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We introduce a general iterative algorithm for finding a common element of the common fixed-
point set of an infinite family of λi-strict pseudocontractions and the solution set of a general
system of variational inclusions for two inverse strongly accretive operators in a q-uniformly
smooth Banach space. Then, we prove a strong convergence theorem for the iterative sequence
generated by the proposed iterative algorithm under very mild conditions. The methods in the
paper are novel and different from those in the early and recent literature. Our results can be
viewed as the improvement, supplementation, development, and extension of the corresponding
results in some references to a great extent.

1. Introduction

Throughout this paper, we denote by E and E∗ a real Banach space and the dual space of E,
respectively. Let C be a subset of E and T a mapping on C. We use F(T) to denote the set of
fixed points of T . Let q > 1 be a real number. The (generalized) duality mapping Jq : E → 2E

∗

is defined by

Jq(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖q, ‖x∗‖ = ‖x‖q−1

}
(1.1)

for all x ∈ E, where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. In
particular, J = J2 is called the normalized duality mapping and Jq(x) = ‖x‖q−2J2(x) for x /= 0.
If E is a Hilbert space, then J = I, where I is the identity mapping. It is well known that if E
is smooth, then Jq is single-valued, which is denoted by jq.
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The norm of a Banach space E is said to be Gâteaux differentiable if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.2)

exists for all x, y on the unit sphere S(E) = {x ∈ E : ‖x‖ = 1}. If, for each y ∈ S(E), the limit
(1.2) is uniformly attained for x ∈ S(E), then the norm of E is said to be uniformly Gâteaux
differentiable. The norm of E is said to be Fréchet differentiable if, for each x ∈ S(E), the limit
(1.2) is attained uniformly for y ∈ S(E).

Let ρE : [0, 1) → [0, 1) be the modulus of smoothness of E defined by

ρE(t) = sup
{
1
2
(∥∥x + y

∥∥ +
∥∥x − y

∥∥) − 1 : x ∈ S(E),
∥∥y∥∥ ≤ t

}
. (1.3)

A Banach space E is said to be uniformly smooth if ρE(t)/t → 0 as t → 0. Let q > 1.
A Banach space E is said to be q-uniformly smooth, if there exists a fixed constant c > 0 such
that ρE(t) ≤ ctq. It is well known that E is uniformly smooth if and only if the norm of E is
uniformly Fréchet differentiable. If E is q-uniformly smooth, then q ≤ 2 and E is uniformly
smooth, and hence the norm of E is uniformly Fréchet differentiable; in particular, the norm of
E is Fréchet differentiable. Typical examples of both uniformly convex and uniformly smooth
Banach spaces are Lp, where p > 1.More precisely, Lp is min{p, 2}-uniformly smooth for every
p > 1.

A Banach space E is said to be uniformly convex if, for any ε ∈ (0, 2], there exists δ > 0
such that, for any x, y ∈ S(E), ‖x − y‖ ≥ ε implies ‖(x + y)/2‖ ≤ 1 − δ. It is known that a
uniformly convex Banach space is reflexive and strictly convex.

Recall that if C and D are nonempty subsets of a Banach space E such that C is
nonempty closed convex andD ⊂ C, then a mappingQ : C → D is sunny (see [1]) provided
that

Q(x + t(x −Q(x))) = Q(x) (1.4)

for all x ∈ C and t ≥ 0, whenever Qx + t(x − Q(x)) ∈ C. A mapping Q : C → D is called a
retraction if Qx = x for all x ∈ D. Furthermore, Q is a sunny nonexpansive retraction from C
onto D if Q is retraction from C onto D which is also sunny and nonexpansive. A subset D
of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive
retraction from C onto D. The following proposition concerns the sunny nonexpansive
retraction.

Proposition 1.1 (see [1]). Let C be a closed convex subset of a smooth Banach space E. Let D be a
nonempty subset of C. Let Q : C → D be a retraction and let J be the normalized duality mapping
on E. Then the following are equivalent:

(a) Q is sunny and nonexpansive,

(b) ‖Qx −Qy‖2 ≤ 〈x − y, J(Qx −Qy)〉, for all x, y ∈ C,

(c) 〈x −Qx, J(y −Qx)〉 ≤ 0, for all x ∈ C, y ∈ D.
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Among nonlinear mappings, the classes of nonexpansive mappings and strict pseudo-
contractions are two kinds of the most important nonlinear mappings. The studies on them
have a very long history (see, e.g., [1–29] and the references therein). Recall that a mapping
T : C → E is said to be nonexpansive, if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥ for all x, y ∈ C. (1.5)

A mapping T : C → E is said to be λ-strict pseudocontractive in the terminology of
Browder and Petryshyn (see [2–4]), if there exists a constant λ > 0 such that

〈
Tx − Ty, jq

(
x − y

)〉 ≤ ∥∥x − y
∥∥q − λ

∥∥(I − T)x − (I − T)y
∥∥q

, (1.6)

for every x, y ∈ C and for some jq(x − y) ∈ Jq(x − y). It is clear that (1.6) is equivalent to the
following:

〈
(I − T)x − (I − T)y, jq

(
x − y

)〉 ≥ λ
∥∥(I − T)x − (I − T)y

∥∥q
. (1.7)

Amapping T : C → E is said to be L-Lipschitz if for all x, y ∈ C there exists a constant
L > 0 such that

∥∥Tx − Ty
∥∥ ≤ L

∥∥x − y
∥∥ for all x, y ∈ C. (1.8)

In particular, if 0 < L < 1, then T is called contractive and if L = 1, then T reduces to a
nonexpansive mapping.

A mapping T : C → E is said to be accretive if for all x, y ∈ C there exists jq(x − y) ∈
Jq(x − y) such that

〈
Tx − Ty, jq

(
x − y

)〉 ≥ 0. (1.9)

For some η > 0, T : C → E is said to be η-strongly accretive if for all x, y ∈ C, there
exists jq(x − y) ∈ Jq(x − y) such that

〈
Tx − Ty, jq

(
x − y

)〉 ≥ η
∥∥x − y

∥∥q
. (1.10)

For some μ > 0, T : C → E is said to be μ-inverse strongly accretive if for all x, y ∈ C
there exists jq(x − y) ∈ Jq(x − y) such that

〈Tx − Ty, jq
(
x − y

)〉 ≥ μ
∥∥Tx − Ty

∥∥q
. (1.11)

A set-valued mapping T : D(T) ⊆ E → 2E is said to be accretive if for any x, y ∈ D(T),
there exists j(x − y) ∈ J(x − y), such that for all u ∈ T(x) and v ∈ T(y)

〈u − v, j
(
x − y

)〉 ≥ 0. (1.12)
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A set-valued mapping T : D(T) ⊆ E → 2E is said to bem-accretive if T is accretive and
(I + ρT)(D(T)) = E for every (equivalently, for some) ρ > 0, where I is the identity mapping.

Let M : D(M) → 2E be m-accretive. The mapping JM,ρ : E → D(M) defined by

JM,ρ(u) =
(
I + ρM

)−1(u), ∀u ∈ E (1.13)

is called the resolvent operator associated with M, where ρ is any positive number and I is
the identity mapping. It is well known that JM,ρ is single valued and nonexpansive (see [5]).

In order to find the common element of the solutions set of a variational inclusion and
the set of fixed points of a nonexpansive mapping S, Zhang et al. [6] introduced the following
new iterative scheme in a Hilbert spaceH. Starting with an arbitrary point x1 = x ∈ H, define
sequences {xn} by

yn = JM,λ(xn − λAxn),

xn+1 = αnx + (1 − αn)Syn,
(1.14)

where A : H → H is an α-cocoercive mapping, M : H → 2H is a maximal monotone
mapping, S : H → H is a nonexpansive mapping, and {αn} is a sequence in [0, 1]. Under
mild conditions, they obtained a strong convergence theorem.

Let C be a nonempty closed convex subset of a real reflexive, strictly convex, and q-
uniformly smooth Banach space E. In this paper, we consider the general system of finding
(x∗, y∗) ∈ C × C such that

θ ∈ x∗ − y∗ + ρ1
(
Ay∗ +M1x

∗),
θ ∈ y∗ − x∗ + ρ2

(
Bx∗ +M2y

∗),
(1.15)

where A,B : C → E, M1 : D(M1) → 2E and M2 : D(M2) → 2E are nonlinear mappings.
In the case where C = E, a uniformly convex and 2-uniformly smooth Banach space,

Qin et al. [8] introduced the following scheme for finding a common element of the solution
set of the variational inclusions and the fixed-point set of a λ-strict pseudocontraction.
Starting with an arbitrary point x1 = u ∈ E, define sequences {xn} by

zn = JM2,ρ2

(
xn − ρ2A2xn

)
,

yn = JM1,ρ1

(
zn − ρ1A1zn

)
,

xn+1 = αnu + βnxn +
(
1 − αn − βn

)[
μSxn +

(
1 − μ

)
yn

]
, n ≥ 1,

(1.16)

whereA1, A2 : E → E are two inverse strongly accretive operators,M1,M2 : E → 2E are two
maximal monotone mappings, T : E → E is a λ-strict pseudocontraction, and S : E → E is
defined as Sx = (1−λ/K2)x+(λ/K2)Tx, for all x ∈ E. Then they proved a strong convergence
theorem under mild conditions.

In this paper, motivated by Zhang et al. [6], Qin et al. [8], Yao et al. [9], Hao [10],
Yao and Yao [11], and Takahashi and Toyoda [12], we consider a relaxed extragradient-type
method for finding a common element of the solution set of a general system of variational
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inclusions for inverse strongly accretive mappings and the common fixed-point set of an
infinite family of λi-strict pseudocontractions. Furthermore, we obtain strong convergence
theorems under mild conditions. The results presented by us improve and extend the corre-
sponding results announced by many others.

2. Preliminaries

In order to prove our main results, we need the following lemmas.

Lemma 2.1 (see [16]). Let C be a closed convex subset of a strictly convex Banach space E. Let T1
and T2 be two nonexpansive mappings from C into itself with F(T1)

⋂
F(T2)/= ∅. Define a mapping S

by

Sx = λT1x + (1 − λ)T2x, ∀x ∈ C, (2.1)

where λ is a constant in (0, 1). Then S is nonexpansive and F(S) = F(T1)
⋂
F(T2).

Lemma 2.2 (see [30]). Let {αn} be a sequence of nonnegative numbers satisfying the property:

αn+1 ≤
(
1 − γn

)
αn + bn + γncn, n ≥ 0, (2.2)

where {γn}, {bn}, and {cn} satisfy the restrictions:

(i) limn→∞γn = 0,
∑∞

n=1 γn = ∞,

(ii) bn ≥ 0,
∑∞

n=1 bn < ∞,

(iii) lim supn→∞cn ≤ 0.

Then, limn→∞αn = 0.

Lemma 2.3 (see [31, page 63]). Let q > 1. Then the following inequality holds:

ab ≤ 1
q
aq +

q − 1
q

bq/(q−1) (2.3)

for arbitrary positive real numbers a, b.

Lemma 2.4 (see [17]). Let E be a real q-uniformly smooth Banach space, then there exists a constant
Cq > 0 such that

∥∥x + y
∥∥q ≤ ‖x‖q + q

〈
y, Jq(x)

〉
+ Cq

∥∥y∥∥q
, ∀x, y ∈ E. (2.4)

In particular, if E is a real 2-uniformly smooth Banach space, then there exists a best smooth constant
K > 0 such that

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2〈y, J(x)〉 + 2K

∥∥y∥∥2
, ∀x, y ∈ E. (2.5)
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Lemma 2.5 (see [20]). LetC be a nonempty convex subset of a real q-uniformly smooth Banach space
E and let T : C → C be a λ-strict pseudocontraction. For α ∈ (0, 1), one defines Tαx = (1−α)x+αTx.
Then, as α ∈ (0, μ], μ = min{1, {qλ/Cq}1/(q−1)}, Tα : C → C is nonexpansive such that F(Tα) =
F(T).

Lemma 2.6 (see [21]). Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth
Banach space E which admits weakly sequentially continuous generalized duality mapping jq from
E into E∗. Let T : C → C be a nonexpansive mapping. Then, for all {xn} ⊂ C, if xn ⇀ x and
xn − Txn → 0, then x = Tx.

Lemma 2.7 (see [21]). Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth
Banach space E. Let V : C → E be a k-Lipschitzian and η-strongly accretive operator with
constants k, η > 0. Let 0 < μ < (qη/Cqk

q)1/(q−1) and τ = μ(η − Cqμ
q−1kq/q). Then for each

t ∈ (0,min{1, 1/τ}), the mapping S : C → E defined by S := (I − tμV ) is a contraction with a
constant 1 − tτ .

Lemma 2.8 (see [21]). Let C be a nonempty, closed and convex subset of a real q-uniformly smooth
Banach space E. Let QC be a sunny nonexpansive retraction from E onto C. Let V : C → E be a k-
Lipschitzian and η-strongly accretive operator with constants k, η > 0, f : C → E a L-Lipschitzian
mapping with constant L ≥ 0, and T : C → C a nonexpansive mapping such that F(T)/= ∅. Let
0 < μ < (qη/Cqk

q)1/(q−1) and 0 ≤ γL < τ , where τ = μ(η − Cqμ
q−1kq/q). Then {xt} defined by

xt = QC

[
tγfxt +

(
I − tμV

)
Txt

]
. (2.6)

Has the following properties:

(i) {xt} is bounded for each t ∈ (0,min{1, 1/τ}),
(ii) limt→ 0‖xt − Txt‖ = 0,

(iii) {xt} defines a continuous curve from (0,min{1, 1/τ}) into C.

Lemma 2.9. Let C be a closed convex subset of a smooth Banach space E. LetD be a nonempty subset
of C. Let Q : C → D be a retraction and let j, jq be the normalized duality mapping and generalized
duality mapping on E, respectively. Then the following are equivalent:

(a) Q is sunny and nonexpansive,

(b) ‖Qx −Qy‖2 ≤ 〈x − y, j(Qx −Qy)〉, for all x, y ∈ C,

(c) 〈x −Qx, j(y −Qx)〉 ≤ 0, for all x ∈ C, y ∈ D,

(d) 〈x −Qx, jq(y −Qx)〉 ≤ 0, for all x ∈ C, y ∈ D.

Proof. From Proposition 1.1, we have a ⇔ b ⇔ c. We need only to prove c ⇔ d.
Indeed, if y −Qx/= 0, then 〈x −Qx, j(y −Qx)〉 ≤ 0 ⇔ 〈x −Qx, jq(y −Qx)〉 ≤ 0, for all

x ∈ C, y ∈ D (by the fact that jq(x) = ‖x‖q−2j(x), ∀x /= 0).
If y −Qx = 0, then 〈x −Qx, j(y −Qx)〉 = 〈x −Qx, jq(y −Qx)〉 = 0, for all x ∈ C, y ∈ D.

This completes the proof.

Lemma 2.10. Let C be a nonempty, closed, and convex subset of a q-uniformly smooth Banach space
E which admits a weakly sequentially continuous generalized duality mapping jq from E into E∗. Let
QC be a sunny nonexpansive retraction from E onto C. Let V : C → E be a k-Lipschitzian and
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η-strongly accretive operator with constants k, η > 0, f : C → E a L-Lipschitzian with constant
L ≥ 0, and T : C → C a nonexpansive mapping such that F(T)/= ∅. Let 0 < μ < (qη/Cqk

q)1/(q−1)

and 0 ≤ γL < τ , where τ = μ(η − Cqμ
q−1kq/q). For each t ∈ (0,min{1, 1/τ}), let {xt} be defined

by (2.6), then {xt} converges strongly to x∗ ∈ F(T) as t → 0, which is the unique solution of the
following variational inequality:

〈
γfx∗ − μVx∗, jq

(
p − x∗)〉 ≤ 0, ∀p ∈ F(T). (2.7)

Proof. We first show the uniqueness of a solution of the variational inequality (2.7). Suppose
both x̂ ∈ F(T) and x∗ ∈ F(T) are solutions of (2.7). It follows that

〈
γfx∗ − μVx∗, jq(x̂ − x∗)

〉 ≤ 0,

〈
γfx̂ − μV x̂, jq(x∗ − x̂)

〉 ≤ 0.
(2.8)

Adding up (2.8), we have

〈(
γf − μV

)
x̂ − (

γf − μV
)
x∗, jq(x∗ − x̂)

〉 ≤ 0. (2.9)

On the other hand, we have that

〈(
γf − μV

)
x̂ − (

γf − μV
)
x∗, jq(x∗ − x̂)

〉
= μ

〈
Vx∗ − V x̂, jq(x∗ − x̂)

〉 − γ
〈
fx∗ − fx̂, jq(x∗ − x̂)

〉

≥ μη‖x∗ − x̂‖q − γL‖x∗ − x̂‖q

≥ (
μη − γL

)‖x∗ − x̂‖q

≥ (
τ − γL

)‖x∗ − x̂‖q

> 0.
(2.10)

It is a contradiction. Therefore, x∗ = x̂ and the uniqueness is proved. Below we use x∗ to
denote the unique solution of (2.7).

Next, we prove that xt → x∗ as t → 0.
Since E is reflexive and {xt} is bounded due to Lemma 2.8 (i), there exists a

subsequence {xtn} of {xt} and some point x̃ ∈ C such that xtn ⇀ x̃. By Lemma 2.8(ii), we
have limt→ 0‖xtn − Txtn‖ = 0. Taken together with Lemma 2.6, we can get that x̃ ∈ F(T).
Setting yt = tγfxt + (I − tμV )Txt, where t ∈ (0,min{1, 1/τ}), then we can rewrite (2.6) as
xt = QCyt.

We claim ‖xtn − x̃‖ → 0.
From Lemma 2.9, we have

〈
yt −QCyt, jq

(
x̃ −QCyt

)〉 ≤ 0. (2.11)
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It follows from (2.11) and Lemma 2.7 that

‖xtn − x̃‖q = 〈
QCytn − ytn , jq(xtn − x̃)

〉
+
〈
ytn − x̃, jq(xtn − x̃)

〉

≤ 〈
ytn − x̃, jq(xtn − x̃)

〉

= 〈(I − tnμV
)
Txtn −

(
I − tnμV

)
x̃, jq(xtn − x̃)〉 + tn

〈
γfxtn − μV x̃, jq(xtn − x̃)

〉

≤ (1 − tnτ)‖xtn − x̃‖q + tn
〈
γfxtn − μV x̃, jq(xtn − x̃)

〉
.

(2.12)

It follows that

‖xtn − x̃‖q ≤ 1
τ

〈
γfxtn − μV x̃, jq(xtn − x̃)

〉

=
1
τ

[〈
γfxtn − γfx̃, jq(xtn − x̃)

〉
+
〈
γfx̃ − μV x̃, jq(xtn − x̃)

〉]

≤ 1
τ

[
γL‖xtn − x̃‖q + 〈

γfx̃ − μV x̃, jq(xtn − x̃)
〉]
.

(2.13)

Therefore, we get

‖xtn − x̃‖q ≤
〈
γfx̃ − μV x̃, jq(xtn − x̃)

〉

τ − γL
. (2.14)

Using that the duality map jq is weakly sequentially continuous from E to E∗ and noticing
(2.14), we get that

lim
n→∞

‖xtn − x̃‖ = 0. (2.15)

We prove that x̃ solves the variational inequality (2.7). Since

xt = QCyt = QCyt − yt + tγfxt +
(
I − tμV

)
Txt, (2.16)

we derive that

(
μV − γf

)
xt =

1
t

(
QCyt − yt

) − 1
t
(I − T)xt + μ(Vxt − VTxt). (2.17)

For all z ∈ F(T), note that

〈
(I − T)xt − (I − T)z, jq(xt − z)

〉 ≥ ‖xt − z‖q − ‖Txt − Tz‖‖xt − z‖q−1

≥ ‖xt − z‖q − ‖xt − z‖q

= 0.

(2.18)
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It follows from Lemma 2.9 and (2.18) that

〈(
μV − γf

)
xt, jq(xt − z)

〉
=

1
t

〈
QCyt − yt, jq(xt − z)

〉 − 1
t

〈
(I − T)xt, jq(xt − z)

〉

+ 〈μ(Vxt − VTxt), jq(xt − z)〉

=
1
t
〈QCyt − yt, jq(xt − z)〉 − 1

t
〈(I − T)xt − (I − T)z, jq(xt − z)〉

+ 〈μ(Vxt − VTxt), jq(xt − z)〉
≤ μ〈Vxt − VTxt, jq(xt − z)〉
≤ ‖xt − Txt‖M,

(2.19)

where M = supn≥0{μk‖xt − z‖q−1} < ∞.
Now replacing t in (2.19) with tn and letting n → ∞, from (2.15) and Lemma 2.8 (ii),

we obtain 〈(μV − γf)x̃, jq(x̃ − z)〉 ≤ 0, that is, x̃ ∈ F(T) is a solution of (2.7). Hence x̃ = x∗ by
uniqueness. Therefore, xtn → x∗ as n → ∞. And consequently, xt → x∗ as t → 0.

Lemma 2.11. LetC be a nonempty closed convex subset of a real q-uniformly smooth Banach space E.
Let the mapping A : C → E be a α-inverse-strongly accretive operator. Then the following inequality
holds:

∥∥(I − λA)x − (I − λA)y
∥∥q ≤ ∥∥x − y

∥∥q − λ
(
qα − Cqλ

q−1
)∥∥Ax −Ay

∥∥q
. (2.20)

In particular, if 0 < λ ≤ (qα/Cq)
1/(q−1), then I − λA is nonexpansive.

Proof. Indeed, for all x, y ∈ C, it follows from Lemma 2.4 that

∥∥(I − λA)x − (I − λA)y
∥∥q

=
∥∥(x − y) − λ(Ax −Ay)

∥∥q

≤ ∥∥x − y
∥∥q − qλ〈Ax −Ay, jq

(
x − y

)〉 + Cqλ
q
∥∥Ax −Ay

∥∥q

≤ ∥∥x − y
∥∥q − qαλ

∥∥Ax −Ay
∥∥q + Cqλ

q
∥∥Ax −Ay

∥∥q

≤ ∥∥x − y
∥∥q − λ

(
qα − Cqλ

q−1
)∥∥Ax −Ay

∥∥q
.

(2.21)

It is clear that if 0 < λ ≤ (qα/Cq)
1/(q−1), then I − λA is nonexpansive. This completes the

proof.

Lemma 2.12. Let C be a nonempty closed convex subset of a real q-uniformly smooth Banach space
E. Suppose M1,M2 : C → 2E are two m-accretive mappings and ρ1, ρ2 are two arbitrary positive
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constants. Let A,B : C → E be α-inverse strongly accretive and β-inverse strongly accretive,
respectively. Let G : C → C be a mapping defined by

G(x) = JM1,ρ1

[
JM2,ρ2

(
x − ρ2Bx

) − ρ1AJM2,ρ2

(
x − ρ2Bx

)]
, ∀x ∈ C. (2.22)

If 0 < ρ1 ≤ (qα/Cq)
1/(q−1) and 0 < ρ2 ≤ (qβ/Cq)

1/(q−1), then G : C → C is nonexpansive.

Proof. For all x, y ∈ C, by Lemma 2.11, we have

∥∥Gx −Gy
∥∥ =

∥∥JM1,ρ1

[
JM2,ρ2

(
x − ρ2Bx

) − ρ1AJM2,ρ2

(
x − ρ2Bx

)]

−JM1,ρ1

[
JM2,ρ2

(
y − ρ2By

) − ρ1AJM2,ρ2

(
y − ρ2By

)]∥∥

≤ ∥∥[JM2,ρ2

(
x − ρ2Bx

) − ρ1AJM2,ρ2

(
x − ρ2Bx

)]

−[JM2,ρ2

(
y − ρ2By

) − ρ1AJM2,ρ2

(
y − ρ2By

)]∥∥

≤ ∥∥(I − ρ1A
)
JM2,ρ2

(
x − ρ2Bx

) − (
I − ρ1A

)
JM2,ρ2

(
y − ρ2By

)∥∥

≤ ∥∥JM2,ρ2

(
x − ρ2Bx

) − JM2,ρ2

(
y − ρ2By

)∥∥

≤ ∥∥(x − ρ2Bx
) − (

y − ρ2By
)∥∥

≤ ∥∥x − y
∥∥,

(2.23)

which implies that G : C → C is nonexpansive. This completes the proof.

Lemma 2.13. Let C be a nonempty closed convex subset of a real q-uniformly smooth Banach space
E. Suppose A,B : C → E are two inverse strongly accretive operators, M1, M2 : C → 2E are two
m-accretive mappings, and ρ1, ρ2 are two arbitrary positive constants. Then (x∗, y∗) ∈ C × C is a
solution of general system (1.15) if and only if x∗ = Gx∗, where G is defined by Lemma 2.12.

Proof. Note that

θ ∈ x∗ − y∗ + ρ1
(
Ay∗ +M1x

∗)

θ ∈ y∗ − x∗ + ρ2
(
Bx∗ +M2y

∗)

�
x∗ = JM1,ρ1

(
y∗ − ρ1Ay∗)

y∗ = JM2,ρ2

(
x∗ − ρ2Bx

∗)

�
G(x∗) = JM1,ρ1

[
JM2,ρ2

(
x∗ − ρ2Bx

∗) − ρ1AJM2,ρ2

(
x∗ − ρ2Bx

∗)] = x∗.

(2.24)

This completes the proof.
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Lemma 2.14 (see [18]). Let E be a q-uniformly smooth Banach space and C a nonempty convex
subset of E. Assume for each i ≥ 0, Ti : C → E is a λi-strict pseudocontraction with λi ∈ (0, 1).
Assume inf{λi : i ≥ 1} = λ > 0 and F =

⋂∞
i=1 F(Ti)/= ∅. Let {ξi}∞i=1 be a positive sequence such that∑∞

i=1 ξi = 1, then
∑∞

i=1 ξiTi : C → E is a λ-strict pseudocontraction and F(
∑∞

i=1 ξiTi) = F.

Remark 2.15. Under the assumptions of Lemma 2.14, if for each i ≥ 1 the mapping Ti : C → E
is replaced by Ti : C → C, respectively, where C is a nonempty closed convex subset of E,
then noticing the fact

∞∑
i=1

ξiTix = lim
n→∞

n∑
i=1

ξiTix = lim
n→∞

1∑n
i=1 ξi

n∑
i=1

ξiTix ∈ C, (2.25)

by Lemma 2.14, we deduce that
∑∞

i=1 ξiTi : C → C is a λ-strict pseudocontraction with λ =
inf{λi : i ≥ 1} and F(

∑∞
i=1 ξiTi) = F.

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a strictly convex, and uniformly smooth
Banach space E which admits a weakly sequentially continuous generalized duality mapping jq : E →
E∗. Let QC be a sunny nonexpansive retraction from E onto C. Assume the mappings A, B : C → E
are α-inverse strongly accretive and β-inverse strongly accretive, respectively. LetM1,M2 : C → 2E

two m-accretive mappings and ρ1, ρ2 be two arbitrary positive constants. Suppose V : C → E is
k-Lipschitz and η-strongly accretive with constants k, η > 0, f : C → E being L-Lipschitz with
constant L ≥ 0. Let {Si : C → C}∞i=0 be an infinite family of λi-strict pseudocontractions with
{λi} ⊂ (0, 1) and inf {λi : i ≥ 0} = λ > 0. Let 0 < μ < (qη/Cqk

q)1/(q−1), 0 < ρ1 < (qα/Cq)
1/(q−1),

0 < ρ2 < (qβ/Cq)
1/(q−1), 0 ≤ γL < τ , 0 < σ ≤ d, where τ = μ(η − Cqμ

q−1kq/q) and d =
min {1, {qλ/Cq}1/(q−1)}. Assume {ξi} ⊂ (0, 1) and

∑∞
i=0 ξi = 1. Define a mapping Tx := (1 − σ)x +

σ
∑∞

i=0 ξiSix, for all x ∈ C. For arbitrarily given x0 ∈ C and δ ∈ (0, 1), let {xn} be the sequence
generated iteratively by

xn+1 = QC

[
αnγfxn + γnxn +

((
1 − γn

)
I − αnμV

)(
δTxn + (1 − δ)yn

)]
,

yn =
(
1 − βn

)
xn + βnkn,

kn = JM1,ρ1

(
zn − ρ1Azn

)
,

zn = JM2,ρ2

(
xn − ρ2Bxn

)
, n ≥ 0.

(3.1)

Assume that {αn}, {βn}, and {γn} are three sequences in (0, 1) satisfying the following conditions:

(i)
∑∞

i=0 αn = ∞, limn→∞αn = 0,
∑∞

n=0 |αn+1 − αn| < ∞,

(ii) 0 < lim infn→∞γn ≤ lim supn→∞γn < 1,
∑∞

n=0 |γn+1 − γn| < ∞,

(iii)
∑∞

n=0 |βn+1 − βn| < ∞, limn→∞βn = β > 0.
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Suppose in addition that F :=
⋂∞

i=0 F(Si)
⋂
F(G)/= ∅. Then {xn} converges strongly to some

point x∗ ∈ F, which is the unique solution of the following variational inequality:

〈γfx∗ − μVx∗, jq
(
p − x∗)〉 ≤ 0, ∀p ∈ F. (3.2)

Proof. We divide the proof into several steps.
Step 1. First, we show that sequences {xn} are bounded. From limn→∞αn = 0 and 0 <
lim infn→∞γn ≤ lim supn→∞γn < 1, there exist some a, b ∈ (0, 1) such that {γn} ⊂ [a, b]. We
may assume, without loss of generality, that {αn} ⊂ (0, (1− b)min{1, 1/τ}). From Lemma 2.7,
we deduce that

∥∥(1 − γn
)
I − αnμV

∥∥ ≤ (
1 − γn

) − αnτ. (3.3)

Taking x∗ ∈ F, it follows from Lemma 2.13 that

x∗ = JM1,ρ1

[
JM2,ρ2

(
x∗ − ρ2Bx

∗) − ρ1AJM2,ρ2

(
x∗ − ρ2Bx

∗)]. (3.4)

Putting y∗ = JM2,ρ2(x
∗ − ρ2Bx

∗), then we can deduce that x∗ = JM1,ρ1(y
∗ − ρ1Ay∗). By Lemma

2.11, we obtain

‖kn − x∗‖ =
∥∥JM1,ρ1

(
zn − ρ1Azn

) − JM1,ρ1

(
y∗ − ρ1Ay∗)∥∥

≤ ∥∥(I − ρ1A
)
zn −

(
I − ρ1A

)
y∗∥∥

≤ ∥∥zn − y∗∥∥

=
∥∥JM2,ρ2

(
xn − ρ2Bxn

) − JM2,ρ2

(
x∗ − ρ2Bx

∗)∥∥

≤ ∥∥(I − ρ2B
)
xn −

(
I − ρ2B

)
x∗∥∥

≤ ‖xn − x∗‖.

(3.5)

It follows from (3.5) that

∥∥yn − x∗∥∥ =
∥∥[(1 − βn

)
xn + βnkn

] − x∗∥∥

≤ (
1 − βn

)‖xn − x∗‖ + βn‖kn − x∗‖
≤ (

1 − βn
)‖xn − x∗‖ + βn‖xn − x∗‖

≤ ‖xn − x∗‖.

(3.6)

In view of Remark 2.15, let S : C → C be the mapping defined by Sx =
∑∞

i=0 ξiSix for all x ∈
C, then we can deduce that S : C → C is a λ-strict pseudocontraction and F(S) =

⋂∞
i=0 F(Si).

By virtue of Lemma 2.5 and 0 < σ ≤ d, where d = min{1, {qλ/Cq}1/(q−1)}, we can get that
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T : C → C is nonexpansive and F(T) = F(S) =
⋂∞

i=0 F(Si). Putting ln = δTxn + (1 − δ)yn, it
follows that

‖ln − x∗‖ =
∥∥δTxn + (1 − δ)yn − x∗∥∥

≤ δ‖Txn − x∗‖ + (1 − δ)
∥∥yn − x∗∥∥

≤ δ‖Txn − Tx∗‖ + (1 − δ)
∥∥yn − x∗∥∥

≤ δ‖xn − x∗‖ + (1 − δ)‖xn − x∗‖
= ‖xn − x∗‖.

(3.7)

It follows from (3.7) that

‖xn+1 − x∗‖ =
∥∥QC

[
αnγfxn + γnxn +

((
1 − γn

)
I − αnμV

)
ln
] − x∗∥∥

≤ ∥∥αnγfxn + γnxn +
[(
1 − γn

)
I − αnμV

]
ln − x∗∥∥

=
∥∥[(1 − γn

)
I − αnμV

]
(ln − x∗) + αn

(
γfxn − μVx∗) + γn(xn − x∗)

∥∥

≤ (
1 − γn − αnτ

)‖ln − x∗‖ + αn

∥∥γfxn − μVx∗∥∥ + γn‖xn − x∗‖
≤ (

1 − γn − αnτ
)‖ln − x∗‖ + αnγ

∥∥fxn − fx∗∥∥ + αn

∥∥γfx∗ − μVx∗∥∥ + γn‖xn − x∗‖
≤ (

1 − γn − αnτ
)‖xn − x∗‖ + αnγL‖xn − x∗‖ + αn

∥∥γfx∗ − μVx∗∥∥ + γn‖xn − x∗‖
≤ [

1 − αn

(
τ − γL

)]‖xn − x∗‖ + αn

∥∥γfx∗ − μVx∗∥∥

≤ max

{
‖x0 − x∗‖,

∥∥γfx∗ − μVx∗∥∥
τ − γL

}
.

(3.8)

Hence, {xn} is bounded, so are {yn}, {kn}, {zn}, and {ln}.
Step 2. In this part, we will claim that ‖xn+1 − xn‖ → 0, as n → ∞.

We observe that

‖kn+1 − kn‖ =
∥∥JM1,ρ1

(
zn+1 − ρ1Azn+1

) − JM1,ρ1

(
zn − ρ1Azn

)∥∥

≤ ∥∥(I − ρ1A
)
zn+1 −

(
I − ρ1A

)
zn

∥∥

≤ ‖zn+1 − zn‖
=
∥∥JM2,ρ2

(
xn+1 − ρ2Bxn+1

) − JM2,ρ2

(
xn − ρ2Bxn

)∥∥

≤ ∥∥(I − ρ2B
)
xn+1 −

(
I − ρ2B

)
xn

∥∥

≤ ‖xn+1 − xn‖.

(3.9)
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It follows from (3.9) that

∥∥yn+1 − yn

∥∥ =
∥∥[(1 − βn+1

)
xn+1 + βn+1kn+1

] − [(
1 − βn

)
xn + βnkn

]∥∥

=
∥∥(1 − βn+1

)
(xn+1 − xn) + βn+1(kn+1 − kn) +

(
βn+1 − βn

)
(kn − xn)

∥∥

≤ (
1 − βn+1

)‖xn+1 − xn‖ + βn+1‖kn+1 − kn‖ +
∣∣βn+1 − βn

∣∣‖kn − xn‖
≤ (

1 − βn+1
)‖xn+1 − xn‖ + βn+1‖xn+1 − xn‖ +

∣∣βn+1 − βn
∣∣‖kn − xn‖

≤ ‖xn+1 − xn‖ +
∣∣βn+1 − βn

∣∣‖kn − xn‖.

(3.10)

Again from (3.1), we have

‖xn+2 − xn+1‖ ≤ ∥∥[αn+1γfxn+1 + γn+1xn+1 +
((
1 − γn+1

)
I − αn+1μV

)
ln+1

]

−[αnγfxn + γnxn +
((
1 − γn

)
I − αnμV

)
ln
]∥∥

≤ αn+1γ
∥∥fxn+1 − fxn

∥∥ + γn+1‖xn+1 − xn‖ +
∥∥((1 − γn+1

)
I − αn+1μV

)
(ln+1 − ln)

∥∥

+ |αn+1 − αn|γ
∥∥fxn

∥∥

+ |αn+1 − αn|μ‖V ln‖ +
∣∣γn+1 − γn

∣∣‖ln − xn‖
≤ αn+1γL‖xn+1 − xn‖ + γn+1‖xn+1 − xn‖

+
[(
1 − γn+1

) − αn+1τ
]‖ln+1 − ln‖ + |αn+1 − αn|γ

∥∥fxn

∥∥

+ |αn+1 − αn|μ‖V ln‖ +
∣∣γn+1 − γn

∣∣‖ln − xn‖.
(3.11)

It follows from (3.10) that

‖ln+1 − ln‖ =
∥∥δTxn+1 + (1 − δ)yn+1 − δTxn − (1 − δ)yn

∥∥

≤ δ‖Txn+1 − Txn‖ + (1 − δ)
∥∥yn+1 − yn

∥∥

≤ δ‖xn+1 − xn‖ + (1 − δ)
∥∥yn+1 − yn

∥∥

≤ ‖xn+1 − xn‖ +
∣∣βn+1 − βn

∣∣‖kn − xn‖.

(3.12)

Substituting (3.12) into (3.11), we have

‖xn+2 − xn+1‖
≤ [(

1 − γn+1
) − αn+1τ

](‖xn+1 − xn‖ +
∣∣βn+1 − βn

∣∣‖kn − xn‖
)
+ |αn+1 − αn|γ

∥∥fxn

∥∥

+ αn+1γL‖xn+1 − xn‖ + γn+1‖xn+1 − xn‖ + |αn+1 − αn|μ‖V ln‖ +
∣∣γn+1 − γn

∣∣‖ln − xn‖
≤ [

1 − αn+1
(
τ − γL

)]‖xn+1 − xn‖ +
(|αn+1 − αn| +

∣∣γn+1 − γn
∣∣ + ∣∣βn+1 − βn

∣∣)M′,
(3.13)
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whereM′ = supn≥0{μ‖V ln‖ + γ‖fxn‖, ‖ln − xn‖, ‖kn − xn‖} < ∞. From (i), (ii), (iii), (3.13), and
Lemma 2.2, we deduce that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.14)

We observe that

‖ln − xn‖ ≤ ‖xn+1 − xn‖ + ‖xn+1 − ln‖

= ‖xn+1 − xn‖ +
∥∥QC

[
αnγfxn + γnxn +

((
1 − γn

)
I − αnμV

)
ln
] − ln

∥∥

≤ ‖xn+1 − xn‖ +
∥∥[αnγfxn + γnxn +

((
1 − γn

)
I − αnμV

)
ln
] − ln

∥∥

≤ ‖xn+1 − xn‖ +
∥∥αn

(
γfxn − μV ln

)
+ γn(xn − ln)

∥∥

≤ ‖xn+1 − xn‖ + αn

∥∥γfxn − μV ln
∥∥ + γn‖xn − ln‖,

(3.15)

which implies that

‖ln − xn‖ ≤ 1
1 − γn

(‖xn+1 − xn‖ + αn

∥∥γfxn − μV ln
∥∥). (3.16)

Noticing conditions (i) and (ii) and (3.14), we have

lim
n→∞

‖ln − xn‖ = 0. (3.17)

Let

Wx = δTx + (1 − δ)
[(
1 − β

)
x + βJM1,ρ1

(
I − ρ1A

)
JM2,ρ2

(
I − ρ2B

)
x
]
, ∀x ∈ C. (3.18)

In view of Lemma 2.1, we see that W : C → C is nonexpansive such that

F(W) = F(T)
⋂

F
(
JM1,ρ1

(
I − ρ1A

)
JM2,ρ2

(
I − ρ2B

))
=

∞⋂
i=0

Si

⋂
F(G) = F. (3.19)

Noticing that

Wxn − ln = δTxn + (1 − δ)
[(
1 − β

)
xn + βJM1,ρ1

(
I − ρ1A

)
JM2,ρ2

(
I − ρ2B

)
xn

] − δTxn

− (1 − δ)
[(
1 − βn

)
xn + βnJM1,ρ1

(
I − ρ1A

)
JM2,ρ2

(
I − ρ2B

)
xn

]

= (1 − δ)
(
β − βn

)(
JM1,ρ1

(
I − ρ1A

)
JM2,ρ2

(
I − ρ2B

)
xn − xn

)
,

(3.20)
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one has

‖Wxn − xn‖ ≤ ‖Wxn − ln‖ + ‖ln − xn‖

≤ (1 − δ)
∣∣β − βn

∣∣∥∥JM1,ρ1

(
I − ρ1A

)
JM2,ρ2

(
I − ρ2B

)
xn − xn

∥∥ + ‖ln − xn‖.
(3.21)

In view of (3.17), (iii) and (3.21), we deduce that

‖Wxn − xn‖ −→ 0 as n −→ ∞. (3.22)

We define xt = QC[tγfxt+(I−tμV )Wxt], then it follows from Lemma 2.10 that {xt} converges
strongly to some point x∗ ∈ F(W) = F, which is the unique solution of the variational
inequality (3.2).
Step 3. We show that

lim sup
n→∞

〈γfx∗ − μVx∗, jq(xn − x∗)〉 ≤ 0, (3.23)

where x∗ is the solution of the variational inequality of (3.2). To show this, we take a subse-
quence {xni} of {xn} such that

lim sup
n→∞

〈
γfx∗ − μVx∗, jq(xn − x∗)

〉
= lim

i→∞
〈γfx∗ − μVx∗, jq(xni − x∗)〉. (3.24)

Without loss of generality, we may further assume that xni ⇀ z for some point z ∈ C
due to reflexivity of the Banach space E and boundness of {xn}, it follows from (3.22) and
Lemma 2.6 that z ∈ F(W) = F. Since the Banach spaceE has aweakly sequentially continuous
generalized duality mapping jp : E → E∗, we obtain that

lim sup
n→∞

〈
γfx∗ − μVx∗, jq(xn − x∗)

〉
= lim

i→∞
〈
γfx∗ − μVx∗, jq(xni − x∗)

〉

= 〈γfx∗ − μVx∗, jq(z − x∗)〉

≤ 0.

(3.25)
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Step 4.We prove that limn→∞‖xn − x∗‖. Setting hn = αnγfxn + γnxn + [(1 − γn)I − αnμV ]ln, for
all n ≥ 0. It follows from (3.1) that xn+1 = QChn. In view of Lemmas 2.3, 2.7, and 2.9, we have

‖xn+1 − x∗‖q = 〈
QChn − hn, jq(xn+1 − x∗)

〉
+
〈
hn − x∗, jq(xn+1 − x∗)

〉

≤ 〈
hn − x∗, jq(xn+1 − x∗)

〉

=
〈[(

1 − γn
)
I − αnμV

]
(ln − x∗), jq(xn+1 − x∗)

〉
+ γn

〈
xn − x∗, jq(xn+1 − x∗)

〉

+ αn

〈
γfxn − μVx∗, jq(xn+1 − x∗)

〉

≤ [(
1 − γn

) − αnτ
]‖ln − x∗‖‖xn+1 − x∗‖q−1 + γn‖xn − x∗‖‖xn+1 − x∗‖q−1

+ αn

〈
γfxn − γfx∗, jq(xn+1 − x∗)

〉
+ αn

〈
γfx∗ − μVx∗, jq(xn+1 − x∗)

〉

≤ [(
1 − γn

) − αnτ
]‖xn − x∗‖‖xn+1 − x∗‖q−1 + γn‖xn − x∗‖‖xn+1 − x∗‖q−1

+ αnγL‖xn − x∗‖‖xn+1 − x∗‖q−1 + αn〈γfx∗ − μVx∗, jq(xn+1 − x∗)〉

≤ [
1 − αn

(
τ − γL

)]‖xn − x∗‖‖xn+1 − x∗‖q−1 + αn〈γfx∗ − μVx∗, jq(xn+1 − x∗)〉

≤ [
1 − αn

(
τ − γL

)][1
q
‖xn − x∗‖q + q − 1

q
‖xn+1 − x∗‖q

]

+ αn

〈
γfx∗ − μVx∗, jq(xn+1 − x∗)

〉
(3.26)

which implies

‖xn+1 − x∗‖q ≤ 1 − αn

(
τ − γL

)

1 +
(
q − 1

)(
τ − γL

)
αn

‖xn − x∗‖q + qαn

1 +
(
q − 1

)(
τ − γL

)
αn

× 〈
γfx∗ − μVx∗, jq(xn+1 − x∗)

〉

≤ [
1 − αn

(
τ − γL

)]‖xn − x∗‖q

+
qαn

1 +
(
q − 1

)(
τ − γL

)
αn

〈
γfx∗ − μVx∗, jq(xn+1 − x∗)

〉
.

(3.27)

Put an = αn(τ − γL) and cn = q〈γfx∗ − μVx∗, jq(xn+1 − x∗)〉/[1 + (q − 1)(τ − γL)αn](τ − γL).
Apply Lemma 2.2 to (3.27) to obtain xn → x∗ ∈ F as n → ∞. This completes the proof.

Remark 3.2. Compared with the known results in the literature, our results are very different
from those in the following aspects.

(i) The results in this paper improve and extend corresponding results in [6–13].
Especially, our result extends their results from 2-uniformly smooth Banach space
or Hilbert space to more general q-uniformly smooth Banach space.

(ii) Our Theorem 3.1 extends one nonexpansive mapping in [6, Theorem 2.1], one λ-
strict pseudocontraction in [8, Theorem 3.1], and an infinite family of nonexpansive
mappings in [10, Theorem 3.1] to an infinite family of λi-strict pseudocontractions.
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And our Theorem 3.1 gets a common element of the common fixed-point set of an
infinite family of λi-strict pseudocontractions and the solution set of the general
system of variational inclusions for two inverse strongly accretive mappings in a
q-uniformly smooth Banach space.

(iii) We by f(xn) replace the uwhich is a fixed element in iterative scheme (1.16), where
f is a L-Lipschitzian. And we also add a Lipschitz and strong accretive operator V
in our scheme (3.1). In particular, whenever C = E, f = u, V = I, {Tn}∞n=0 = {T} and
q = 2, our scheme (3.1) reduces to (1.16).

(iv) It is worth noting that the Banach space E does not have to be uniformly convex in
our Theorem 3.1. However, it is very necessary in Theorem 3.1 of Qin et al. [8] and
many other literature.

Corollary 3.3. Let C be a nonempty closed convex subset of a strictly convex, and 2-reflexive E which
admits a weakly sequentially continuous normalized duality mapping j : E → E∗. LetQC be a sunny
nonexpansive retraction from E onto C. Assume the mappings A, B : C → E are α-inverse strongly
accretive and β-inverse strongly accretive, respectively. Let M1, M2 : C → 2E be two m-accretive
operators and ρ1, ρ2 two arbitrary positive constants. Suppose V : C → E is a k-Lipschitzian and
η-strongly accretive operator with constants k, η > 0, f : C → E being a L-Lipschitzian with
constant L ≥ 0. Let 0 < μ < η/K2k2, 0 < ρ1 < α/K2, 0 < ρ2 < β/K2 and 0 ≤ γL < τ , where
τ = μ(η − K2μk2). Let T : C → C be a nonexpansive with F = F(T)

⋂
F(G)/= ∅. For arbitrarily

given δ ∈ (0, 1) and x0 ∈ C, let {xn} be the sequence generated iteratively by

xn+1 = QC

[
αnγfxn + γnxn +

((
1 − γn

)
I − αnμV

)(
δTxn + (1 − δ)yn

)]
,

yn =
(
1 − βn

)
xn + βnkn,

kn = JM1,ρ1

(
zn − ρ1Azn

)
,

zn = JM2,ρ2

(
xn − ρ2Bxn

)
, n ≥ 0.

(3.28)

Assume that {αn}, {βn}, and {γn} are three sequences in (0, 1) satisfying the following conditions:

(i)
∑∞

i=0 αn = ∞, limn→∞αn = 0,
∑∞

n=0 |αn+1 − αn| < ∞,

(ii) 0 < lim infn→∞γn ≤ lim supn→∞γn < 1,
∑∞

n=0 |γn+1 − γn| < ∞,

(iii)
∑∞

n=0 |βn+1 − βn| < ∞, limn→∞βn = β > 0.

Then {xn} converges strongly to x∗ ∈ F, which is the unique solution of the following variational
inequality:

〈
γfx∗ − μVx∗, j

(
p − x∗)〉 ≤ 0, ∀p ∈ F. (3.29)
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