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We investigate the problem of existence of positive solutions for the nonlinear third-order three-
point boundary value problem u

′′′
(t) + λa(t)f(u(t)) = 0, 0 < t < 1, u(0) = u′(0) = 0, u

′′
(1) =∝ u

′′
(η),

where λ is a positive parameter, ∝∈ (0, 1), η ∈ (0, 1), f : (0,∞) → (0,∞), a : (0, 1) → (0,∞)
are continuous. Using a specially constructed cone, the fixed point index theorems and Leray-
Schauder degree, this work shows the existence and multiplicities of positive solutions for the
nonlinear third-order boundary value problem. Some examples are given to demonstrate the main
results.

1. Introduction

This paper deals with the following third-order nonlinear boundary value problem:

u′′′(t) + λa(t)f(u(t)) = 0, 0 < t < 1,
u(0) = u′(0) = 0, u′′(1) = αu′′(η

)
.

(1.1)

Third-order boundary value problems arise in a variety of different areas of applied ma-
thematics and physics. In the few years, there has been increasing interest in studying certain
third-order boundary value problems for nonlinear differential equation and have received
much attention. To identify a few, we refer the reader to [1–6].

Recently, El-Shahed [1] discussed the following third-order two-point boundary value
problem:

u′′′(t) + λa(t)f(u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, αu′(1) + βu′′(1) = 0.
(1.2)

The methods employed in [1] are Kransnoselskii’s fixed-point theorem of cone.
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In later work, by placing restrictions on the nonlinear term f , Sun [2] studied the fol-
lowing boundary value problems and obtained the three solution via leggett-williams fixed
point theorem:

u′′′(t) = a(t)f
(
t, u(t), u′(t), u′′(t)

)
, 0 < t < 1,

u(0) = δu
(
η
)
= 0, u′(η

)
= 0, u′′(1) = 0.

(1.3)

The upper and lower solution is a powerful tool for proving existence for boundary va-
lue problems, Ma [7] studied the multiplicity of positive solutions of three-point boundary
value problem of second-order ordinary differential equations. Du et al. [5] investigated a
class of third-order nonlinear problem.

Motivated by the work of the above papers, the purpose of this article is to study the
existence of solution for boundary value problem (1.1) using a new technique (different from
the proof of [1, 2, 7]) and we get a new existence result. The tools are based on the fixed point
index theorems and Leray-Schauder degree.

The paper is organized as follows: Section 2 states some definitions and some lemmas
which are important to obtain our main result. Section 3 is devoted to the existence result of
BVP (1.1). Section 4 gives some examples to illustrate our main results.

2. Preliminary

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set K ⊂ E is called a
cone of E if it satisfies the following two conditions:

(1) x ∈ K, λ ≥ 0 implies λx ∈ K;

(2) x ∈ K, −x ∈ K implies x = 0.

Definition 2.2. An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Lemma 2.3. Let y ∈ C[0, 1], then the following boundary value problem:

u′′′(t) + y(t) = 0, 0 < t < 1, (2.1)

u(0) = u′(0) = 0, u′′(1) = αu′′(η
)
, (2.2)

has the unique solution

u(t) =
∫1

0
G(t, s)y(s)ds, (2.3)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2
(t − s)2 +

t2

2
, s ≤ η, s ≤ t,

t2

2
, t ≤ s ≤ η,

−1
2
(t − s)2 +

t2

2(1 − α)
, η ≤ s ≤ t,

t2

2(1 − α)
, η ≤ s, t ≤ s.

(2.4)
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Proof. From (2.1), we have

u(t) = −1
2

∫ t

0
(t − s)2y(s)ds +At2 + Bt + C. (2.5)

In particular,

u(t) = −1
2

∫ t

0
(t − s)2y(s)ds +At2 + Bt + C,

u′(t) = −t
∫ t

0
y(s)ds +

∫ t

0
sy(s)ds + 2At + B,

u′′(t) = −
∫ t

0
y(s)ds + 2A.

(2.6)

Combining this with boundary conditions (2.2), we conclude that

A =

∫1
0 y(s)ds
2(1 − α)

− α
∫η
0 y(s)ds
2(1 − α)

,

B = 0,
C = 0.

(2.7)

Therefore, BVP (2.1)-(2.2) has a unique solution:

u(t) = −1
2

∫ t

0
(t − s)2y(s)ds − αt2

∫η
0 y(s)ds

2(1 − α)
+
t2
∫1
0 y(s)ds

2(1 − α)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0

[

−1
2
(t − s)2 +

t2

2

]

y(s)ds +
∫η

t

t2

2
y(s)ds +

∫1

η

t2

2(1 − α)
y(s)ds, t ≤ η,

∫η

0

[

−1
2
(t − s)2 +

t2

2

]

y(s)ds +
∫ t

η

[

−1
2
(t − s)2 +

t2

2(1 − α)

]

y(s)ds

+
∫1

t

t2

2(1 − α)
y(s)ds, t ≥ η,

=
∫1

0
G(t, s)y(s)ds.

(2.8)

The proof is completed.

Lemma 2.4. For all (t, s) ∈ [0, 1] × [0, 1], one has G(t, s) ≥ 0.

Lemma 2.5. for all (t, s) ∈ [τ, 1] × [0, 1], one has

γG(1, s) ≤ G(t, s) ≤ G(1, s), (2.9)

where γ = ατ2/2, and τ statisfies
∫1
τ G(t, s)a(s)ds > 0.
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Proof. For s ≤ t, s ≤ η,

G(t, s) = −1
2
(t − s)2 +

t2

2
=

s(2t − s)
2

≤ G(1, s),

G(t, s)
G(1, s)

=
2t − s

2 − s
=

t + t − s

2 − s
≥ t

2
.

(2.10)

For t ≤ s ≤ η,

G(t, s) =
t2

2
≤ G(1, s),

G(t, s)
G(1, s)

=
t2/2
1/2

= t2.

(2.11)

For η ≤ s ≤ t,

G(t, s) = −1
2
(t − s)2 +

t2

2(1 − α)
=

αt2 + 2ts(1 − α) + s2(1 − α)
2(1 − α)

≤ G(1, s),

G(t, s)
G(1, s)

=
αt2 + 2ts(1 − α) + s2(1 − α)
α + 2s(1 − α) + s2(1 − α)

≥ αt2.

(2.12)

For η ≤ s, t ≤ s,

G(t, s) =
t2

2(1 − α)
≤ G(1, s),

G(t, s)
G(1, s)

= t2.

(2.13)

Thus,

αt2

2
G(1, s) ≤ G(t, s) ≤ G(1, s), for (t, s) ∈ [0, 1] × [0, 1]. (2.14)

Therefore,

γG(1, s) ≤ G(t, s) ≤ G(1, s), ∀(t, s) ∈ [τ, 1] × [0, 1]. (2.15)

The proof is completed.

Lemma 2.6. If y ∈ C[0, 1] and y ≥ 0, then the unique solution u(t) of the BVP (2.1)-(2.2) is non-
negative and satisfies

minu(t)
t∈[τ,1]

≥ γ‖u‖. (2.16)

Proof. Let y ∈ C+[0, 1], it is obvious that it is nonnegative. For any t ∈ [0, 1], by (2.3) and
Lemma 2.5, it follows that

u(t) =
∫1

0
G(t, s)y(s)ds ≤

∫1

0
G(1, s)y(s)ds, (2.17)
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and thus,

‖u‖ ≤
∫1

0
G(1, s)y(s)ds. (2.18)

On the other hand, (2.3) and Lemma 2.5 imply, for any t ∈ [τ, 1],

u(t) =
∫1

0
G(t, s)y(s)ds ≥ γ

∫1

0
G(1, s)y(s)ds. (2.19)

Therefore,

min
t∈[τ,1]

u(t) ≥ γ‖u‖. (2.20)

This completes the proof.

Let E = C[0, 1] with the usual normal ‖u‖ = maxt∈[0,1]|u(t)|.
Define the cone K by

K =
{
u ∈ C+[0, 1] : min

t∈[τ,1]
u(t) ≥ γ‖u‖

}
. (2.21)

Define an operator T by

Tu(t) = λ

∫1

0
G(t, s)a(s)f(u(s))ds. (2.22)

By Lemma 2.3, BVP (1.1) has a positive solution u = u(t) if and only if u is a fixed point
of T .

Lemma 2.7. Assume that 0 < λ < ∞. Then, T : K → K is completely continuous.

Proof. Firstly, it is easy to check that T : K → K is well defined. By Lemma 2.6, we know that
T(K) ⊂ K.

Let Ω be any boundary subset of K, then there exists r > 0, ‖u‖ ≤ r, for all u ∈ Ω.
Therefore, we have

|Tu| = λ

∣∣∣∣∣

∫1

0
G(t, s)a(s)f(u(s))ds

∣∣∣∣∣
≤ λ

∣∣∣∣∣

∫1

0
G(1, s)a(s)f(u(s))ds

∣∣∣∣∣
. (2.23)

So TΩ is boundary. Moreover, for any t1, t2 ∈ [0, 1], |t1 − t2| ≤ δ, δ > 0, we have

|Tu(t1) − Tu(t2)| ≤ λ

∫1

0
|G(t1, s) −G(t2, s)|a(s)f(u(s))ds. (2.24)
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By the continuity of f and a, we have a(t) and f(u(t)) are boundary on u ∈ Ω, t ∈ [0, 1], which
means that there exists a constant Mf

a > 0, depending only on Ω such that

∣
∣a(t)f(u(t))

∣
∣ < M

f
a, (2.25)

and thus for any ε > 0,

|G(t1, s) −G(t2, s)| ≤ ε

λM
f
a

,

|Tu(t1) − Tu(t2)| < ε.

(2.26)

Therefore, we can get TΩ is equicontinuity. Thirdly, we prove that T is continuous. Let un →
u as n → ∞, un ∈ K. Then, the continuity of f , we can get

|Tun(t) − Tu(t)| =
∣∣∣∣∣
λ

∫1

0
G(t, s)a(s)f(un(s))ds − λ

∫1

0
G(t, s)a(s)f(u(s))ds

∣∣∣∣∣

=

∣∣∣∣∣
λ

∫1

0
G(t, s)a(s)

(
f(un(s)) − f(u(s))

)
ds

∣∣∣∣∣

≤
∣∣∣∣∣
λ

∫1

0
G(1, s)a(s)

(
f(un(s)) − f(u(s))

)
ds

∣∣∣∣∣
−→ 0, n −→ ∞.

(2.27)

Then, Tun(t) → Tu(t). Therefore, T is continuous.The operator T is completely continuous by
an application of the Ascoli-Arzela theorem. This completes the proof.

Lemma 2.8 (see [7, 8]). Let E be a real Banach space and let K be a cone in E. For r ≥ 0, define
Kr = {x ∈ K : ‖x‖ < r}. Assume T : Kr → K is a completely continuous operator such that Tx /=x
for x ∈ ∂Kr = {x ∈ K : ‖x‖ = r}.

(1) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr , then

i(T,Kr,K) = 0. (2.28)

(2) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr , then

i(T,Kr,K) = 1. (2.29)

3. Main Results
Theorem 3.1. Assume that

(A1) λ is a positive parameter, η ∈ (0, 1) and α ∈ (0, 1);

(A2) a : [0, 1] → (0,∞) is continuous;

(A3) f : [0,∞) → (0,∞) is continuous;

(A4) f∞ := limu→∞(f(u)/u) = ∞.
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When λ is sufficiently small, (1.1) has at least one positive solution, whereas for λ is sufficiently large,
(1.1) has no positive solution.

Proof. If q > 0, then

β
(
q
)
= max

u∈K,‖u‖=q

[∫1

0
G(t, s)a(s)f(u(s))ds

]

> 0. (3.1)

For any number 0 < r1, let δ1 = r1/β(r1), and set

Kr1 = {u ∈ K : ‖u‖ < r1}. (3.2)

Then, for λ ∈ (0, δ1) any u ∈ ∂Kr1 , we have

Tu(t) < δ1

[∫1

0
G(t, s)f(u(s))ds

]

≤ δ1β(r1) = r1. (3.3)

Thus, Lemma 2.8 implies

i(T,Kr1 , K) = 1. (3.4)

Since f∞ = ∞, there is M > 0, such that f(u) ≥ μu, for u > M, where μ is chosen so that

λμγ

∫1

τ

G(1, s)a(s)ds > 1. (3.5)

Let r2 > M/γ , and set

Kr2 = {u ∈ K : ‖u‖ < r2}. (3.6)

If u ∈ ∂Kr2 , then

min
t∈[τ,1]

u(t) ≥ γ‖u‖ ≥ M. (3.7)

Therefore,

Tu(1) = λ

∫1

0
G(1, s)a(s)f(u(s))ds

≥ λ

∫1

τ

G(1, s)a(s)f(u(s))ds

≥ λ

∫1

τ

G(1, s)a(s)μu(s)ds
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≥ λμ

∫1

τ

G(1, s)a(s)dsγ‖u‖

≥ λμγ

∫1

τ

G(1, s)a(s)ds‖u‖

> ‖u‖,
(3.8)

which implies that

‖Tu‖ ≥ ‖u‖, (3.9)

for u ∈ ∂Kr2 . An application of Lemma 2.8 again shows that

i(T,Kr2 , K) = 0. (3.10)

Since we can adjust r1, r2 so that r1 < r2, it follows the additivity of the fixed-point index that

i
(
T,Kr2 \Kr1 , K

)
= −1. (3.11)

Thus, T has a fixed point in Kr2 \Kr1 which is the desired positive solution of (1.1).
We verify that BVP of (1.1) has no positive solution for λ large enough.
Otherwise, there exist 0 < λ1 < λ2 < · · · < λn < · · · , with limn→∞λn = +∞, such that for

any positive integer n, the BVP,

u′′′(t) + λna(t)f(u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′′(1) = αu′′(η
)
, (3.12)

has a positive solution un(t). By (2.22), we have

un = λn

∫1

0
G(t, s)a(s)f(un(s)) −→ +∞, (n −→ ∞). (3.13)

Thus,

un −→ ∞, (n −→ ∞). (3.14)

Since f∞, for c0 > 0, there exists r3 > 0, such that f(u)/u > c0, for u ∈ [r3,∞), which implies
that

f(u) > c0u, for u ∈ [r3,∞). (3.15)
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Let n be large enough that ‖un‖ ≥ r3, then

‖un‖ ≥ un(1)

= λn

∫1

0
G(1, s)a(s)f(un(s))ds

≥ λnγ

∫1

0
G(1, s)a(s)dsc0‖un‖

> ‖un‖.

(3.16)

Choose n so that c0λnγ
∫1
0 G(1, s)a(s)ds > 1 which is a contradiction. The proof is completed.

Theorem 3.2. Assume that

(B1) λ is a positive parameter; η ∈ (0, 1) and α ∈ (0, 1);

(B2) a : [0, 1] → (0,∞) is continuous and there exists m > 0 such that a(t) ≥ m;

(B3) f : [0,∞) → (0,∞) is continuous;

(B4) f∞ = limu→∞(f(u)/u) = 0, f0 = limu→ 0(f(u)/u) = 0;

(B5) there exists σ > 0, for u ≥ σ, such that f(u) ≥ β, where β > 0, then there exists δ2 > 0,
such that, for λ > δ2, BVP (1.1) has at least two positive solutions u1

λ, u
2
λ andmaxu1

λ > σ.

Proof. Let δ2 = (Mγmβ)−1σ, then for λ > δ2, Lemma 2.7 implies that T : K → K is completely
continuous. Considering (B4), there exists 0 < r < σ such that f(u) ≤ u/2Λλ, for 0 ≤ u ≤ r,
where Λ =

∫1
0 G(1, s)a(s)ds.

So, for u ∈ ∂Kr , we have from (2.4)

(Tu)(t) = λ

[∫1

0
G(t, s)a(s)f(s)ds

]

≤ λ

∫1

0
G(1, s)a(s)f(u(s))ds

≤ λ

[∫1

0
G(1, s)a(s)ds

]
‖u‖
2Λλ

=
‖u‖
2

< ‖u‖ = r.

(3.17)

Consequently, for u ∈ ∂Kr , we have ‖Tu‖ < ‖u‖, by Lemma 2.8,

i(T,Kr,K) = 1. (3.18)

Now considering (B4), there exists h > 0, for u > h, such that f(u) ≤ u/2Λλ. Letting ρ =
max0≤u≤h f(u), then

0 ≤ f(u) ≤ u

2Λλ
+ ρ. (3.19)
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Choose

R > max
{
r, 2Λρλ

}
. (3.20)

So for u ∈ ∂KR, from (3.18) and (3.19), we have

(Tu)(t) = λ

[∫1

0
G(t, s)a(s)f(u)ds

]

≤ λ

[∫1

0
G(1, s)a(s)f(u)ds

]

≤ λ

[∫1

0
G(1, s)a(s)ds

](
1

2Λλ
‖u‖ + ρ

)

<
‖u‖
2

+
R

2
= ‖u‖,

(3.21)

That is, by Lemma 2.8,

i(T,KR,K) = 1. (3.22)

On the other hand, for u ∈ K
R

σ = {u ∈ K : ‖u‖ ≤ R, mint∈Jθ u(t) ≥ σ, θ ∈ (0, 1/2), Jθ =
[θ, 1 − θ]}, (2.3) and (2.4) yield that

‖Tu‖ ≤ λ

[∫1

0
G(t, s)a(s)ds

](
1

2Λλ
‖u‖ + ρ

)
< R. (3.23)

Furthermore, for u ∈ K
R

σ , from (2.3) and (2.4), we obtain

min
t∈Jθ

(Tu)(t) = min
t∈Jθ

λ

[∫1

0
G(1, s)a(s)f(u(s))ds

]

≥ min
t∈Jθ

λ

∫1−θ

θ

G(t, s)a(s)f(u(s))ds

≥ λγ

∫1−θ

θ

G(1, s)a(s)f(u(s))ds

≥ λMγmβ > δ2Mγmβ = σ,

(3.24)

where M =
∫1−θ
θ G(1, s)ds. Let u0 ≡ (σ + R)/2 and H(t, u) = (1 − t)Tu + tu0, then H : [0, 1] ×

K
R

σ → K is continuous, and from the analysis above, we obtain for (t, u) ∈ [0, 1] ×K
R

σ :

H(t, u) ∈ KR
σ . (3.25)
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Therefore, for u ∈ ∂KR
σ , we haveH(t, u)/=u. Hence, by the normality property and the homo-

topy invariance property of the fixed point index, we obtain

i
(
T,KR

σ ,K
)
= i

(
u0, K

R
σ ,K

)
= 1. (3.26)

Consequently, by the solution property of the fixed point index, T has a fixed point u1
λ
and

u1
λ ∈ KR

σ . By Lemma 2.4, it follows that uλ
1 is a solution to BVP (1.1), and

max
t∈[0,1]

u1
λ ≥ min

t∈Jθ
u1
λ > γ. (3.27)

On the other hand, from (3.18) and (3.19) together with the additivity of the fixed point index,
we get

i
(
T,KR \

(
Kr ∪K

R

σ

))
= i(T,KR,K) − i

(
T,KR

σ ,K
)
− i(T,Kr,K) = 1 − 1 − 1 = −1. (3.28)

Hence, by the solution property of the fixed point index, T has a fixed point u2
λ and

u2
λ
∈ KR \ (Kr ∪ K

R

σ ). By Lemma 2.3, it follows that u2
λ
is also a solution to BVP (1.1), and

u1
λ /=u2

λ. The proof is completed.

4. Examples

Example 4.1. We consider the following third-order boundary value problems:

u′′′(t) + λ(2t + 1)eu = 0,

u(0) = u′ (0) = 0, u′′ (1) =
3
4
u′′

(
1
4

)
,

(4.1)

here η = 1/4, α = 3/4, f(u(t)) = eu, a(t) = 2t + 1, f∞ = limu→∞(f(u)/u) = ∞, f is continuous,
a(t) is continuous. By direct calculations, we obtain that λ < r1(1−α), for r1 > 0. Therefore, by
Theorem 3.1, there exists at least one solution u(t) for BVP (4.1), whereas for λ large enough,
(4.1) has no solution.

Example 4.2. Consider the following third-order ordinary differential equation:

u′′′ + λ(2t + 1)f(u(t)) = 0,

u(0) = u′(0) = 0, u′′(1) =
1
4
u′′
(
1
2

)
,

(4.2)
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where

f(u(t)) =

{
u2e−u, if u ≤ a,

a3/2√ue−a, if u > a,
(4.3)

f is continuous, a(t) is continuous. Here, m = 1, α = 1/4, β = a2e−a, σ = a, a > 0. Choose

δ2 = 6a/(2θ3 − 3θ2 + 3θ − 1), θ ∈ (0, 1/2), τ ∈ (0, 1), when λ > δ2, by Theorem 3.2, there exist

at least two solutions u1
λ(t), u

2
λ(t) for BVP (4.1).
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