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Abstract In this paper we continue the development of
a model for strong interactions at high energy, based on
two ingredients: the CGC/saturation approach and the BFKL
Pomeron. In our approach, the unknown mechanism of con-
finement of quarks and gluons is characterized by several
numerical parameters, which are extracted from the experi-
mental data. We demonstrate that the two channel model suc-
cessfully describes the experimental data, including both the
value of the elastic slope and the energy behavior of the single
diffraction cross section. We show that the disagreement with
the experimental data of our previous single channel eikonal
model (Gotsman et al., Eur Phys J C 75:1–18, 2015) stems
from the simplified approach used for the hadron structure
and is not related to our principal theoretical input, based on
the CGC/saturation approach.

1 Introduction

In this paper we expand our approach of analyzing soft inter-
actions at high energy based on two main ingredients: the
Color Glass Condensate (CGC)/saturation effective theory
for high energy QCD (see Ref. [1]) and references therein),
and the BFKL Pomeron, which describes both soft and hard
interactions at high energy [2–5]. The idea that there is only
one BFKL Pomeron, which is not even a pole in the angular
momentum plane (not a Reggeon; see Ref. [6] for details)
presumes that the unknown mechanism of confinement in
QCD of quarks and gluons is not important, and that its
influence can be mimicked by the determination of several
parameters of the CGC/saturation approach, which depend
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on long distance physics. As an example of such a parame-
ter, we mention the behavior of the scattering amplitude of
the BFKL Pomeron at large impact parameters. This contra-
dicts the hope that confinement would lead to a Pomeron,
which is a Regge pole (see Ref. [7] and references therein).
Unfortunately, due to the embryonic state of our understand-
ing of confinement in QCD, we do not yet have a theoretical
tool to differentiate between these two approaches. Hence,
we concentrate our efforts on comparing the results of our
approach, with relevant experimental data, hoping that an
evaluation will allow us to check how viable our scenario is,
and to find the specific features where our approach differs
from one based on soft Pomeron calculus.

Our first attempt [8] shows that we can describe the main
features of the data, but we found two results in our descrip-
tion which imply a potential problem for our approach: the
result for the elastic slope is much smaller than the experi-
mental measurement at the LHC energies, and the behavior of
the cross section for single diffraction, which displays oscil-
lating saturation as a function of energy. The goal of this
paper is to show that these problematic features occur due to
our oversimplified model in Ref. [8]. In this model, all shad-
owing corrections stem from two sources: the eikonal rescat-
tering and the interaction of the BFKL Pomerons taken in
the CGC/saturation approach. In this paper we develop a two
channel model instead of the eikonal approximation, which
is responsible for the low mass component in diffraction pro-
duction, and which is an essential ingredient of all models of
the high energy hadron scattering now on the market [9–20].

The paper is organized as follows. In the next section
we describe the main theoretical input used in this paper.
This section reviews the results that have been derived and
employed in our previous paper [8]. In addition, we include
a new formula for single diffraction dissociation, which is
based on the closed form solution to the Balitsky–Kovchegov
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Fig. 1 MPSI approximation:
the simplest diagram (a) and
one Pomeron contribution (b).
C = ᾱ2

S/4π . �x1 − �x2 = �r ′
.

1
2 (�x1 + �x2) = �b′

. The wavy lines
describe BFKL Pomerons. The
blobs stand for triple Pomeron
vertices
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equation [21]. In Sect. 3 we discuss the structure of our model
and the phenomenological parameters that have been intro-
duced. In this section, based on theoretical considerations, we
estimate the range of the values of the parameters. The fourth
section is devoted to the description and results of the fit.

2 Theoretical input

2.1 Dressed Pomeron

In the CGC/saturation approach (see Ref. [1] for the review of
this approach), the scattering amplitude of two dipoles at high
energy is described as the exchange of the dressed Pomeron,
which can be calculated using the MPSI approximation [22–
26], displayed in Fig. 1. In Ref. [27–30] it was shown that the
MPSI approximation is valid over a wide range of rapidities:

Y ≤ 2

�BFKL
ln

(
1

�2
BFKL

)
. (2.1)

From Fig. 1, it appears that the calculations can be per-
formed in two stages: first, to find the sum of ‘fan’ diagrams
for the rapidity regions (0,Y ′) and (Y ′,Y ); and, second, to
evaluate the diagram of Fig. 1a using the following sum rules
for the BFKL Pomeron exchange [31,32] (see Fig. 1b for all
notations):

α2
S

4π
GP(Y − 0, r, R; b)

=
∫

d2r ′d2b′ GP(Y−Y ′, r, r ′, �b−�b′
) GP(Y ′r ′, R, �b−�b′

).

(2.2)

In Eq. (2.1) GP denotes the Green function of the BFKL
Pomeron.

The first step can be accomplished by finding a solution
to the Balitsky–Kovchegov (BK) non-linear equation [33–

35]. The solution has different forms in the three kinematic
regions.

1. r2Q2
s (Y, b) � 1, where Qs denotes the saturation scale

[31,44–48]. The non-linear corrections are small, and the
solution is the BFKL Pomeron, which has the following
form [2–5]:

GP(Y, r, R; b) = (w w∗)
1
2

√
π

4 D Y
e�BFKL Y − ln2 w w∗

4 D Y ,

with �BFKL = 4 ln 2 ᾱS and D = 14ζ(3)ᾱS

= 16.828 ᾱS . (2.3)

GP(Y, r, R; b) denotes the BFKL Pomeron Green func-
tion, ᾱS the QCD coupling, r and R are the sizes of two
interacting dipoles. Y = ln s, where s = W 2. W denotes
the energy of the interaction and b the impact parameter
of the scattering amplitude for two dipoles. We have

w w∗ = r2 R2

(�b − 1
2 ( �r − �R))2 (�b + 1

2 ( �r − �R))2
. (2.4)

From Eq. (2.3) it is obvious that the BFKL Pomeron is
not a pole in the angular momentum, but a branch cut,
since its Y-dependence has an additional ln s term; it also
does not reproduce the exponential decrease at large b,
which follows from the general properties of analyticity
and unitarity, for the exchange of the BFKL Pomeron
[49,50].

2. r2Q2
s (Y, b) ∼ 1 (vicinity of the saturation scale). The

scattering amplitude has the following form [51–53]:

A ≡ GP(z) = Const(r2 Q2
s (Y, b))1−γcr , (2.5)

where Const denotes a constant, and where the critical
anomalous dimension γcr , can be found from

123



Eur. Phys. J. C (2015) 75 :179 Page 3 of 12 179

χ(γcr )

1 − γcr
= −dχ(γcr )

dγcr
and

χ(γ ) = 2ψ(1) − ψ(γ ) − ψ(1 − γ ). (2.6)

3. r2Q2
s (Y, b) > 1 (inside the saturation domain). The

breakthrough that allows us to develop phenomenology
based on the CGC/saturation approach was published in
[54]. In this paper a simple approximation to the numer-
ical solution of the BK equation was found, which is of
the form

NBK(GP(z)) = a(1 − exp(−GP(z))) + (1 − a)
GP(z)

1 + GP(z)
,

(2.7)

with a = 0.65 and z = ln(r2Q2
s (Y, b)) with r = R.

Using the solution of Eq. (2.7) we calculated the dia-
grams shown in Fig. 1a using Eq. (2.2) (see Refs. [8,54]).
The result of this calculation gives the following expression
for the Green function of the dressed Pomeron:

Gdressed
P

(Y − Y0, r, R, b)

= a2{1 − exp(−T (Y − Y0, r, R, b))}
+ 2a(1 − a)

T (Y − Y0, r, R, b)

1 + T (Y − Y0, r, R, b)

+ (1 − a)2
{

1 − exp

(
1

T
(Y − Y0, r, R, b

)

× 1

T (Y − Y0, r, R, b)
	(0,

1

T (Y − Y0, r, R, b)
)

}
,

(2.8)

where 	(x) is the incomplete Euler gamma function (see
8.35 of Ref. [55]). The function T (Y − Y0, r, R, b) can be
found from Eq. (2.2), and it has the form

T (Y − Y0, r, R, b) = ᾱ2
S

4π
GP(z → 0)

= φ0(r
2Q2

s (R,Y, b))1−γcr = φ0S(b)eλ(1−γcr )Y , (2.9)

where we used two inputs: r = R and Q2
s = (1/(m2R2))

S(m , b) exp(λ Y ). The parameter λ, in leading order of per-
turbative QCD, is given by λ = ᾱSχ(γcr )/(1 − γcr ). The
parameter m and the function S(m , b) originate from non-
perturbative QCD contributions, and they are parameterized
as

S(m b) = m2

π2 e−m b where
∫

d2b S(b) = 1. (2.10)

φ0 can be calculated from the initial conditions using
Eq. (2.3). Since we do not know these conditions, we will
consider φ0 as an additional phenomenological parameter.

2.2 Single diffraction

The equation for the single diffraction production was pro-
posed more than a decade ago [21]. In Ref. [21] it was shown
that the equation has the same form as the BK equation [33–
43] for the function

G(Y,Y0, r, b) = 2 N (Y, r, b) − NSD(Y,Y0, r, b), (2.11)

where

σdiff(Y,Y0, r) =
∫

d2b NSD(Y,Y0, r, b) (2.12)

is the cross section for diffraction production, with the rapid-
ity gap (Ygap = Y − YM ) larger than Y0 (Ygap ≥ Y0).

N (Y, r, b) is the imaginary part of the elastic amplitude;
other notations are clarified in Fig. 2.

The difference between the elastic amplitude andG(Y, Y0,

r, b) is only in the initial condition, which for G(Y, Y0, r, b)
is given by the following equation:

G(Y,Y0 = Y, r, b) = 2 N (Y, r, b) − N 2(Y, r, b), (2.13)

where the last term denotes the elastic cross section.
Bearing in mind that the solution to Eq. (2.13) is given

by Eq. (2.7), we can obtain a solution for single diffractive
production. The cross section for the production of a bunch
of hadrons with a mass from Mmin to Mmax can be written as

σdiff(Y,Ymax,Ymin, r) =
∫

d2b ÑSD(Y,Ymax,Ymin, r; b),
(2.14)

where the amplitude , ÑSD(Y,Ymax,Yminr; b) takes the form

ÑSD(Y,Ymax,Ymin, r; b) = N BK (T T (Y,Ymax, b))

− N BK (T T (Y,Ymin, b)), (2.15)

where Ymax = ln(M2
max/s0) and Ymin = ln(M2

min/s0).
For T T (Y,YM , b) we have the following expression:

T T (Y,YM , b) = (2 Gdressed(T (Y − YM , b))

−(Gdressed(T (Y − YM , b)))2)e(1−γcr ) λ (YM ). (2.16)

Y

YM

0

Fig. 2 MPSI approximation: the simplest diagrams for single diffrac-
tion production. The wavy lines describe BFKL Pomerons. The blobs
stand for triple Pomeron vertices. The dotted line denotes the cut
Pomeron.YM = ln(M2/s0), where M is the mass of produced particles
and s0 is the scale taken to be of the order of 1GeV 2
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2.3 Double diffraction

We use s-channel unitarity to obtain the expression for the
cross section for double diffractive production. Indeed, the
unitarity constraints for the dressed Pomeron given by the
diagrams of Fig. 1a take the form

2 Gdressed(T (Y, b))=Gdressed(2 T (Y ; b)) + NDD(Y ; b)
(2.17)

where Gdressed(2 T (Y ; b)) describes all inelastic processes
that are generated by the dressed Pomeron exchange. One
can check this formula for the exchange of a single BFKL
Pomeron. The general proof that the inelastic cross section
due to the exchange of the dressed Pomeron is given by
Gdressed(2 T (Y ; b)) can be found in Refs. [56–58].

From Eq. (2.17) the cross section of double diffractive
production is equal to

σdd =
∫

d2b
{

2Gdressed(T (Y, b)) − Gdressed(2 T (Y ; b))
}
.

(2.18)

In Eq. (2.18) we integrated over all possible masses with-
out any restriction. We do not expect the cross section for
double diffractive production of small masses to be large,
and we believe that most of the contribution in this region of
masses stem from the Good–Walker mechanism [59], which
we consider in the next section.

3 Main formulas and its phenomenological parameters

3.1 Two channel approximation

In the previous section we reviewed the theoretical input from
the CGC/saturation approach, used for calculating the Green
function of the resulting Pomeron. In this section we dis-
cuss a model approach making two simplifications: one, that
the eikonal formula for the hadron scattering amplitude sat-
isfies s-channel unitarity; and two, that the simplified two
channel model describes diffractive production in the low
mass region. In this model, we replace the rich structure of
the diffractively produced states by a single state, with wave
function ψD . The observed physical hadronic and diffractive
states can then be written

ψh = α 
1 + β 
2; ψD = −β 
1 + α 
2;
where α2 + β2 = 1. (3.1)

The functionsψ1 andψ2 form a complete set of orthogonal
functions {ψi } which diagonalize the interaction matrix T

Ai ′k′
i,k =< ψi ψk |T|ψi ′ ψk′ >= Ai,k δi,i ′ δk,k′ . (3.2)

The unitarity constraints can be written as

2 Im Ai,k (s, b) = |Ai,k (s, b) |2 + Gin
i,k(s, b), (3.3)

where Gin
i,k denote the contributions of all non-diffractive

inelastic processes, i.e. it is the summed probability for these
final states to be produced in the scattering of a state i off a
state k. In Eq. (3.3)

√
s = W is the energy of the colliding

hadrons, and b denotes the impact parameter. A simple solu-
tion to Eq. (3.3) at high energies has the eikonal form with
an arbitrary opacity �ik , where the real part of the amplitude
is much smaller than the imaginary part. We have

Ai,k(s, b) = i

(
1 − exp

(
−�i,k(s, b)

2

))
; (3.4)

Gin
i,k(s, b) = 1 − exp(−�i,k(s, b)). (3.5)

Equation (3.5) implies that the probability that the initial pro-
jectiles (i, k) will reach the final state interaction unchanged,
regardless of the initial state re-scatterings, is given by PS

i,k =
exp(−�i,k(s, b)).

The physical observables in this model can be written as
follows:

elastic amplitude :
ael(s, b) = i(α4A1,1 + 2α2 β2 A1,2 + β4A2,2); (3.6)

elastic observables :
σtot = 2

∫
d2b ael(s, b); σel =

∫
d2b |ael(s, b)|2;

optical theorem :
2 ImAi,k(s, t = 0) = 2

∫
d2b ImAi,k(s, b)

= σel + σin = σtot; (3.7)

single diffraction :
σGW

sd =
∫

d2b (αβ{−α2A1,1 + (α2 − β2)A1,2 + β2A2,2})2;
(3.8)

double diffraction :
σGW

dd =
∫

d2b α4β4{A1,1 − 2 A1,2 + A2,2}2. (3.9)

We denote by ‘GW’ the Good–Walker component, which
is responsible for diffraction in the small mass region. This
part of the diffraction production stems from the internal
structure of the hadron, which we describe in a two channel
model. It can be considered as diffraction in the region of the
small mass, which is determined by the mass of the diffrac-
tive state characterized by ψD in Eq. (3.1). Unfortunately, in
the framework of our approach, the value of this mass is a
new parameter of the model, and without introducing it, we
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cannot describe the distribution over mass in diffractive pro-
duction. We would like to emphasize that in our approach,
the production of a large mass is related to the structure of the
dressed Pomeron, and these two components have quite dif-
ferent physics, and so cannot lead to double counting. Recall
that high mass diffraction has been discussed in the one chan-
nel model [8], where the low mass diffraction is absent.
The clear distinction between the two mechanisms can be
illustrated in the constituent quark model for a hadron. The
diffractive production in the region of small masses, which
stems from the different states, can be described by the con-
stituent quarks, while the high mass diffraction originates in
quark–quark scattering.

In the eikonal approach we parametrize the arbitrary func-
tions �ik(s, b) in the form

�ik(s, b)

=
∫

d2b′d2b′′gi (mi , b
′) gk(mkb

′′)Gdressed(T (Y, �b − �b′ − �b ′′
)),

(3.10)

where the vertex gi (mi , b′) is parameterized as

gi (mi , b
′) = gi SP(mi , b

′), where

SP(mi , b
′) = 1

4π
m3

i b
′ K1(mi b

′). (3.11)

SP(b) in Eq. (3.11) is the Fourier transform of the form factor
1/(1+q2/m2

i )
2 and K1(z) denotes the modified Bessel func-

tion of the second kind (the McDonald function, see formulas
8.4 in Ref. [55]).

3.2 Small phenomenological parameters and net diagrams

The fits to experimental data (see Refs. [8,20] and references
therein) led to an unexpected result, viz.: the value of vertices
for Pomeron–hadron interactions (gi ), extracted from the fit
of the data, turn out to be much larger than the vertex of triple
Pomeron interaction (G3P; see Fig. 3).

Due to this small parameterG3P/gi � 1, we can improve
the eikonal approximation, and sum a more general class of
diagrams, the so-called net diagrams shown in Fig. 3. The
analytical expression for the sum of the ‘net’ diagrams has

gi

G3P

Fig. 3 The net diagram that gives the largest contribution if gi �
G3P. The wavy lines describe BFKL Pomerons. The blobs denote the
triple Pomeron vertices

been found (see Ref. [20]). Using the inequality observed in
our previous paper [8], m in Eq. (2.10) turns out to be much
larger than bothm1 andm2. Assuming this inequality to hold,
we can simplify the integrals over b′ and b′′ in Eq. (3.10),
re-writing this equation in the form

�ik(s, b) =
∫

d2b′d2b′′gi (mi , b
′) gk(mkb

′′)Gdressed

×(T (Y, �b − �b′ − �b ′′
))

=
(∫

d2b′′ Gdressed (
T

(
Y, b′′)))

×
∫

d2b′gi (mi , b
′) gk(mk, �b − �b′

). (3.12)

The summation of the ‘net’ diagram is then given by the
following simplified expression (see Ref. [20] for details):

�(Y ; b)
=

∫
d2b′ gi (�b′) gk(�b − �b′) G̃dressed(T )

1 + 1.29 G̃dressed(T )[gi (�b′) + gk(�b − �b′)] ,
(3.13)

where

G̃dressed(T ) =
∫

d2b Gdressed(T (Y, b)). (3.14)

The coefficient 1.29 results from the extraction of the value
of G3P from the CGC/saturation approach, which has been
considered in the previous section.

3.3 Diffraction production in the region of large mass

In this section we also include, in the process of diffraction
production, the mechanism of production that originates from
the dressed Pomeron, and that has been discussed in Sect. 2.

For single diffraction the large mass contribution can be
written

σ
large mass
sd = 2

∫
d2b

{
α6 Asd

1;1,1 e
−2 �D

1,1(Y ;b)

+α2β4Asd
1;2,2 e

−2 �D
1,2(Y ;b)

+2 α4 β2 Asd
1;1,2 e

−(�D
1,1(Y ;b)+�D

1,2(Y ;b))

+ β2 α4 Asd
2;1,1 e

−2 �D
1,2(Y ;b)

+ 2 β4α2 Asd
2;1,2 e

−(�D
1,2(Y ;b)+�D

2,2(Y ;b))

+ β6 Asd
2;2,2 e

−2 �2,2(Y ;b)} , (3.15)

where

�D
i,k(Y ; b)

=
∫

d2b′ gi (�b′) gk(�b − �b′) Ḡdressed(T )

(1 + 1.29 Ḡdressed(T )[gi (�b′) + gk(�b − �b′)])2
,

(3.16)
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Asd
i;k,l(Y, Ymax, Ymin; b)
=

∫
d2b′ σdiff (Y, Ymax, Ymin, 1/m)gi gkgl SP(b′,mi )

SP(�b − �b′,mk) SP(�b − �b′,ml), (3.17)

where σdiff(Y,Ymax,Ymin, r) is given by Eq. (2.12), Y =
ln(s/s0), Ymax = ln(M2

max/s0) and Ymin = ln(M2
min/s0).

Mmax and Mmin are the largest and smallest mass produced
in the diffractive processes.

Equation (3.15) has a simple physical meaning: each term
is the product of probability to produce a mass diffractively
from the dressed Pomeron (term exp(−∑

�)), and the prob-
ability of the process of single diffraction, from the dressed
Pomeron (Ai;k,l ).

For the double diffraction production at large mass we
have

σ
large mass
dd =

∫
d2b

{
α4 Add

1,1 e
−2�D

1,1(Y ;b)

+ 2α2 β2Add
1,2 e

−2�D
1,2(Y ;b) + β4 Add

2,2e
−2�D

2,2(Y ;b) }
,

(3.18)

Add
i,k

=
∫

d2 b gi gk S
i,k
DD(b)σdd(Y ) where Si,kDD(b)

=
∫

d2b′ Sp(b′,mi ) Sp(�b − �b′,mk), (3.19)

where σdd is given by Eq. (2.18).

3.4 Estimates for the values of the phenomenological
parameters

We have two sets of phenomenological parameters, which
need to be determined by fitting to the experimental data.
The first set is related to the description of the dressed
Pomeron: φ0, λ, andm. The parameter φ0, in principle, could
be found from the solution of the BFKL equation at low
energy. Unfortunately, we do not know the initial condition
for BFKL evolution. This is the reason why we extract this
parameter by fitting to the experimental data. The value of
φ0 should be of the order of αS , and therefore, we expect
that this parameter will be small. λ determines the energy
dependence of the saturation scale. We know the theoret-
ical value of λ = 2ᾱS(ψ(1) − ψ( 1

2 ))/(1 − γcr ) where
ψ(z) denotes the Euler psi-function (see formulas 8.36 of
Ref. [55]) and γcr = 0.37 (see Ref. [1]). On the other
hand, the value of λ ≈ 0.3 has been extracted from DIS
and nucleus–nucleus scattering for the energy dependence
of the saturation scale [60–65]. The mass m plays a twofold
role: it determines the impact parameter dependence, and it
gives the size of the typical dipole in a hadron. This is a

dimensional parameter, whose value is determined by non-
perturbative QCD, and, at the moment, we have no theoretical
input for this quantity. In all our formulas, we use the intu-
itive assumption that the mass m, is the largest mass in our
model.

The second set of parameters: gi and mi as well as values
of α, are associated with the description of the wave functions
in our two channel model. This set is of non-perturbative
origin, and it has to be determined by fitting to the data. In
our formulas we assume that gi � G3P and m � mi .
This assumption is based on our past experience with soft
Pomeron models for high energy scattering [20].

4 The result of the fit

4.1 Cross sections

We have eight parameters to be determined by fitting to the
experimental data on total, inelastic and elastic cross sec-
tions, single and double diffractive production cross sections,
and the slope of the forward elastic differential cross section.
The value of the minimal energy for data that we use is W =
0.546 TeV as, starting from this energy, the CGC/saturation
approach is able to describe the data on inclusive produc-
tion in proton–proton collisions (see Ref. [60–63]). For lower
energies, saturation occurs in ion–ion and proton–ion colli-
sions, but not in proton–proton collisions [64].

The quality of the fit can be judged from Fig. 4. The fitted
parameters are tabulated in Table 1.

From Table 1 we see that the qualitative features of the two
channel model are similar to those of the one channel model
[8]. The values of all the parameters have the same hierarchy
i.e. gi � G3P (G3P = 1.29 GeV−1 in our approach) and
m � mi . We recall that this hierarchy is necessary for our
formulas to be valid. λ ≈ 0.3 follows from the estimates
of the energy dependence of the saturation momentum from
DIS and ion–ion scattering experiments. φ0 is small, as is
expected from QCD. It is worthwhile mentioning, using esti-
mates from leading order perturbative QCD, that this value of
λ leads to a very small value of the QCD coupling: ᾱS ≈ 0.07.
This is a general problem for the CGC/saturation approach,
and we assign the difference between the phenomenological
value of λ and its leading order estimates to higher order cor-
rections, which give a large contribution to this observable
[66,67].

It should be noted that both in Fig. 4 and in Table 2 we
calculate the high mass diffraction component with the addi-
tional restriction �η ≥ 3.

We obtain a good description of the data, including the
energy behavior of the elastic slope and the single diffrac-
tion cross section. Therefore, we have elucidated the prob-
lems that occurred in the one channel model [8]. We show in
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Fig. 4 Comparison with the
experimental data: the energy
behavior of the total (a),
inelastic (b), elastic cross
sections (c), as well as the
elastic slope (Bel , d) and single
diffraction (e) and double
diffraction (f) cross sections.
The solid lines show our present
fit. The data has been taken from
Ref. [76] for energies less than
the LHC energy. At the LHC
energy for total and elastic cross
section we use TOTEM data
[72–74] and for single and
double diffraction cross sections
are taken from Ref. [68,69]. The
dotted line in f is based on Eq.
(4.1) (see text following this
equation)
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Table 1 Fitted parameters of the model

Model λ φ0 g1 (GeV−1) g2 (GeV−1) m (GeV) m1 (GeV) m2 (GeV) β

2 channel 0.38 0.0019 110.2 11.2 5.25 0.92 1.9 0.58

1 channel 0.323 0.019 25.7 n/a 6.35 0.813 n/a n/a

this paper that the oscillatory behavior of the single diffrac-
tion and the weak energy dependence of the elastic slope
were artifacts of the oversimplified one channel model, and
they are not associated with our main theoretical input: the
CGC/saturation approach.

A deficiency in our two channel model is the description of
the double diffractive cross section, as can be seen in Fig. 4.
This failure is due to the small Good–Walker contribution
for the production of low masses. It predicts a cross section
of about 1 mb. To understand the sources of this small value,

we note that Eq. (3.10) leads to the cross section for double
diffraction, which can be calculated using the factorization
relation (see Ref. [18] for example). We have

σGW
dd = (σGW

sd Bsd)
2

(σel Bel)Bdd
, (4.1)

To obtain an estimate we assume that Bsd ≈ Bel ≈ Bsd,
where B denotes the slopes of the various cross sections;
using our estimates for the elastic and single diffractive cross
sections, we obtain σGW

dd ∼ 3 mb at W = 7 TeV.
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If we evaluate the cross section of Good–Walker compo-
nent using Eq. (4.1) we obtain a reasonable description of
the experimental data (see dotted curve in Fig. 4f). We wish
to stress that the shadowing corrections that follow from
the CGC/saturation approach do not violate the factoriza-
tion properties of Eq. (4.1). The source of the violation of
Eq. (4.1) is the net diagrams, which in our model incorporate
the interactions of the dressed Pomerons. To illustrate the
influence of this interaction, we calculated the slopes at W =
7 TeV. We obtain Bel = 19.45 GeV−2; Bsd = 25.08 GeV−2,
and Bdd = 44 GeV−2. Using Eq. (4.1) with these values
decreases the estimated σdd by a factor of almost 3. Hence,
the main effect of the dressed Pomerons interactions is to
increase the typical b, in the impact parameter distribution
for double diffractive cross sections.

On the other hand, the small cross section for double
diffraction arises naturally in other theoretical approaches
[18], and the cross section, measured by the TOTEM col-
laboration [75] in the restricted region of the produced mass
is rather small (σdd = 116 ± 25µb for �YM = 1.8 and
|Y − Ymax| = 4.7). Bearing this in mind, we are not too dis-
appointed with our description of the double diffractive cross
section.

In Table 2 we present the results of our model for the var-
ious cross sections at different energies. Note that for single
and double diffraction, the large mass region is responsible
for substantial contributions (more than half of the cross sec-
tion). These contributions originate from the structure of the
dressed Pomeron, and they are the main theoretical input
from the CGC/saturation approach.

As has been mentioned, what we call “low mass” is the
contribution coming from the Good–Walker sector, while
“high mass” is the contribution which stems from the dressed
Pomeron diagrams. Unfortunately, we are not able to put a
precise MX bound on the two contributions, since we do not
know the typical mass of the Good–Walker component (the
state described by ψD in Eq. (3.1) in our approach. We have to
bear this deficiency in mind if we want to discuss the detailed
data for diffraction production coming from TOTEM collab-
oration [72–75]. As is seen from Table 2, in our model the
cross section of the low mass single dissociation at 7 TeV
is equal to 8.7 mb, while the TOTEM [72–74] estimate is
2.6 ± 2.2 mb for MX < 3.4 GeV. As we have mentioned
we cannot consider our GW component as being respon-
sible for this mass range. On the other hand, the TOTEM
estimate is not a direct measurement but is obtained from
their Monte Carlo. There are other Monte Carlo estimates by
Ostapshenko [16] who finds σsd=3.9 mb for MX < 3.4 GeV,
and by Pogosyhan [14] who estimates σsd = 4 mb for the same
mass range. The only conclusion that we can derive from this
discussion is that the GW typical mass is larger than 3.4 GeV.

 Amplitude A11
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W(GeV)
7000
546
200
63
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0.2
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0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

Fig. 5 The impact parameter dependence of the ‘black’ A1,1 ampli-
tude, as a function of energy W

We should also mention that our estimation is in agreement
with the ALICE result of σsd = 14.9+3.4

−5.9 mb for 0 < M2
X <

0.5s at W = 7 TeV.

4.2 Amplitudes

It is instructive to compare the two models which are both
based on CGC/saturation approach: the one channel model
developed in Ref. [8] and the two channel model of this paper.
In Fig. 6 we plot the amplitudes Aik for the two channel
model and elastic amplitude for the one channel model, at
different energies, as functions of the impact parameter, b.
From Fig. 6a we note that one of our amplitudes (A2,2 is
rather small at 7 TeV, while the amplitude A11 reaches the
unitarity limit for b ≤ 1.5 f m. It is interesting to compare
this behavior with the results of two channel model, based
on the Pomeron as a Regge pole [20]. One notes a drastic
difference in the dependence on the impact parameter, as
well as the relative values of the amplitude. Qualitatively, the
Pomeron interaction leads to stronger shadowing corrections
than the CGC/saturation approach.

We would like to draw the reader’s attention to the energy
behavior of the ‘black’ A1,1 amplitude, as shown in Fig. 5.
We note that the size of the black part of the amplitude for our
model is much smaller than for the Pomeron-based model,
discussed in [20]. The second observation is that this ampli-
tude becomes transparent at low energies. One of the unpleas-
ant features of the Pomeron (Regge pole) models is the fact
that the black component already appears at very low ener-
gies. The present model does not have this deficiency, pro-
viding a smooth transition from a transparent to the black
disc picture.
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Table 2 The values of cross sections versus energy. σ LM
sd and σ LM

dd
denote the cross sections for diffraction dissociation in the low mass
region, for single and double diffraction, which stem from the Good–

Walker mechanism. σ HM
sd and σ LM

dd are used for diffraction in high
mass, coming from the dressed Pomeron contributions

W (TeV) σtot (mb) σel (mb) Bel (GeV−2) Single diffraction Double diffraction

σ LM
sd (mb) σHM

sd (mb) σLM
dd (mb) σHM

dd (mb)

0..576 62.3 12.9 15.2 5.64 1.85 0.7 0.46

0.9 69.2 15 16 6.25 2.39 0.77 0.67

1.8 79.2 18.2 17.1 7.1 3.35 0.89 1.17

2.74 85.5 20.2 17.8 7.6 4.07 0.97 1.62

7 99.8 25 19.5 8.7 6.2 1.15 3.27

8 101.8 25.7 19.7 8.82 6.55 1.17 3.63

13 109.3 28.3 20.6 9.36 8.08 1.27 5.11

14 110.5 28.7 20.7 9.44 8.34 1.27 5.4

57 131.7 36.2 23.1 10.85 15.02 1.56 13.7

Fig. 6 Amplitudes for one and
two channel model versus b at
different energies. a The
amplitude Aik(b) at W = 7 TeV
as a function of the impact
parameter b in our model. The
same amplitudes appear in b for
the two channel model based on
the Pomeron interaction [20].
The energy behavior of the
elastic amplitude is plotted in a,
c for the one and two channels
models, respectively. The figure
for the one channel model is
taken from Ref. [8]
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Comparing Fig. 6c, d we conclude that the two channel
model leads to weaker shadowing corrections than the one
channel model.

Looking at Fig. 6, it is difficult to avoid the pessimistic con-
clusion that until we know the non-perturbative QCD struc-
ture of the hadrons, the high energy interaction of hadrons
cannot be treated in a unique fashion, but is doomed to be
sensitive to ad hoc assumptions.

This statement can be illustrated by Fig. 7 where we plot
the dσ/db2 for the diffraction production processes. The low
mass diffraction has pronounced peripheral features, having

minima at b = 0 and at b = 1 ÷ 1.5 fm. However, for high
mass diffraction the main contribution stems from b = 0.
Single diffraction in the region of high mass does not have
a minimum at b = 0, while in double diffraction such a
minimum is seen, but it is very shallow. Comparing these
distributions with the one channel model, we see that for
single diffraction, the pattern of the impact parameter distri-
bution is similar in both cases. Double diffraction has a very
clear peripheral distribution in the one channel model, but
in the two channel model, the double diffraction dependence
on b is similar to the single diffraction. We believe that this
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Fig. 7 dσ/db2 versus b for
different processes of diffraction
production and different
energies. ‘hm’ (‘lm’) and ‘sd’
(‘dd’) denote diffraction in high
mass (low mass) region and
single (double) diffraction,
respectively. Figures e, f are
taken from our paper on the one
channel model based on the
CGC/saturation approach [8].
a High mass single diffraction,
b low mass single diffraction,
c high mass double diffraction,
d low mass double diffraction,
e single diffraction (1 ch.
model) and f double diffraction
(1ch. model)

 d σ
hm

sd  /d b2(mb/fm2)

b in fm

W(TeV)
13

7

1.8

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0 0.5 1 1.5 2 2.5 3 3.5

 d σ
hm

sd  /d b2(mb/fm 2)

b in fm

W(TeV)
13

7

1.8

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0 0.5 1 1.5 2 2.5 3 3.5

 d σ
hm

dd  /d b2(mb/fm2)

b in fm

W(TeV)

13

7

1.8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.5 1 1.5 2 2.5 3 3.5

 d σ
lm

dd  /d b2(mb/fm 2)

b in fm

W(TeV)

13

7

1.8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.5 1 1.5 2 2.5 3

b  (fm)

W = 57 TeV
W = 14 TeV
W = 7 TeV

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3

b  (fm)

W = 57 TeV

W = 14 TeV

W = 7 TeV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3

(a) (b)

(c) (d)

(e) (f)

comparison shows that double diffraction is sensitive to the
production mechanism and, in particular, to the model of the
hadron structure.

We would like to point out the similarity of the distribu-
tions of our two channel dipole model (shown in Fig. 7),
with those obtained by the Durham group [18], in spite of
the difference in the basic premises of the two groups.

5 Conclusions

In this paper we demonstrate that the generalization of the
CGC/saturation-based model to two channels allows us to
describe the experimental data, without having an oscillat-
ing behavior for the single diffraction production, and pre-
dicting a value for the elastic slope at W = 7 TeV which is

smaller than the experimentally measured value. It should be
stressed that the values of the phenomenological parameters
extracted from the fit satisfy the theoretical expectations. In
addition we find new phenomenological small parameters,
viz.: G3P/gi � 1 and mi/m � 1, which allows us to
simplify the theoretical formulas.

As has been discussed above, our approximation is valid
only for an energy less than (see Eq. (2.1))

Y = ln(s/s0) ≤ Ymax = 2

�BFKL
ln

(
1

�2
BFKL

)
≈ 29

(5.1)

for λ = 0.38 (see Table 1). Therefore, we can use our
approach for energies up to W = 100 TeV.

We believe that this paper, together with Ref. [8], lends
support to the supposition that a consistent model, based on
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the BFKL Pomeron and the CGC/saturation approach, can
be built. We have demonstrated that this model successfully
describes data for high energy hadron scattering. In addition,
we hope that this paper lends credence to the arguments that
the matching with long distance physics (where the confine-
ment of quarks and gluons is essential) can be reached within
the CGC/saturation approach; this, without requiring that the
soft Pomeron should appear (as a Regge pole).
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