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ABSTRACT: The purposes of this study are to identify the maximum number of correlated factors for landslide 

susceptibility mapping and to evaluate landslide susceptibility at Sihjhong river catchment in the southern Taiwan, 

integrating two techniques, namely certainty factor (CF) and artificial neural network (ANN). The landslide inventory 

data of the Central Geological Survey (CGS, MOEA) in 2004-2014 and two digital elevation model (DEM) datasets 

including a 5-meter LiDAR DEM and a 30-meter Aster DEM were prepared. We collected thirteen possible landslide-

conditioning factors. Considering the multi-collinearity and factor redundancy, we applied the CF approach to optimize 

these thirteen conditioning factors. We hypothesize that if the CF values of the thematic factor layers are positive, it 

implies that these conditioning factors have a positive relationship with the landslide occurrence. Therefore, based on 

this assumption and positive CF values, seven conditioning factors including slope angle, slope aspect, elevation, terrain 

roughness index (TRI), terrain position index (TPI), total curvature, and lithology have been selected for further analysis. 

The results showed that the optimized-factors model provides a better accuracy for predicting landslide susceptibility in 

the study area. In conclusion, the optimized-factors model is suggested for selecting relative factors of landslide 

occurrence.  
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1. INTRODUCTION 

Landslide susceptibility is defined as the likelihood of a 

landslide occurring in an area based on local terrain 

conditions. It delineates the earth’s surface into zones of 

varying degrees of stability based on the evaluated 

significance of the conditioning factors inducing 

instability (Gökceoglu and Aksoy, 1996). Landslide 

susceptibility mapping (LSM) plays an important role in 

hazard mitigation and is an important basis for providing 

a measure aimed at decreasing the risks associated with 

landslides (Dou et al., 2014). This involves not only 

finding where the risk of landslide-related problems is 

spatially located, but also quantitatively and qualitatively 

assessing the significance of any such hazards and 

associated risk factors. Furthermore, LSM could be 

employed to describe known landslides, assist with 

emergency decisions, and avoid and mitigate future 

landslide hazards. Moreover, LSM employs handling, 

processing, and storing an enormous amount of territorial 

data related to geographical information systems (GIS). 

GIS has also proved to be a powerful tool in landslide 

susceptibility evaluation (Nefeslioglu et al., 2013). In 

recent years, landslide susceptibility assessment has 

attracted the attention of many scholars, and numerous 

studies have been undertaken for LSM assessment around 

the world (Aksoy and Ercanoglu, 2012; Feizizadeh et al., 

2014; Park et al., 2012; Tien Bui et al., 2012). A majority 

of the research has been based on establishing the 

relationship between the landslide-conditioning factors 

and landslide occurrence through spatial data analysis. 

These relationships can be characterized in terms of 

ratings or weight. In this context, Chauhan et al. (2010) 

and Li et al. (2012) studies classified the data driven 

approaches into two general categories: qualitative and 

quantitative. Qualitative methods are rather subjective. 

Conversely, quantitative methods are objective and with 

the development of computer systems and GIS 

technologies, have become more popular than the 

qualitative methods (Pourghasemi et al., 2013; Sumer and 

Turker, 2013; Tien Bui et al., 2012). Quantitative 

methods including an artificial neural network (ANN) are 

useful for problem solving and have been successfully 

applied in various scientific, engineering, and hazard 

evaluation applications.  

The purposes of this study are to identify the maximum 

number of correlated factors for landslide susceptibility 

mapping and to evaluate landslide susceptibility at 

Sihjhong river catchment in the southern Taiwan, 
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integrating two techniques, namely certainty factor (CF) 

and artificial neural network (ANN). 

 

2. METHODOLOGY 

2.1 Certainty factor model 

The certainty factor (CF) is a method for managing 

uncertainty in rule-based systems and has been widely 

applied in expert system shell fields, in addition to 

medical diagnosis studies (Pourghasemi et al., 2013; 

Devkota et al., 2013). The CF approach is one of the 

probable favorability functions (FF) to address the 

problem of integrating heterogeneous data (Chung and 

Fabbri, 1993). The general theory function is given by the 

following equation: 
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Where, 
aPP is the conditional probability of having a 

number of landslide events occur in class a and 
sPP is the 

prior probability of having a total number of landslide 

events in the study area. The value of 
sPP  in this study is 

calculated to be 0.0146. 

The CF value range is [-1, 1]. Positive values imply an 

increasing certainty in landslide occurrence; negative 

values infer a decrease in the certainty. A value close to 

zero indicates that the prior probability is close to the 

conditional probability and it is therefore difficult to 

determine the certainty of landslide occurrence 

(Pourghasemi et al., 2012). The preparations of the data 

layers and their selection for the analysis were performed 

with the ArcGIS v.10.2 software in this study. The 

favorability values are obtained by overlaying the 

landslide inventory map and each data layer and 

computing the landslide frequency. 

 

2.2 Data pre-processing for each factor 

The conditioning-factor selection in this study is based 

on the previous literatures regarding spatial relationships 

between landslide occurrence and conditioning factors 

including topography, hydrology, geology, tectonics, and 

geomorphology (Kayastha et al., 2013; Klimes, 2013). A 

total of thirteen landslide-conditioning factors were 

chosen for this study, namely: 1) elevation, 2) slope angle, 

3) slope aspect, 4) total curvature, 5) plan curvature, 6) 

profile curvature, 7) terrain position index (TPI), 8) 

terrain roughness index (TRI),  9) distance from road,   

10) distance from drainage networks,  11) rainfall,  12) 

normalized DSM, and 13) lithology. All these factors are 

processed and investigated with the help of ArcGIS v10 

software. 

 

3. CASE STUDY 

3.1 Study area 

Taiwan is located in the region covered by Pacific 

typhoons. The annual typhoon and heavy rain invaded 

frequently. It is exacerbated by global climate change in 

recent years. Thus, statistics show that droughts are 

frequent and have a tendency to gradually expand the 

scale. Hengchun Peninsula in recent years is suffering 

from flooding. The Hengchun Peninsula is one of the key 

domestic sea-land conservation area, where is rich in 

ecological resources. The study area is shown in Figure 1. 

Two kinds of DTMs are used in this study, including 5 m 

of LiDAR DTM and 30 m of Aster GDEM.  

 

 

 

 

 

 

 

 

 

 

Figure 1. The study area is located in the south of Taiwan  

 

3.2 Test results 

The CF model can provide a measure of certainty in 

predicting landslides. The relationship between the spatial 

landslide locations and eight topographic-conditioning 

factors were analysed in GIS. The CF values of each of 

the selected factors are shown in Table 1. The CF values 

indicate that different spatial resolution of terrain data 

will not affect the LSM analysis except for the effects on 

the curvature factors, including total, profile, and plan 

curvature. It shows that results of a DTM with lower 

spatial resolution is unable to render more detailed 

topographic curvature. Moreover, higher CF values of 

“elevation”, “slope”, “TRI”, and “TPI” factors were 

derived in the experimental area. With respect to the 

aspect factor, most of the landslides occurred along the 

southeast, south, and east facing slopes. 

According to the results of two kinds of different data 

quality of DTMs, a negative CF values had been derived 

on slope with 20-30, aspect with southwest facing, and 

“TRI” factor with 2-5 using 30m Aster DTM. These are 

different from those derived from LiDAR DTM of 30m 

grid. 

 

4. CONCLUSIONS 

Different spatial resolution and quality of DTMs 

affecting on the LSM analysis had been compared in this 

work. The CF values indicate that different spatial 

resolution of terrain data will not affect the LSM analysis 

except for the effects on the curvature factors, including 

total, profile, and plan curvatures. Moreover, higher CF 

values on “elevation”, “slope”, “TRI”, and “TPI” factors 
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are derived in the experimental area. With respect to the 

aspect factor, most of the landslides occurred along the 

southeast, south, and east facing slopes. Moreover, bad 

quality of DTM (e.g. Aster DTM) will generate wrong 

results in the LSM analysis. A further study for producing 

landslide susceptibility map and for comparison will be 

conducted on the artificial intelligence-ANN model, 

namely the feedforward back-propagation neural network 

(FBPNN).  
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Table 1. The quality and resolution of DEM affecting on the LSM 

Factors Range 5m DTM 10mDTM 20m DTM 30m DTM(Lidar) 30m Aster GDEM 

Elevation 

0~63 -0.76681 -0.76607 -0.77682 -0.78283 -0.79136 

63~145 -0.31295 -0.28777 -0.22093 -0.25198 -0.32530 

145~242 0.34144 0.34727 0.33444 0.34637 0.30986 

242~383 0.63880 0.63458 0.63024 0.63045 0.66491 

383~706 0.80002 0.78883 0.77951 0.78898 0.80816 

Slope 
0~15 -0.86740 -0.87047 -0.86740 -0.87161 -0.70225 

15~20 -0.81345 -0.79110 -0.84784 -0.80806 0.04009 
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20~25 -0.67879 -0.66884 -0.59931 -0.50306 0.64386 

25~30 -0.26218 -0.25030 -0.03308 -0.29625 0.79741 

30~40 0.61798 0.62179 0.60671 0.62506 0.86618 

40~78 0.89618 0.89499 0.89389 0.89171 0.90166 

Aspect 

0~66 -0.67060 -0.66815 -0.64747 -0.65661 -0.44741 

66~128 0.47996 0.48502 0.48339 0.52461 0.35241 

128~190 0.66238 0.66334 0.64605 0.63608 0.54525 

190~247 0.16934 0.15971 0.10359 0.12364 -0.14558 

247~302 -0.71751 -0.72313 -0.65499 -0.67178 -0.60544 

302~360 -0.65167 -0.65179 -0.54910 -0.55427 -0.48542 

TRI 

0~1 -0.88076 -0.88496 -0.88634 -0.88788 -0.93204 

1~2 -0.69920 -0.68230 -0.65135 -0.65367 -0.90086 

2~3 0.49719 0.50311 0.50702 0.51824 -0.76826 

3~4 0.85817 0.85750 0.85874 0.85238 -0.55387 

4~5 0.92492 0.92372 0.92288 0.92162 -0.47539 

5~19 0.93588 0.93604 0.92754 0.93432 0.55758 

TPI 

(-18)~(-2) 0.77820 0.78173 0.86185 0.87858 0.79170 

(-2)~(-1) 0.68598 0.68903 0.73503 0.74269 0.28485 

(-1)~0 -0.22458 -0.22008 -0.22113 -0.29064 -0.46747 

0~1 0.12225 0.12780 0.08550 0.14908 -0.42025 

1~2 0.75257 0.71613 0.72362 0.76775 0.28722 

2~12 0.89649 0.88514 0.90083 0.87656 0.63366 

Total 

curvature 

<(-28) 0.76548 -1.00000 -1.00000 -1.00000 -1.00000 

(-28)~(-12) 0.58277 -1.00000 -1.00000 -1.00000 -1.00000 

(-12)~(-4) 0.07916 0.10299 0.08677 0.03416 0.89071 

(-4)~0 -0.42809 -0.42777 -0.46844 -0.46784 -0.01283 

0~8 0.08866 0.08465 0.05663 0.11869 0.01613 

>8 0.60438 -1.00000 -1.00000 -1.00000 -1.00000 

Profile 

curvature 

<(-6) 0.56802 -1.00000 -1.00000 -1.00000 -1.00000 

(-6)~(-2) 0.10123 0.07440 0.13713 0.11577 0.90976 

(-2)~2 -0.26548 -0.26238 -0.33649 -0.28399 -0.00880 

2~6 0.08601 0.10795 0.14215 -0.01887 0.65424 

6~13 0.57463 -1.00000 -1.00000 -1.00000 -1.00000 

>13 0.75527 -1.00000 -1.00000 -1.00000 -1.00000 

Plan 

curvature 

<(-14) 0.77361 -1.00000 -1.00000 -1.00000 -1.00000 

(-14)~(-6) 0.60668 -1.00000 -1.00000 -1.00000 -1.00000 

(-6)~0 -0.29944 -0.28897 -0.29291 -0.32648 -0.06632 

0~6 0.27888 0.27974 0.24245 0.31800 0.07892 

6~16 0.64462 -1.00000 -1.00000 -1.00000 -1.00000 

>16 0.90741 -1.00000 -1.00000 -1.00000 -1.00000 
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