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Abstract

Background: Physiologically-based toxicokinetic (PBTK) models are often developed to facilitate in vitro to in vivo
extrapolation (IVIVE) using a top-down, compartmental approach, favoring architectural simplicity over physiological
fidelity despite the lack of general guidelines relating model design to dynamical predictions. Here we explore the
impact of design choice (high vs. low fidelity) on chemical distribution throughout an animal’s organ system.

Results: We contrast transient dynamics and steady states of three previously proposed PBTK models of varying
complexity in response to chemical exposure. The steady states for each model were determined analytically to
predict exposure conditions from tissue measurements. Steady state whole-body concentrations differ between
models, despite identical environmental conditions, which originates from varying levels of physiological fidelity
captured by the models. These differences affect the relative predictive accuracy of the inverted models used in
exposure reconstruction to link effects-based exposure data with whole-organism response thresholds obtained
from in vitro assay measurements.

Conclusions: Our results demonstrate how disregarding physiological fideltiy in favor of simpler models affects the
internal dynamics and steady state estimates for chemical accumulation within tissues, which, in turn, poses significant
challenges for the exposure reconstruction efforts that underlie many IVIVE methods. Developing standardized systems-
level models for ecological organisms would not only ensure predictive consistency among future modeling studies, but
also ensure pragmatic extrapolation of in vivo effects from in vitro data or modeling exposure-response relationships.
Background
There has been a strong push to determine the hazards
of chemicals to public health using high-throughput
in vitro assays, which has the benefit of being more rele-
vant, fast, inexpensive, and more humane than reliance
on animal models. However, in vitro data may not accur-
ately reflect in vivo exposure concentrations due to
absorption, distribution, metabolism, and excretion
(ADME) of the chemical throughout the body [1].
Physiologically based toxicokinetic (PBTK) modeling has
been recognized as a key tool for in vitro to in vivo ex-
trapolation (IVIVE): PBTK models simulate the distribu-
tion and accumulation of a chemical throughout various
tissues after exposure on an in vivo or whole animal
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scale [2–6]. These models have traditionally been de-
signed using a top-down approach; that is, the model
structure is usually chosen and parameterized according
to the simplest design that best fits the apical effect data,
often collapsing the physiology of the organism to include
only a handful of connected compartments [1, 5–11]. To
our knowledge, there have been no systematic studies in-
vestigating the relationship between the physiological fi-
delity of PBTK model architecture and the accuracy and
precision of their predictions for chemical uptake and dis-
position throughout an organism.
One technique related to PBTK modeling is reverse

toxicokinetics (rTK, also known as reverse dosimetry or
exposure reconstruction). A primary goal of rTK model-
ing is to provide a predictive platform that can be used
to determine the minimum chemical concentration to
which an organism must be exposed to achieve an in-
ternal steady state observed to cause an effect at a
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particular organ [12]. An important issue facing reverse
toxicokinetics is that TK models may be “ill-posed”,
meaning they may not be uniquely invertible or the solu-
tion’s behavior may not be continuous [13, 14]. To ad-
dress this problem, rTK modeling often involves a
Bayesian approach to exposure reconstruction using
Markov Chain Monte Carlo simulations of a “for-
ward” PBTK model to infer likely exposure concentra-
tions [5, 10, 14–19]. The availability and quality of
biomonitoring data and the approximate nature of Monte
Carlo simulations, which result in a probability distribu-
tion rather than a single estimate, often limits the accuracy
of estimates from probabilistic rTK models [14].
Here we investigate how PBTK model complexity affects

the fidelity of its dynamical predictions, and how this
comparison can be improved by relaxing constraints on the
modeled kinetics. For each PBTK model, we make two
assumptions in addition to those inherent to the modeling
approach that serve to simplify our analyses: 1) environ-
mental exposure concentrations are constant; and 2)
chemical metabolism and excretion rates can be modeled
using first order mass-action kinetics. These assumptions
allow for an exact, unique analytical solution for the
predicted exposure concentration (PEC) as a function of
whole-body or tissue concentrations for each PBTK model
considered here. Despite that each model considered here
conceptualizes the same animal system — an aquatic
vertebrate, a teleost fish — exposure concentrations pre-
dicted from our rTK models in this manner varied by ap-
proximately 2–3 orders of magnitude. To understand how
model design affects its predictions, we characterize how the
architecture of each model affects the dynamics of bio-
accumulation and tissue clearance (relaxation of the concen-
tration profiles to equilibrium) in tissues of both individual
organs and the whole body. We find that if chemical expos-
ure is constant, then steady state whole body and tissue
chemical concentrations vary substantially between models,
dependent upon the identity of the chemical stressor. These
differences are further evidenced by examining the relax-
ation half-lives, a measure of a chemical’s residence time
within a certain tissue or clearance from the whole-body.
We further observe that relaxation times vary greatly be-
tween models, with different chemicals changing only the
values associated with an individual model.
These results indicate that choosing how closely the

PBTK model design matches the animal physiology is crit-
ical for achieving accurate predictions in modeling studies
in which parameter values are identified separately from
available in vitro assay data. PBTK modeling is becoming
a tool used by the toxicology, pharmacology, and systems
biology communities for risk and hazard assessment, drug
discovery, and basic research into chronic diseases [9, 11,
20–22]. We therefore argue for standardization of the de-
sign, training, and validation of PBTK and their associated
rTK models in future modeling studies. While this would
ensure predictive consistency across computational stud-
ies, it would also guarantee that conclusions and recom-
mendations could be compared fairly when evaluating
different health-related outcomes.

Methods
The systems of ordinary differential equations for each
model and the derivations of the associated rTK models are
written explicitly in the Supplemental Information. Ordinary
differential equations were numerically integrated using
CVODE from SUNDIALS, using a dense linear solver with
the backward differentiation formula and a Newton iteration
methodology [23]. Steady states were chosen heuristically by
sight: the long time series data were initially obtained for the
PBTK models, and time to reach steady state was chosen
visually. Statistical tests were performed in R [24].

Results
Reverse toxicokinetics for in vitro to in vivo extrapolation:
a proof of concept
Is it possible to use reverse toxicokinetic modeling as a
predictive framework for IVIVE? We approached this ques-
tion by evaluating the fidelity of each model for predicting
an external chemical-dependent lowest observable effect
concentration (LOEC), defined as the lowest experimental
exposure level observed to elicit an adverse effect in a whole
animal, calculated using only in vitro concentration-response
data subject to very few constraints. This semi-quantitative
approach should be viewed with high uncertainty, as we
compare the results of one type and scale (i.e., in vitro data
of molecular-scale effects) against many different experi-
ments of another type and scale (i.e., whole-organism toxicity
measurements). Ideally, we would seek data from individual
experiments that report both whole-animal exposure and
accumulated concentrations in tissues. However, to be clear,
our goal is to first investigate and then to place bounds on
the efficacy of associating high-throughput in vitro results
with exposure data; as such, the aforementioned rigorous
approach is outside the scope of our present effort.
To proceed, we first obtained concentrations at which

10% of the maximum response activity is observed from an
assay, labeled AC10, for a set of endocrine-disrupting che-
micals with estrogenic activity from the dataset published
by Judson, et al. [25]. Given our focus on estrogenic chemi-
cals, we restricted our analyses to in vitro assays testing for
the activity of estrogen receptor alpha (ERα). The AC10 is a
reasonable measure of the concentration for which the
in vitro assay activity departs from control levels, which can
be seen by first expanding a sigmoid concentration-
response function about its inflection point to first-order in
the semi-log scale, and then computing the intersection of
this line with the control levels. The concentration coinci-
dent with this intersection corresponds to a response of



Fig. 1 Diagrams of the different PBTK models. a The “7-Compartment”
model, which is based off of a published PBTK model for zebrafish
(Danio rerio) [6]. The gills are assumed to be constantly at steady state
with the environmental chemical concentration. Chemical in the gills can
then flow into the body, entering first into the arterial blood. The arterial
blood flows directly into the brain, gonads, liver, poorly perfused tissue,
and richly perfused tissue. Chemical exiting the gonads and richly
perfused tissue flows directly into the liver. The liver is the only organ
that can metabolize the chemical. Chemical exiting the brain, liver, and
poorly perfused tissue enters the venous blood, which can either exit the
body through the gills or gets recycled into the arterial blood. b The “6-
Compartment” model, which is based off a published PBTK model for
fathead minnow (Pimephales promelas) [5]. Chemical in the environment
enters the arterial blood through the gills and is then distributed to the
brain, gonads, liver, and “other” tissues. Both the liver and “other” tissues
can metabolize and excrete the chemical, respectively. Chemical exiting
these four compartments enter the venous blood and either exit the
body through the gills or re-enters the arterial blood. c The “1-Compart-
ment” model, representing a simplification of a fish to a single compart-
ment with gills. Here, chemical in the environment enters the body
through the gills. Some of the chemical can then be metabolized, and
whatever is not retained in the body can exit through the gills
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approximately 12%, which can be understood as the value for
which the response crosses into the power-law regime of ac-
tivity from the control regime (See Additional file 1, section 8
for derivation). While a more rigorous approach would be to
use biological or technical replicates to estimate the concen-
tration of the first statistically significant point-of-departure
from control (POD) on an assay-by-assay basis, the AC10
serves as a compromise favoring the availability of high-
throughput measurements and use in determining prelimin-
ary or screening level exposure values. As a final input into
the reverse toxicokinetic models, we obtained LogP values
for these estrogenic chemicals [25, 26], which we considered
reasonable estimates for octanol-water partition ratios.
Whole-organism level data for each of the estrogenic che-

micals were collated from LOECs reported for disruption
of the reproductive systems of fish from the ECOTOX
database [27]. These LOECs are derived entirely from ex-
perimental studies and therefore depend strongly on the ex-
perimental design, which varied across the data sourced
from ECOTOX. We should note that the LOEC measure-
ments we obtained from ECOTOX should be treated as ap-
proximations for POD concentrations at the whole-
organism level, because of their reliance on a limited range
of tested exposure concentrations. Moreover, this variance
between POD and LOEC cannot be reasonably quantified
unless the authors have employed more sophisticated esti-
mates for the POD. In the future, POD concentrations
would be preferable and may be calculated if enough time
series replicates were available. The scope of this work,
however, is comparing the performance of the models
rather than assessing their accuracy for deployment for
IVIVE modeling, and, as such, the LOEC values provide an
acceptable approximation.
We developed, or adapted from the literature, three PBTK

models (Fig. 1): two multicompartment models based indi-
vidually on the physiology of the teleosts zebrafish (Danio
rerio) and fathead minnow (Pimephales promelas), and a third
that conceptualizes these systems as a single whole-body
compartment. The first model, a “7-Compartment model”
(7C), is based on the PBTK model for zebrafish developed by
Pery et al. [6]. This 7C model conceptualizes arterial and ven-
ous blood, brain, gonads, liver, poorly and richly perfused tis-
sues into 7 distinct compartments. The 7C model mimics the
connected structure of the zebrafish model, and employs the
same parameterization. The second model, a “6-Compart-
ment model” (6C), which is structurally based on a systems
biology model of the hypothalamic-pituitary-gonadal axis in
female fathead minnow developed by Li et al. [5]. This 6-
compartment model includes arterial and venous blood,
brain, gonads, liver, and “other” tissues, but does not distin-
guish between highly and poorly perfused tissues, as in the
7C model. The 6C model adopts the model structure of the
fathead minnow TK model, but employs body-centric param-
eter values from the 7C model in cases where their
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interpretation is analogous (e.g., water-flow rate through gills).
Finally, the third model is a “1-Compartment model” (1C), an
exemplary PBTK model in which the fish is represented by
having gills (which serve as uptake/elimination pathways) and
a single compartment representing the rest of the body. The
1C model has precedent in previously published human phar-
macokinetic models, wherein the human body is abstracted
as a well-mixed single compartment chemical reactor [28,
29]. The associated rTK models were derived by assuming
each of the models to be at steady state, then inverting the
systems mathematically, obtaining expressions for the expos-
ure concentration as functions of bodily concentrations (See
Additional file 1, sections 3 and 6 for more detail).
As mentioned previously, we, in order to derive an exact

analytical solution for the chemical exposure concentration as
a function of the whole body or organ-specific concentrations,
Fig. 2 Influence of model design on reverse toxicokinetic predictions for EDCs w
EEDCs from the 7C (black dots), 6C (red dots) and 1C (blue dots) models vs. the ex
predicted concentrations are less than the experimentally-determined LOEC (p=
the LOECs (30/36, p= 6.96 × 10−5 and 32/36, p= 1.942 × 10−6, respectively). b The
and 6C (red dots) models vs. the experimentally determined LOEC. The published
chemical concentrations in the gonads and the environmental concentrations pr
than the experimental LOEC in the 7C model (p= 1.077 × 10−9, binomial test) wh
model (p= 2.911 × 10−11, binomial test). c The kernel density estimates of the rati
the associated LOEC for the EEDCs, using the published AC10 values as whole bo
predicted environmental concentrations whose ratios to the respective LOECs ar
(p= 4.1 × 10−5 and 5.785 × 10−9, respectively, Student’s t-test). The kernel density
of the predicted environmental concentrations from the rTK models to the assoc
concentrations in gonads. The 6C (red) and 7C (black) rTK models produce predic
significantly different (p< 2.2 × 10−16, Student’s t-test)
make two basic assumptions: 1) environmental exposure con-
centrations are constant; and 2) chemical metabolism and ex-
cretion rates can be modeled using first order mass-action
kinetics. We compared the 7C PBTK model using both first
order mass-action kinetics and Michaelis kinetics for the
metabolic and excretion rates to determine if our assumption
would have an appreciable effect on the dynamics. We found
no evidence supporting a difference in the dynamics of the
two models (See Additional file 1, section 4 for more detail).
We employed AC10 values obtained from high-

throughput in vitro assays for the estrogenic chemicals (dis-
cussed above) as whole-body, steady-state concentrations
in each of our rTK models. The 6C and 7C models gener-
ally provide PECs lower than the experimental LOECs for
the estrogenic chemicals (Fig. 2a, black (p = 6.96 × 10−5)
and red dots (p = 1.942 × 10−6), respectively, binomial test).
ith estrogenic activity (a) The predicted environmental concentration of
perimentally determined LOEC. For the 1C model, only 21 of the 36
0.405, binomial test). The 6C and 7C model predictions are often lower than
predicted environmental concentration of EEDCs from the 7C (black dots)
AC10 concentrations were, in this case, assigned to be the steady state
edicted solely from the gonad compartments. 35 of 36 predictions were less
ile all 36 predictions were higher than the experimental LOEC in the 6C
o of the predicted environmental concentrations from the rTK models to
dy concentrations. The 6C (red) and 7C rTK models (black) produce
e significantly smaller than the predictions from the 1C rTK models (blue)
estimates were obtained in R [24]. d The kernel density estimates of the ratio
iated LOEC for the EEDCs, using the published AC10 values as the chemical
ted environmental concentrations whose ratios to the respective LOECs are
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On average, the 1C model predictions provide PECs closer
to the LOECs, both over- and under-predicting the ECO-
TOX LOECs in roughly equal amounts (Fig. 2c, blue dots,
p= 0.405, binomial test). The relative differences between
PECs and LOECs become apparent by taking their ratio: the
6C and 7C models predict environmental concentrations
that are far smaller than the 1C predictions (p= 4.1 × 10−5

and 5.785 × 10−9, respectively, Student’s t-test). There is,
however, no significant difference between the 6C and 7C
results (p= 0.0802, Student’s t-test). Note that comparison
with LOECs is used only to provide context for PECs; there-
fore, our results should not strictly be used to evaluate the
absolute accuracy of any individual model. A minimum re-
quirement for understanding the predictive accuracy of
these models requires that exposure and tissue measure-
ment data originate from the same experiments. Unfortu-
nately too many whole-organism exposure studies have not
measured tissue residues (although, more commonly body
burden is measured), and obtaining these experimental end-
points from individual experiments should be a focus in the
field moving forward.
One concern with these results is that the AC10s de-

scribed above are measured in vitro, so it may not be a
fair comparison to employ them as body burdens for ex-
posure reconstruction purposes. Because reproductive
endpoints for fish are often regulated by estrogen inter-
actions with ERα in hepatoctyes (such as with vitello-
genin production) and steroidogenesis takes place in the
gonads [30], we alternatively considered the AC10s as
gonad concentrations for the 6C and 7C models. Con-
sistent with results from the body-burden implementa-
tion (described above), the 7C PECs were mostly smaller
in value than associated LOECs (Fig. 2b, black dots, p =
1.08 × 10−9, binomial test). In contrast, the 6C PECs are
consistently larger than associated LOECs (Fig. 2b, red
dots, p = 2.911 × 10−11, binomial test). Taking the ratio of
the PEC to its associated LOEC, we find that there is a
very significant difference between the tissue-specific en-
vironmental concentration predictions of the 6C and 7C
models (Fig. 2d, p < 2.2 × 10−16, Student’s t-test). The dif-
ference in environmental concentration predictions be-
tween the models likely arise due to the impacts of
model architecture on the dynamics and steady states of
the respective PBTK simulations.

Effects of model complexity on dynamics
Although the compartmentalized 6C and 7C models ex-
hibit similar sensitivities in their steady state organ con-
centrations of the accumulated chemical to similar
parameter values, this observation does not take into
account any potential differences in the transient dy-
namics between models. To evaluate potential dynamical
variability between the models, we executed 1000 simu-
lations for each one, wherein the body specific
parameters were allowed to vary by random sampling
from a log-normal distribution. This allows for the infer-
ence of time-dependent statistical properties associated
with a population of fish, which provides additional insight
over the potentially accurate but imprecise deterministic
time-series used to model an individual’s dynamical
response. In each simulation, the models were again ex-
posed to 10 μM of diazinon, and tissue concentrations
were allowed to evolve in time until steady state (Fig. 3).
Initially, the full body concentrations of diazinon in

the 6C and 7C models are very similar (Fig. 3a). How-
ever, beyond several minutes of simulation, the 6C
model’s full body concentration temporarily rises at a
rate lower than observed for 7C, resulting in a smaller
steady-state value. Interestingly, the 1C model’s full body
concentration rises at a rate similar to that of the 7C,
but shows significant delay. For instance, the full-body
concentration of the 7C model achieved by 1 min re-
quires approximately 1 h of simulation time for the 1C
model. Additionally, the 1C reaches a significantly lower
steady-state value sooner than the other models (~104 s
vs. ~106 s).
Similarities between the whole body concentration dy-

namics of the 6C and 7C models mask differences in
chemical concentrations accumulated in organ compart-
ments represented in both models. The concentrations
of diazinon in the brain, gonads, and liver in the 6-
compartment model is consistently about 1–2 orders of
magnitude less than the concentrations in the brain, go-
nads, and liver in the 7C (Fig. 3b-d). This suggests that
observing only the whole body concentration, or the
chemical concentration in a single tissue may overlook
more complex behaviors in other tissues. The differences
in the 6C and 7C model time series, however, do seem
to be dependent upon the identity of the chemical stres-
sor. We therefore repeated these simulations with 1,2-
dicholoroethane, which has a lower octanol-water ratio
(log Kow = 1.48) than diazinon (log Kow = 3.81). The con-
centration of 1,2-dichloroethane in the brain, gonads
and liver over time after initial exposure showed a higher
degree of overlap between the 6C and 7C models com-
pared against the diazinon exposures, and the 6C
model’s full body concentrations exceeded that of the 7C
(Additional file 1: Figure S1).

Effects of model complexity on relaxation
Given differences in model dynamics reported in earlier
sections, both in whole body and tissue-specific com-
partments, we further examined how each model
responded to minor perturbations to the chemical
concentration in the environment. First, and for each
model, tissue concentrations were allowed to reach a
steady state when exposed to a constant chemical con-
centration. Next, the exposure concentration was slightly



Fig. 3 Time series bodily concentrations after initial exposure to an environment with a constant concentration of chemical. a The full body
concentration of chemical as a function of time. The black, red, and blue curves represent the average accumulation of chemical throughout the
body in the 7C, 6C, and 1C models, respectively. The error bars represent the standard deviation in the concentrations at each time point from n
= 103 simulations. For each simulation we varied the body parameters tested in the sensitivity tests over a log-normal distribution with a mean
equal to the literature-derived values. b The chemical concentration in the brain as a function of time for the 6C (red) and 7C (black) models. c
The chemical concentration in the gonads as a function of time for the 6C (red) and 7C (black) models. d The chemical concentration in the liver
as a function of time for the 6C (red) and 7C (black) models. Note that the small error bars in these figures are likely resultant from the models
being generally insensitive to the sampling of the parameter values from log2 distributions, with the model demonstrating variances only up to
about 10−1 (See Additional file 1, section 5). While larger error bars could be obtained by sampling parameter values from a wider distribution,
our main concern is the average behavior of the time series given the sensitivity of the model
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increased and the model was allowed to achieve a new
steady state. The environmental concentration was then
reset to its original concentration, and we measured the
amount of time needed for the whole body and tissue-
specific concentrations to relax halfway back to their ori-
ginal steady state values, the relaxation half-life (Fig. 4).
Fig. 4 Diagram illustrating the computational simulation to find the
relaxation time for the model. The environmental concentration is
kept at a constant value until the concentration in all tissues reaches
a steady state. The environmental concentration is then increased
slightly and kept at the new level until the tissues reach the new
steady state. The environmental concentration is then reduced back
to its original level. We then measured the amount of time it took
for the whole body and for each tissue to drop halfway back to its
original steady state value (the relaxation half-life, t1/2)
For each model this procedure was repeated for 1000
simulations in which body parameters were varied ran-
domly as described in the previous section.
The whole body relaxation half-lives of the three

models varied over several orders of magnitude. The 7C
model exhibited the slowest recovery, requiring at least
an order of magnitude more time, on average, than ei-
ther of the other two models (Fig. 5a). The most rapid
recovery was observed from the 1C model, which re-
quired, on average, less than 104 s (~2.8 h). The 6C and
7C models show a wide range of relaxation half-lives
within specific tissues (Fig. 5b & c).
The gonads in the 7C model, on average, exhibit half-

lives over an order of magnitude larger than observed
from any other tissue or that of the full body relaxation
(Fig. 5b, blue) suggesting that toxicants may accumulate
and persist in the gonads much longer than the rest of
the body. Therefore gonads may provide a favorable tar-
get for testing chemical concentrations in fish. On the
one hand, gonad tissues would be affected less by fluctu-
ations in exposure concentrations over longer periods of
time; on the other hand, the arterial blood is quick to
relax with a half-life on the order of seconds (Fig. 5b,



Fig. 5 Relaxation dynamics of the PBTK models. a The kernel density
plot of the relaxation half-lives of the whole-body chemical
concentrations in the 7C (black), 6C (red), and 1C (blue) models.
The sample populations of half-lives were taken from n = 103 simula-
tions varying the body parameters in a fashion similar to that described
for Fig. 4. The differences in the means from the 7C vs. 1C and 6C vs.
1C are statistically significant (p < 0.01, Student’s t-test). Note that the
relaxation half-lives are plotted on a log10 scale. b The kernel density
plot of the relaxation half-lives of the whole body (black) and tissue-
specific chemical concentrations for the brain (red), gonads (blue), poorly
perfused tissue (green), richly perfused tissue (orange), liver (purple),
arterial blood (magenta), and venous blood (cyan). Note that the
relaxation half-lives are plotted on a log10 scale. c The kernel density plot
of the relaxation half-lives of the whole body (black) and tissue-specific
chemical concentrations for the brain (red), gonads (blue), liver (purple),
“other” tissues (green), arterial blood (magenta), and venous blood (cyan).
Note that the relaxation half-lives are plotted on a log10 scale
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magenta), and suggests that bioavailability (the fraction
of unchanged chemical found in the blood) may not be a
useful endpoint through which to correlate dynamics of
acute small fish toxicity.
The 6C tissues show a wider degree of variation in

relaxation half-lives than those in the 7C model. For
example, across simulations, the venous blood’s relax-
ation half-life varied from around 102 s (c. 2 min) to
nearly 106 s (c. 11 days; Fig. 5c, cyan). In contrast to
the 7C model, none of the 6C tissues stood out as
having relaxation half-lives distinct from the others.
To check if these results were specific to diazinon,
we also ran the relaxation simulations with 1,2-di-
chloroethane (Additional file 1: Figure S2). The more
hydrophilic chemical shortened relaxation half-lives
for the full body concentrations in all three models.
However, the general result of the 1C model being
the fastest to relax of the three and the 7C model be-
ing slowest held (Additional file 1: Figure S2B & C).
An observed shift to faster relaxation half-lives held
for the tissues in both the 7C and 6C models. Add-
itionally, variances in the 6C tissues shrunk consider-
ably, providing differences in compartment-specific
relaxation dynamics comparable to that seen in the
7C model. Sensitivity analyses on the impacts of vari-
ations in the magnitude of individual body parameters
for each model reveal that the relaxation half-lives for
whole body and tissue-specific chemical concentra-
tions generally depends on the respiratory flow rate,
blood flow rate, and total mass of the organism in
each model (Additional file 1: Figure S3). Note that
these sensitivity analyses demonstrate a relative ro-
bustness of the different compartments to many of
the body parameters in the 7C model, a behavior not
seen in the 6C or 1C models. We hypothesize that
such a difference in robustness may arise from then
inclusion of an assimilation factor in the expressions
for the exchange of chemical from the environment
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into the blood and the converse in the 7C model, a
parameter missing from the other two, or from differences
in model structure. Intuitively, a more hydrophilic chem-
ical should be easier to clear different organs, as it is less
likely to reside longer in lipid bilayers, and smaller organ-
isms with faster flow rates would be able to more rapidly
expel chemical from organs than a larger organism with a
slower flow rate.

Effect of model architecture on reverse toxicokinetic
predictions
We have found that differences in model architecture
for aqueous organisms can be associated with differences
in transient dynamics and relaxation to steady state in
response to changes in stressor concentration. This begs
the question: How do differences in PBTK model struc-
ture and response in aqueous organisms affect the PECs
obtained from associated rTK models?
The rTK models require three common chemical-

dependent parameters as input: a hepatic clearance rate
(kmet); the octanol-water ratio (Kow); and a dissociation
constant of chemical with binding proteins in plasma.
Due to an absence of experimental data to characterize
the binding of chemical with blood components, we
have assumed that both arterial and venous blood do
not accumulate chemicals. This assumption could alter
the concentration of the chemical within the body. How-
ever, as the binding mechanism would be consistent be-
tween the 6C and 7C models it should not affect the
relative accuracy, only altering the absolute magnitude
of the predictions of the models. We evaluated the
models over a range of values for the hepatic clearance
rate and the octanol-water ratio with a whole-body
chemical concentration of 10 μM, to understand how
Fig. 6 Influence of model design on reverse toxicokinetic predictions. a The l
6C rTK model vs. the 1C model as a function of the log10 metabolism/excretio
observed range of values for kmet and Kow we see no points in which the 6C
The log10 of the ratio of the predicted environmental concentrations of the 7
(kmet) and the log10 octanol-water ratio (Kow). Note that the 7C model only ov
values of kmet and Kow
these two independent parameters generally affected the
exposure predictions independent of any specific chem-
ical. Results of these comparisons are visualized in Fig. 6,
and illustrate the ratio of modeled PECs (6C vs. 1C and
7C vs. 1C, respectively) as a function of these parame-
ters. At low values of Kow (low lipid solubility), metabol-
ism/excretion rates had no appreciable effect on the
ratio of predictions for neither the 6C nor 7C; however,
this ratio was more strongly affected at Kow values
greater than approximately 105 (high lipid solubility),
which is intuitive because chemical must partition into
the tissues before metabolism can act to destroy/trans-
form it, therefore eliminating it from tissue. Additionally,
between the two models, only the 7C was shown to
over-estimate compared to the 1C model (ratio > 1)
within the range of values for these parameters tested;
the ratio rose above 1 for improbably high Kow and me-
tabolism/excretion rates (Fig. 6b).
To understand how the model predictions diverge

from one another based solely on model structure with-
out the impact of parameterization, we developed two
additional PBTK models based on the 6C model. In the
first, the gonads and other tissue compartments are col-
lapsed into a single “other” tissue compartment. In the
second, the gonads have been made to empty into the
liver directly rather than into the venous blood, as is
seen in the 7C model. We solved for the steady state
chemical concentrations in each of the compartments as
functions of the exposure concentration. We then calcu-
lated the difference in concentrations for the arterial
blood, venous blood, brain, and liver between models
using the analytical expressions. Collapsing the gonads
and other tissues into a single compartment had no ef-
fect on the steady state chemical concentrations in the
og10 of the ratio of the predicted environmental concentrations of the
n rate (kmet) and the log10 octanol-water ratio (Kow). Note that for the
model overestimates the 1C model (log10 ratio of concentrations > 0). b
C rTK model vs. the 1C model as a function of the log10 metabolism rate
erestimates the 1C model (log10 ratio of concentrations > 0) at high
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other compartments. However, the steady states of these
compartments in the model with the gonads emptying
into the liver rather than the venous blood were greater
than those of the original model, regardless of the values
chosen for the parameters (See Additional file 1, Section
7 for derivations and details). The reverse toxicokinetic
model associated with the rewired version thus consist-
ently under-estimates the environmental concentration
with respect to the original model. This behavior is simi-
lar to that of the 7C model, which has two compart-
ments emptying into the liver, compared to the 6C and
1C models, where all tissue compartments empty into
the venous blood. These results demonstrate that the
architecture of the model can have a significant impact
on the relative accuracy and precision of the rTK models
for aqueous exposure reconstruction.

Discussion
In this work we aimed to characterize how PBTK model
structure can affect the dynamics of the model and the
relative accuracy of rTK environmental concentration
predictions based on different model structures. We
found that the more complex 6C and 7C models exhib-
ited faster dynamics, reaching particular whole body
concentrations sooner than the 1C model. Additionally,
the 6C and 7C models also reached steady state whole
body concentrations orders of magnitude higher than
the 1C model. This behavior depended upon the chem-
ical being simulated: chemicals with larger octanol-water
ratios ended up displaying higher bodily concentrations
in the 7C model, while the difference is minimized or
reversed for chemicals with low octanol-water ratios.
The differences in model dynamics extended to re-
sponses to perturbations in exposure concentration
while at steady state. The whole body concentration
of the 7C model took longer to relax to a new steady
state, while the 1C model was the fastest, regardless
of the nature of the chemical. We also found that fo-
cusing on whole body relaxation overlooked the dif-
ferences in relaxation between different compartments
within the 7C model. The arterial blood achieved its
new steady state on the order of minutes, whereas
most of the body took on the order of hours to days
to relax. However, relaxation in gonads took longer
than the rest of the body, suggesting that they may
contain toxicants far longer than other tissues; such
accumulation would be missed without direct testing
of gonad tissues. This hypothesis that gonad tissues
retain chemical for much longer time periods could
be tested by extending the sampling design of long-
term aqueous experimental studies.
The differences in dynamics between the models also

affected the relative accuracy of the associated rTK
models. We found that for biologically- and chemically-
relevant metabolism/excretion rates and chemical
octanol-water ratios, the 1C model consistently over-
estimated the minimum exposure concentrations based
on similar whole body concentrations compared to ei-
ther the 6C or 7C models. These results highlight the
need to further study and understand the influence of
model architecture on rTK accuracy.
One potential issue suggested by our results involves

parameterization. Wherever applicable, we used similar
parameter values for each model (e.g., the same lipid
and water content for the brain in both the 6C and 7C
models). However, there remained a set of parameters
for each model taken from literature values based on
values in different species (i.e., zebrafish for the 7C
model-specific parameters and fathead minnow for 6C).
This is a common concern in PBTK and rTK modeling,
as most investigations develop and parameterize a new
model on a case-by-case basis [2, 5, 6, 10, 14, 16–19, 31].
While differences in parameterization likely contrib-
utes to variation in dynamics and steady states be-
tween models, our analytical study demonstrates that
the model structure also impacts steady state predic-
tions for aqueous organisms. In the future it would
be of interest to systematically analyze the influence
of parameterization and chemicals-specific properties
on the relative and absolute accuracy of PBTK and
rTK models. While the current study focuses on con-
trasting relative performance of predictions from dif-
ferent models, a detailed analysis of their absolute
accuracy is necessary to develop guidelines for stand-
ardizing the design and parameterization practices
associated with PBTK and rTK model development
for aquatic organisms.
Increasing the reliability and consistency of in vivo to

in vitro extrapolation is crucial to many fields. Historic-
ally, IVIVE has been used in determining toxicant or
drug distribution and impacts throughout the body
using inexpensive, faster, and more humane cell-based
studies [32]. There has been, however, a greater appreci-
ation of the difficulties of in vivo to in vitro extrapola-
tions in other fields, including in relation to insulin
resistance and cancer. In a review of the application of sys-
tems biology in disease studies, Somvanshi and Venkatesh
present a systematic map of insulin resistance and defect-
ive metabolic homeostasis, including the flow of small
molecules and hormones between various tissues. The au-
thors indicate that molecular-level networks present
within the cells of each tissue are, in fact, a part of a larger
network [11]. A recent computational study found that a
three-component model of VEGF transport and kinetics
in tumor-bearing mice, built in a top-down approach and
with parameters fitted to in vivo data, significantly under-
predicts VEGF secretion rates in the tumor compared to
reported in vitro rates [9].
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Conclusions
Ultimately, our work demonstrates the influence of
PBTK/rTK model structure on relative performance in
aqueous organisms with the example of comparing three
models based on teleost fish, each with unique model ar-
chitectures. This demonstrates the tradeoffs in model de-
sign and accuracy, pointing out potential impacts on
predicted concentrations when favoring parsimony over
physiological fidelity, or vice-versa. Our results highlight
the need to develop standardized model design and valid-
ation procedures to accurately and precisely predict envir-
onmental and physiological conditions that lead to
measured small molecule concentrations in the body.
Standard modeling practices and training and validation
data sets would ensure consistency among future compu-
tational studies and allow the fair comparison of results
across projects studying physiologically similar organisms.

Additional file

Additional file 1: Supplemental Information. Additional information
including supporting figures, the generalized conceptual model for an
organ with metabolism, detailed descriptions of the toxicokinetic models,
a comparison of the 7C model to the original Zebrafish PBTK on which it
was based, results of sensitivity analyses of the PBTK models, detailed
descriptions of the reverse toxicokinetic models, an analytical approach
to determining the influence of architecture on steady state
concentrations, and an approximation of the departure of in vitro data
from control levels. (PDF 1762 kb)
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