of processes, they analyze the so-
called Parisian ruin probability, which ariseswhen the surplus
process stays below0 longer than a fixed amount of time 𝑡 > 0.

In this paper, we will consider a double Poisson-
Geometric risk model with diffusion in which the arrival
of policies is a Poisson-Geometric process and the claims
process follows the compound Poisson-Geometric process.
For more details and new developments on the Poisson-
Geometric risk model, the interested readers can refer to [10–
13].

The rest of the paper is organized as follows. In Section 2,
the risk model is introduced. In Section 3, we obtain the
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adjustment coefficient equation and the formula of ruin prob-
ability.Thenwe present the effect of the related parameters on
the adjustment coefficient. In Section 4, using the martingale
method, the time when the surplus reaches a level firstly is
considered, and the expectation and its variance are obtained.
Numerical illustrations are also given.

2. The Risk Model

Definition 1 (see [10]). A distribution is said to be Poisson-
Geometric distributed, denoted by 𝑃𝐺(𝜆, 𝜌), if its generating
function is

exp{𝜆 (𝑡 − 1)

1 − 𝜌𝑡
} , (2)

where 𝜆 > 0, 0 ≤ 𝜌 < 1. Note that if 𝜌 = 0, then
the Poisson-Geometric distribution degenerates into Poisson
distribution.

Definition 2 (see [10]). Let 𝜆 > 0 and 0 ≤ 𝜌 < 1, then
{𝑁(𝑡), 𝑡 ≥ 0} is said to be a Poisson-Geometric process with
parameters 𝜆, 𝜌 if it satisfies

(1) 𝑁(0) = 0;
(2) {𝑁(𝑡), 𝑡 ≥ 0} has stationary and independent incre-

ments;
(3) for all 𝑡 > 0,𝑁(𝑡) is a Poisson-Geometric distributed

with parameters 𝜆, 𝜌, and 𝐸[𝑁(𝑡)] = 𝜆𝑡/(1 −

𝜌), Var[𝑁(𝑡)] = 𝜆𝑡(1 + 𝜌)/(1 − 𝜌)
2
.

The corresponding moment generating function of 𝑁(𝑡)

is𝑀
𝑁(𝑡)

(𝑟) = exp[𝜆𝑡(𝑒𝑟 − 1)/(1 − 𝜌𝑒
𝑟
)].

Then the double Poisson-Geometric risk model with
interference is defined as

𝑈 (𝑡) = 𝑢 + 𝑐𝑁
2 (𝑡) −

𝑁
3
(𝑡)

∑

𝑘=1

𝑌
𝑘
+ 𝜎𝑊(𝑡) , (3)

where 𝑁
2
(𝑡) is the number of premium up to time 𝑡 and

follows a Poisson-Geometric distribution with parameters 𝜆
2

and 𝜌
2
;𝑁
3
(𝑡) is the number of claims up to time 𝑡 and follows

a Poisson-Geometric distribution with parameters 𝜆
3
and 𝜌
3
.

𝑊(𝑡) is the standard Brownian motion and 𝜎 is a constant,
representing the diffusion volatility parameters. Throughout
this paper, we assume that 𝑁

2
(𝑡), 𝑁

3
(𝑡), 𝑊(𝑡), and {𝑌

𝑘
} are

mutually independent.
In order to ensure the insurance company’s stable opera-

tion, we assume

𝐸[𝑐𝑁
2 (𝑡) −

𝑁
3
(𝑡)

∑

𝑘=1

𝑌
𝑘
+ 𝜎𝑊(𝑡)] > 0, (4)

which implies
𝜆
2
𝑐

1 − 𝜌
2

−
𝜆
3
𝜇
𝑌

1 − 𝜌
3

> 0. (5)

Let
𝜆
2
𝑐

1 − 𝜌
2

= (1 + 𝜃)
𝜆
3
𝜇
𝑌

1 − 𝜌
3

. (6)

Then 𝜃 > 0 is the relative security loading factor.

For the risk model (3), the time to ruin, denoted by 𝑇, is
defined as

𝑇 = inf {𝑡 ≥ 0 | 𝑈 (𝑡) < 0} . (7)

And define the ruin probability with an initial surplus 𝑢 > 0

by 𝜓(𝑢), namely,

𝜓 (𝑢) = Pr (𝑇 < ∞ | 𝑈 (0) = 𝑢) . (8)

3. The Ruin Probability

Define the profits process by {𝑆(𝑡); 𝑡 ≥ 0}; that is,

𝑆 (𝑡) = 𝑐𝑁
2 (𝑡) −

𝑁
3
(𝑡)

∑

𝑘=1

𝑌
𝑘
+ 𝜎𝑊(𝑡) . (9)

Obviously we have

𝐸 [𝑆 (𝑡)] = [
𝜆
2
𝑐

1 − 𝜌
2

−
𝜆
3
𝜇
𝑌

1 − 𝜌
3

] 𝑡,

Var [𝑆 (𝑡)] = 𝑐
2 Var [𝑁

2 (𝑡)] + Var [𝑁
3 (𝑡)] ⋅ 𝐸

2
[𝑌
𝑘
]

+ 𝐸 [𝑁
3 (𝑡)] ⋅ Var [𝑌𝑘] + 𝜎

2 Var [𝑊 (𝑡)]

= [
𝜆
2
𝑐
2
(1 + 𝜌

2
)

(1 − 𝜌
2
)
2

+
𝜆
3
(1 + 𝜌

3
) 𝜇
2

𝑌

(1 − 𝜌
3
)
2

+
𝜆
3
𝜎
2

𝑌

1 − 𝜌
3

+ 𝜎
2
] 𝑡.

(10)

Let

𝛼 =
𝜆
2
𝑐

1 − 𝜌
2

−
𝜆
3
𝜇
𝑌

1 − 𝜌
3

,

𝛽 =
𝜆
2
𝑐
2
(1 + 𝜌

2
)

(1 − 𝜌
2
)
2

+
𝜆
3
(1 + 𝜌

3
) 𝜇
2

𝑌

(1 − 𝜌
3
)
2

+
𝜆
3
𝜎
2

𝑌

1 − 𝜌
3

+ 𝜎
2
.

(11)

Then

𝐸 [𝑆 (𝑡)] = 𝛼𝑡,

Var [𝑆 (𝑡)] = 𝛽𝑡.

(12)

Lemma 3. The profits process {𝑆(𝑡); 𝑡 ≥ 0} has the following
properties:

(1) 𝑆(0) = 0;

(2) {𝑆(𝑡); 𝑡 ≥ 0} has stationary and independent incre-
ments.

Theorem 4. For the profits process {𝑆(𝑡); 𝑡 ≥ 0}, there is a
function 𝑔(𝑟) such that

𝐸 [𝑒
−𝑟𝑆(𝑡)

] = 𝑒
𝑡𝑔(𝑟)

. (13)
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Figure 1: The impact of 𝑐 on 𝑅.

Proof. Consider

𝐸 [𝑒
−𝑟𝑆(𝑡)

] = 𝐸 {exp [−𝑟𝑐𝑁
2 (𝑡)]} ⋅ 𝐸

× {exp[𝑟
𝑁
3
(𝑡)

∑

𝑘=1

𝑌
𝑘
]} ⋅ 𝐸 {exp [−𝑟𝜎𝑊 (𝑡)]}

= exp{𝑡 [
𝜆
2
(𝑒
−𝑟𝑐

− 1)

1 − 𝜌
2
𝑒−𝑟𝑐

+𝜆
3

𝑀
𝑌 (𝑟) − 1

1 − 𝜌
3
𝑀
𝑌 (𝑟)

+
1

2
𝜎
2
𝑟
2
]} .

(14)

Let

𝑔 (𝑟) =
𝜆
2
(𝑒
−𝑟𝑐

− 1)

1 − 𝜌
2
𝑒−𝑟𝑐

+ 𝜆
3

𝑀
𝑌 (𝑟) − 1

1 − 𝜌
3
𝑀
𝑌 (𝑟)

+
1

2
𝜎
2
𝑟
2
. (15)

Then we obtain (13).

Theorem 5. Equation
𝑔 (𝑟) = 0 (16)

has a unique positive solution 𝑟 = 𝑅 > 0, and (16) is said to
be an adjustment coefficient equation of the risk model (3) and
𝑅 > 0 is said to be an adjustment coefficient.

Proof. From (15), we have 𝑔(0) = 0, and since

𝑔

(𝑟) =

𝑐𝜆
2
𝑒
−𝑟𝑐

(𝜌
2
− 1)

(1 − 𝜌
2
𝑒−𝑟𝑐)
2

+

𝜆
3
(1 − 𝜌

3
) 𝐸 [𝑌𝑒

𝑟𝑌
]

(1 − 𝜌
3
𝑀
𝑌 (𝑟))
2

+ 𝜎
2
𝑟,

𝑔

(𝑟) =

𝑐
2
𝜆
2
𝑒
−𝑟𝑐

(1 − 𝜌
2
) (1 + 𝜌

2
𝑒
−𝑟𝑐

)

(1 − 𝜌
2
𝑒−𝑟𝑐)
3

+
𝜆
3
(1 − 𝜌

3
) [1 − 𝜌

3
𝑀
𝑌 (𝑟)]

[1 − 𝜌
3
𝑀
𝑌 (𝑟)]
4

× {(1− 𝜌
3
𝑀
𝑌 (𝑟)) 𝐸 [𝑌

2
𝑒
𝑟𝑌
]+ 2𝜌[𝐸 (𝑌𝑒

𝑟𝑌
)]
2

}+𝜎
2
,

(17)
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Figure 2: The impact of 𝜆
2
on 𝑅.
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Figure 3: The impact of 𝜆
3
on 𝑅.

which imply

𝑔

(0) = −

𝜆
2
𝑐

1 − 𝜌
2

+
𝜆
3
𝜇
𝑌

1 − 𝜌
3

= −𝜃
𝜆
3
𝜇
𝑌

1 − 𝜌
3

< 0. (18)

It is easy to see that the moment generating function
𝑀
𝑌
(𝑟) is an increasing function. Due to 0 < 𝜌

3
< 1, there

exists an 𝑟
1
such that𝑀

𝑌
(𝑟
1
) = 1/𝜌

3
; that is, 1 − 𝜌

3
𝑀
𝑌
(𝑟) > 0

when 0 < 𝑟 < 𝑟
1
. So when 0 < 𝑟 < 𝑟

1
, 𝑔(𝑟) > 0 and

𝑔(𝑟) is a convex function with lim
𝑟→+∞

𝑔(𝑟) = +∞. Then
it can be shown that 𝑔(𝑟) has a unique positive solution on
(0, +∞).

Example 6. Suppose 𝑐 = 0.5, 𝜆
2
= 0.4, 𝜆

3
= 0.2, 𝜌

2
= 0.9, and

𝜌
3
= 0.6, 𝛼 = 0.9, 𝜎 = 1.4. By (16), we obtain the adjustment

coefficient 𝑅 = 0.158. Moreover, we give the effect of related
parameters on adjustment coefficient 𝑅; see Figures 1, 2, 3, 4,
5, 6, and 7.

For the profits process {𝑆(𝑡); 𝑡 ≥ 0}, let 𝐹𝑠
𝑡
= 𝜎{𝑆(V); V ≤ 𝑡}.
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Theorem 7. {𝐻
𝑢
(𝑡); 𝐹
𝑠

𝑡
; 𝑡 ≥ 0} is a martingale, where𝐻

𝑢
(𝑡) =

𝑒
−𝑟(𝑢+𝑆(𝑡))

/𝑒
𝑡𝑔(𝑟).

Proof. Consider

𝐸 [𝐻
𝑢 (𝑡) | 𝐹

𝑠

V] = 𝐸[
𝑒
−𝑟(𝑢+𝑆(𝑡))

𝑒𝑡𝑔(𝑟)
| 𝐹
𝑠

V]

= 𝐸[
𝑒
−𝑟(𝑢+𝑆(V))

𝑒V𝑔(𝑟)

𝑒
−𝑟(𝑆(𝑡)−𝑆(V))

𝑒(𝑡−V)𝑔(𝑟)
| 𝐹
𝑠

V]

= 𝐻
𝑢 (V) 𝐸 [

𝑒
−𝑟(𝑆(𝑡)−𝑆(V))

𝑒(𝑡−V)𝑔(𝑟)
| 𝐹
𝑠

V]

= 𝐻
𝑢 (V) .

(19)

Theorem 8. If 𝑟 and 𝑠 satisfy the equation 𝑔(𝑟) = 𝑠, then the
surplus {𝑒−𝑟𝑆(𝑡)−𝑡𝑠; 𝑡 ≥ 0} is a martingale.
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Figure 7: The impact of 𝜎 on 𝑅.

Proof. Consider

𝐸 [𝑒
−𝑟𝑆(𝑡)−𝑡𝑠

| 𝐹
𝑠

V] = 𝐸 [𝑒
−𝑟𝑆(𝑡)−𝑡𝑔(𝑟)

| 𝐹
𝑠

V]

= 𝐸 [𝑒
−𝑟𝑆(V)−𝑡𝑔(𝑟)−𝑟[𝑆(𝑡)−𝑆(V)]−(𝑡−V)𝑔(𝑟)

| 𝐹
𝑠

V]

= 𝑒
−𝑟𝑆(V)−𝑡𝑔(𝑟)

⋅ 𝐸 [𝑒
−𝑟[𝑆(𝑡)−𝑆(V)]−(𝑡−V)𝑔(𝑟)

| 𝐹
𝑠

V]

= 𝑒
−𝑟𝑆(V)−𝑡𝑠

.

(20)

Lemma 9. The ruin time 𝑇 is the stopping time of 𝐹𝑠
𝑡
.

Theorem10. For for all 𝑟, the ultimate ruin probability satisfies

𝜓 (𝑢) ≤ 𝑒
−𝑟𝑢

𝐵 (𝑟) , (21)

where 𝐵(𝑟) = 𝐸[sup
𝑡≥0

{exp[𝑡𝑔(𝑟)]}].
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Proof. For a fixed time 𝑡
0
, 𝑡
0
∧ 𝑇 is a bounded stopping time;

using the theorem of martingale and stopping time, we have

𝑒
−𝑟𝑢

= 𝐸 [𝐻
𝑢 (0)] = 𝐸 [𝐻

𝑢
(𝑇 ∧ 𝑡

0
)]

= 𝐸 [𝐻
𝑢 (𝑇) | 𝑇 ≤ 𝑡

0
]Pr (𝑇 ≤ 𝑡

0
)

+ 𝐸 [𝐻
𝑢 (𝑡) | 𝑇 > 𝑡

0
]Pr (𝑇 > 𝑡

0
)

≥ 𝐸 [𝐻
𝑢 (𝑇) | 𝑇 ≤ 𝑡

0
]Pr (𝑇 ≤ 𝑡

0
) ,

(22)
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Figure 10: The impact of 𝜌
3
on 𝐸[𝜏].
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Figure 11: The impact of 𝜆
2
on 𝐸[𝜏].

which implies

Pr (𝑇 ≤ 𝑡
0
) =

𝑒
−𝑟𝑢

𝐸 [𝐻
𝑢 (𝑇) | 𝑇 < 𝑡

0
]
≤

𝑒
−𝑟𝑢

inf
0≤𝑡≤𝑡

0

exp [−𝑡𝑔 (𝑟)]

= 𝑒
−𝑟𝑢 sup
0≤𝑡≤𝑡

0

{exp [𝑡𝑔 (𝑟)]} ,

(23)

by expectation on both sides of (23), and letting 𝑡
0
→ +∞,

we can obtain (21).

Theorem 11. The probability of the risk model (3) is

𝜓 (𝑢) =
𝑒
−𝑅𝑢

𝐸 [𝑒−𝑅𝑈(𝑇) | 𝑇 < ∞]
. (24)
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Figure 13: The impact of 𝜇
𝑌
on 𝐸[𝜏].
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Figure 14: The impact of 𝑐 on 𝐸[𝜏].
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Figure 15: The impact of 𝜌
2
on Var[𝜏].
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Figure 16: The impact of 𝜌
3
on Var[𝜏].
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Figure 17: The impact of 𝜆
2
on Var[𝜏].
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Figure 18: The impact of 𝜆
3
on Var[𝜏].
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Figure 19: The impact of 𝜇
𝑌
on Var[𝜏].

Proof. 𝑇 is a ruin time and for a fixed time 𝑡
0
, 𝑇
𝑢
∧ 𝑡
0
is a

bounded stopping time. Using the theorem ofmartingale and
stopping time, we have

𝑒
−𝑟𝑢

= 𝐻
𝑢 (0) = 𝐸 [𝐻

𝑢
(𝑇 ∧ 𝑡

0
)]

= 𝐸 [𝐻
𝑢
(𝑇 ∧ 𝑡

0
) | 𝑇 ≤ 𝑡

0
]Pr (𝑇 ≤ 𝑡

0
)

+ 𝐸 [𝐻
𝑢
(𝑇 ∧ 𝑡

0
) | 𝑇 > 𝑡

0
]Pr (𝑇 > 𝑡

0
) .

(25)

Let 𝑟 = 𝑅, we have

𝑒
−𝑅𝑢

= 𝐸 [𝑒
−𝑅𝑈(𝑇)

| 𝑇 ≤ 𝑡
0
]Pr (𝑇 ≤ 𝑡

0
)

+ 𝐸 [𝑒
−𝑅𝑈(𝑇)

| 𝑇 > 𝑡
0
]Pr (𝑇 > 𝑡

0
) .

(26)

If 𝐼(𝐴) is an indicator function of the event 𝐴, we get
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Figure 20: The impact of 𝑐 on Var[𝜏].
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Figure 21: The impact of 𝜎 on Var[𝜏].

0 ≤ 𝐸 [𝑒
−𝑅𝑈(𝑇)

| 𝑇 > 𝑡
0
]Pr (𝑇 > 𝑡

0
)

= 𝐸 [𝑒
−𝑅𝑈(𝑇)

𝐼 (𝑇 > 𝑡
0
)] ≤ 𝐸 [𝑒

−𝑅𝑈(𝑡
0
)
𝐼 (𝑈 (𝑡

0
) ≥ 0)] .

(27)

Since

0 ≤ 𝑒
−𝑅𝑈(𝑡

0
)
𝐼 (𝑈 (𝑡

0
) ≥ 0) ≤ 1, (28)

by the law of large numbers, when 𝑡
0

→ ∞, 𝑈(𝑡
0
) → ∞

(a.s.). By dominated convergence theorem, we have

lim
𝑡
0
→∞

𝐸 [𝑒
−𝑅𝑈(𝑇)

| 𝑇 > 𝑡
0
]Pr (𝑇 > 𝑡

0
) = 0, (a.s.) . (29)

Then when 𝑡
0
→ ∞ in (26), we can obtain (24).

Corollary 12. Consider

𝜓 (𝑢) ≤ 𝑒
−𝑅𝑢

. (30)

Example 13. Suppose 𝑅 = 0.2, 𝑅 = 0.3, and 𝑅 = 0.4. By (30),
we give the effect of adjustment coefficient 𝑅 on the upper
bound of the ruin probability; see Figure 8.
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4. The Time to Reach a Given Level

Let
𝜏 = inf {𝑡 ≥ 0 | 𝑈 (𝑡) = 𝑥} . (31)

Then 𝜏 is the time when the surplus reaches a given level
firstly.

Theorem 14. The Laplace transform of 𝜏 is
𝐸 [𝑒
−𝑠𝜏

] = 𝑒
𝑟𝑥
, (32)

where 𝑟 and 𝑠 satisfy
𝑔 (𝑟) = 𝑠. (33)

Proof. For the surplus process {𝑈(𝑡); 𝑡 ≥ 0}, using the
theorem of martingale and stopping time, we see that 𝜏 is a
stopping rime of 𝐹𝑠

𝑡
. Let 𝑄(𝑡) = 𝑒

−𝑟𝑈(𝑡)−𝑡𝑠. By Theorem 8, the
surplus process {𝑄(𝑡); 𝑡 ≥ 0} is a martingale; hence, we have

𝐸 [𝑄 (𝜏)] = 𝐸 [𝑄 (0)] , (34)
implying that

𝐸 [𝑒
−𝑟𝑈(𝑡)−𝑡𝑠

] = 1. (35)

Since 𝑈(𝑡) = 𝑥, so we get
𝐸 [𝑒
−𝑠𝜏

] = 𝑒
𝑟𝑥
. (36)

Theorem 15. The expectation and variance of 𝜏 satisfy

𝐸 [𝜏] =
𝑥

𝛼
,

Var [𝜏] =
𝑥𝛽

𝛼3
.

(37)

Proof. Let 𝜑(𝑠) = ln𝐸[𝑒−𝑠𝜏]. Using Theorem 11, we have
𝜑(𝑠) = 𝑟𝑥. Then

𝑑𝜑 (𝑠)

𝑑𝑠
=

𝑑𝜑 (𝑠)

𝑑𝑟
⋅
𝑑𝑟

𝑑𝑠
=

𝑑𝜑 (𝑠)

𝑑𝑟
⋅

1

𝑑𝑔 (𝑟) /𝑑𝑟
=

𝑥

𝑔 (𝑟)
,

𝑑
2
𝜑 (𝑠)

𝑑𝑠2
=

𝑑𝜑

(𝑠)

𝑑𝑠
=

𝑑𝜑

(𝑠)

𝑑𝑟
⋅
𝑑𝑟

𝑑𝑠
=

𝑑𝜑

(𝑠)

𝑑𝑟
⋅

1

𝑑𝑔 (𝑟) /𝑑𝑟

= −
𝑥𝑔

(𝑟)

[𝑔 (𝑟)]
2
⋅

1

𝑔 (𝑟)
= −

𝑥𝑔

(𝑟)

[𝑔 (𝑟)]
3
.

(38)
Let 𝑠 = 𝑟 = 0. We have

𝐸 [𝜏] = −
𝑑𝜑 (𝑠)

𝑑𝑠

𝑠=0

= −
𝑥

𝑔 (0)
=

𝑥

𝛼
,

Var [𝜏] = −
𝑑
2
𝜑 (𝑠)

𝑑𝑠2

𝑠=𝑟=0

=
𝑥𝛽

𝛼3
.

(39)

Example 16. Suppose 𝜌
2
= 0.75, 𝜌

3
= 0.75, 𝜆

2
= 0.75, 𝜆

3
=

0.5, 𝜇
𝑌
= 0.5, 𝜎

𝑌
= 0.5, 𝜎 = 1, and 𝑐 = 1. By (37), we give the

effect of related parameters on 𝐸[𝜏] and Var[𝜏]; see Figures 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and 21.

Acknowledgments

Y. Huang thanks the three anonymous referees for the
thoughtful comments and suggestions that greatly improved
the presentation of this paper. This work was supported by
the National Natural Science Foundation of China (Grant
no. 11171187, Grant no. 10921101), National Basic Research
Program of China (973 Program, Grant no. 2007CB814906),
Natural Science Foundation of Shandong Province (Grant
no. ZR2012AQ013, Grant no. ZR2010GL013), Humanities and
Social Sciences Project of the Ministry Education of China
(Grant no. 10YJC630092, Grant no. 09YJC910004), and 2013
Major Project Cultivation Plan of Shandong Jiaotong Univer-
sity.

References

[1] J. Grandell, Aspects of Risk Theory, Springer, New York, NY,
USA, 1991.

[2] H. U. Gerber, An Introduction to Mathematical Risk Theory,
vol. 8 of S.S. Heubner Foundation Monograph Series, Huebner
Foundation, Philadelphia, Pa, USA, 1979.

[3] S. Asmussen,Ruin Probabilities, vol. 2,World Scientific Publish-
ing Co. Inc., River Edge, NJ, USA, 2000.

[4] Y. Lu and S. Li, “On the probability of ruin in a Markov-
modulated risk model,” Insurance: Mathematics & Economics,
vol. 37, no. 3, pp. 522–532, 2005.

[5] J. Tan and X. Yang, “The compound binomial model with
a constant dividend barrier and periodically paid dividends,”
Journal of Systems Science & Complexity, vol. 25, no. 1, pp. 167–
177, 2012.

[6] P. Vellaisamy and N. S. Upadhye, “On the sums of compound
negative binomial and gamma random variables,” Journal of
Applied Probability, vol. 46, no. 1, pp. 272–283, 2009.

[7] H. Cossette, D. Landriault, and E. Marceau, “Ruin probabilities
in the compoundMarkov binomial model,” Scandinavian Actu-
arial Journal, no. 4, pp. 301–323, 2003.

[8] H. Yang and Z. M. Zhang, “Gerber-Shiu discounted penalty
function in a Sparre Andersenmodel with multi-layer dividend
strategy,” Insurance: Mathematics and Economics, vol. 42, no. 3,
pp. 984–991, 2008.

[9] I. Czarna and Z. Palmowski, “Ruin probability with Parisian
delay for a spectrally negative Lévy risk process,” Journal of
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