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Abstract
In this paper, we deal with an initial boundary value problem for a p-Laplacian
evolution equation with nonlinear memory term and inner absorption term subject
to a weighted linear nonlocal boundary condition. We find the effects of a weighted
function as regards determining blow-up of nonnegative solutions or not and
establish the precise blow-up estimate for the linear diffusion case under some
suitable conditions.
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1 Introduction
In the past decades, there have been many works dealing with global existence and blow-
up properties of solutions for nonlinear parabolic equations, especially the initial bound-
ary value problems with nonlocal terms in equations or boundary conditions, we refer to
[–] and references therein. For the study of an initial boundary value problem for lo-
cal parabolic equations with nonlocal boundary condition, we refer to [–]. For example,
Friedman [] studied the linear parabolic equation

ut –Au = , (x, t) ∈ � × (,T),

subject to the weighted linear nonlocal Dirichlet boundary condition

u(x, t) =
∫

�

f (x, y)u(y, t)dy, (x, t) ∈ ∂� × (,T), (.)

where A is an elliptic operator,

A =
n∑

i,j=

ai,j(x)
∂

∂xi ∂xj
+

n∑
i=

bi(x)
∂

∂xi
+ c(x) and c(x) ≤ ,

and the nonnegative continuous function f (x, y) satisfies suitable conditions. He proved
that when

∫
�
f (x, y)dy ≤ ρ < , the solution approaches to  monotonously and exponen-
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tially as t → ∞. As regardsmore general discussions on an initial boundary value problem
for a linear parabolic equation with a weighted linear nonlocal Neumann boundary con-
dition, one can refer to [] by Pao, where the following problem:

ut – Lu = g(x,u), x ∈ �, t > ,

Bu =
∫

�

f (x, y)u(y, t)dy, x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �,

where

Lu =
n∑

i,j=

aij(x)uxixj +
n∑
j=

bj(x)uxj , Bu = α
∂u
∂n

+ u,

was considered. He studied the asymptotic behavior of solutions and found the influence
of the weight function on the existence of global and blow-up solutions. Later, Akila []
adopted themethod of an upper-lower solution to consider the semilinear parabolic equa-
tion

ut =�u + g(x, t,u), (x, t) ∈ � × (,∞),

under a similar weighted linear nonlocal boundary condition. Wang et al. [] studied a
porous medium equation with power form source term,

ut =�um + up, (x, t) ∈ � × (, +∞),

under the weighted linear nonlocal Dirichlet boundary condition (.). By virtue of the
method of an upper-lower solution, they obtained global existence, blow-up properties,
and blow-up rate of solutions.
For the study of initial boundary value problem with nonlocal parabolic equation, espe-

cially the nonlocal problem with time-integral, we refer to [–]. Under a homogeneous
Dirichlet boundary condition, Li and Xie [] studied the nonlinear diffusion equation

ut –�u = uq
∫ t


up ds, (x, t) ∈ � × (,T),

where p ≥ , q > . They obtained the sufficient conditions of global existence and blow-
up of solutions under appropriate critical conditions. Furthermore, under the following
assumptions:

there exists t ∈ (,T) such that ut(x, t) ≥  for all x ∈ �̄, (.)

and

� =
{
x ∈ RN : |x| < R

}
, u(x) = u

(|x|) ≡ u(r),

u′
(r) <  and u′′

(r) < ,
(.)
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they derived the following blow-up rate:

C(T – t)–


p– ≤max
x∈�̄

u(x, t) ≤ C(T – t)–


p– , t → T , (.)

for the special case p >  and q = . It is necessary to point out that assumption (.) seems
to be reasonable, but unfortunately, the authors of [] did not give a relationship between
u(x) and equation (.). The characterization of the monotonicity condition (.) was
given by Souplet in [], who proved the existence of monotone in time solutions for the
above problem and obtained the blow-up rate (.) without the assumption of condition
(.).
Zhou et al. [] considered the following singular diffusion equation with memory term:

(
uk

)
t –�u = uq

∫ t


up ds, (x, t) ∈ � × (,T),

where p ≥ , q ≥ ,  < k < . They got similar results by the method of upper-lower
solution. We should notice that this kind of equation can be turned into a degenerate
porousmedium equation by suitable transformation. In addition, for the system of porous
medium equations with nonlinearmemory terms and a homogeneous Dirichlet boundary
condition, one can refer for example to [, ].
Recently, Liu and Mu [] considered the following semilinear parabolic equation with

memory term:

ut =�u + uq
∫ t


up ds, (x, t) ∈ � × (,T),

subject to a weighted nonlinear nonlocal boundary,

u(x, t) =
∫

�

f (x, y)ul(y, t)dy, (x, t) ∈ ∂� × (,T),

where p,q ≥ . They gave the conditions of global existence and blow-up of solutions and
the blow-up rate of solutions for q = , l =  by establishing an auxiliary function.
In view of the works mentioned above, a nonlocal parabolic equation with time-integral

term does not seem to be so much investigated as nonlocal equations with space-integral
terms. Already at first glance, the problem with a memory term has some difficulties in
proving the existence of non-global solutions. First if t is sufficiently small, the nonlinear
memory term vanishes, and then it is not clear whether the comparison principle holds in
proving the existence of global small solutions. As far as we know, there are a few papers
about the blow-up phenomenon for the p-Laplacian evolution equation with nonlinear
memory term. Motivated by it, we consider the global existence and blow-up properties
of the following p-Laplacian evolution equation with nonlinear memory term and inner
absorption term:

ut – div
(|∇u|p–∇u

)
= uα

∫ t


uβ ds – kum, (x, t) ∈ � × (,T), (.)

subject to weighted linear nonlocal boundary and initial conditions

u(x, t) =
∫

�

f (x, y)u(y, t)dy, (x, t) ∈ ∂� × (,T), (.)

http://www.boundaryvalueproblems.com/content/2014/1/8
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u(x, ) = u(x), x ∈ �, (.)

where p ≥ , α ≥ , β > , m > , k > , and � ⊂ RN (N ≥ ) is a bounded domain
with smooth boundary. The weight function f (x, y) �≡  in the boundary condition is
continuous, nonnegative on ∂� × �, and

∫
�
f (x, y)dy >  on ∂�, while the nonnega-

tive and nontrivial initial data u(x) ∈ L∞(�) ∩ W ,p
 (�) satisfies the compatibility con-

ditions ut(x, ) = div(|∇u(x)|p–∇u(x)) – kus(x) for x ∈ � and u(x) =
∫
�
f (x, y)u(y)dy

for x ∈ ∂�, which is the closed relationship for local solvability of our problem (.)-(.)
(see Section ).
The nonlocal diffusion model like equation (.) arises in many natural phenomena. In

some sense, this kind of nonlocal problem is closer to the actual model than the local
problem, such as the model of non-Newton flux through a porous medium, the model
for compressible reactive gases, the model of population dynamics, and the model of bio-
logical species with human-controlled distribution (see [, –] and references therein).
From a physics point of view, equation (.) with p = ,m,α,β =  and k =  appears in the
theory of nuclear reactor dynamics in which case the nonlocal term with time-integral is
called the memory term []. In fact, there are some important phenomena formulated
as parabolic equations which are coupled with weighted nonlocal boundary conditions
in mathematical models, such as thermoelasticity theory. In this case, the solution u(x, t)
describes the entropy per volume of the materia (see [, ]).
Our main goal is to find the effects of weight function on global or non-global existence

of solutions for problem (.)-(.), the suitable range of nonlinear exponent, and to give
the blow-up rate estimate under some suitable conditions. In addition, we treat the nonlo-
cal nonlinearity Hölder (non-Lipschitz) casesm or n ∈ (, ), as well as the Lipschitz cases
m,n≥  in this paper.We get ourmain results by establishing amodified comparison prin-
ciple, constructing the suitable upper and lower solutions (including the self-similar lower
solutions, the eigenfunction argument and the technique of ordinary differential equation
and so on) and the auxiliary function. Moreover, our results extend part of or all results in
[–]. The detailed results are stated as follows.
• For arbitrary f (x, y) > . If α + β >max{p – ,m}, then the solution of problem
(.)-(.) blows up in finite time for sufficiently large initial data.

• If
∫
�
f (x, y)≥ , for x ∈ ∂�. If α + β >m ≥ , then the solution of problem (.)-(.)

blows up in finite time for all strictly positive initial dates with T sufficiently large.
• If

∫
�
f (x, y) < , for x ∈ ∂�. α + β > , p = , the initial value u(x) satisfies conditions

(H)-(H) (see Section ) and u(x, t) is the blow-up solution of problem (.)-(.),
then the blow-up rate is

c(T – t)–


α+β– ≤ u(x, t)≤ C(T – t)–


α+β– ,

where c = [(α + β – )T]–


α+β– , C = [(α + β – )δ]–


α+β– and δ >  is a constant.
• If

∫
�
f (x, y) < , for x ∈ ∂�,

(i) If α + β ≤max{p – ,m}, then the solution of problem (.)-(.) exists globally
for small initial data.

(ii) If p –  <min{α,β + ,m}, and α + β >m, then the solution of problem
(.)-(.) exists globally for small initial data.

(iii) If α + β >m, then the solution of problem (.)-(.) exists globally for small
enough initial data.

http://www.boundaryvalueproblems.com/content/2014/1/8
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The rest of the paper is organized as follows. In Section , we give the preliminaries for
our research. The proofs of blow-up results and blow-up rate of solutions are given in
Section . In Section , we will deduce the results of global existence.

2 Comparison principle and local existence
Since equation (.) is degenerate when p > , there is no classical solution in general.
Hence, it is reasonable to find a weak solution. To this end, we first give the following
definition of nonnegative weak solution of problem (.)-(.).

Definition  If the nonnegative function u(x, t) satisfies the following conditions:

() u ∈ C
(
,T ;L∞(�)

) ∩ Lp
(
,T ;W ,p

 (�)
)
,

ut ∈ L
(
,T ;L(�)

)
, u(x, ) = u(x),

(.)

()
∫ ∫

QT

utφ dxdt +
∫ ∫

QT

|∇u|p–∇u · ∇φ dxdt

=
∫ ∫

QT

φ

(
uα

∫ t


uβ ds – kum

)
dxdt, (.)

where φ ∈ L(,T ;W ,(�))∩ L(QT ) is nonnegative, φ(x, t)|∂� = , and QT =� × (,T).

() u(x, t) =
∫

�

f (x, y)u(y, t)dy, x ∈ ∂�, (.)

then u(x, t) is called the weak solution of problem (.)-(.).

If the equalities in equations (.)-(.) are replaced by ‘≤’ and ‘≥’, we can get u(x, t)
and u(x, t) which are called the lower solution and upper solution of problem (.)-(.),
respectively.
The following modified comparison principle plays a crucial role in our proofs, which

can be obtained by establishing a suitable test function and Gronwall’s inequality.

Proposition  (Comparison principle) Suppose that u(x, t) and u(x, t) are the lower and
upper solutions of problem (.)-(.), respectively. If u(x, ) ≥ , u(x, ) ≥ ε >  and
u(x, )≤ u(x, ), where ε is any positive constant, then u(x, t)≤ u(x, t) in � × (,T).

Proof For x ∈ �, since u(x, t) and u(x, t) are the lower and upper solutions of problem
(.)-(.), respectively, it follows that

∫ ∫
QT

(ut – ut)φ dxdt +
∫ ∫

QT

(|∇u|p–∇u – |∇u|p–∇u
) · ∇φ dxdt

≤
∫ ∫

QT

φ

[
uα

∫ t


uβ ds – uα

∫ t


uβ ds – k

(
um – um

)]
dxdt

=
∫ ∫

QT

φ

[(
uα – uα

)∫ t


uβ ds + uα

∫ t



(
uβ – uβ

)
ds – k

(
um – um

)]
dxdt.

http://www.boundaryvalueproblems.com/content/2014/1/8


Fang and Zhang Boundary Value Problems 2014, 2014:8 Page 6 of 17
http://www.boundaryvalueproblems.com/content/2014/1/8

Choose a test function φ = χ[,t](u – u)+ =max{u – u, } for t > , where χ[,t] is a char-
acteristic function defined on [, t], then we have

∫ ∫
QT

(u – u)t(u – u)+ dxdt +
∫ ∫

QT

(|∇u|p–∇u – |∇u|p–∇u
) · ∇(u – u)+ dxdt

≤
∫ ∫

QT

(u – u)+
[(
uα – uα

)∫ t


uβ ds + uα

∫ t



(
uβ – uβ

)
ds – k

(
um – um

)]
dxdt

≤
∫ ∫

QT

[
�(x, t)

∫ t


uβ ds + uαT�(x, t) + k�(x, t)

]
(u – u)+ dxdt,

where

�(x, t) = α

∫ 



(
θu + ( – θ )u

)α– dθ ,

�(x, t) = β

∫ 



(
θu + ( – θ )u

)β– dθ ,

�(x, t) =m
∫ 



(
θu + ( – θ )u

)m– dθ .

By Lemma . in [], we know (|∇u|p–∇u– |∇u|p–∇u) ·∇(u–u)+ ≥  for p ≥ .More-
over, it follows fromm ≥ , α ≥ , β ≥  that �i (i = , , ) is bounded, and if  ≤ α < , or
β < , we have� ≤ εα–,� ≤ εβ– since u(x, )≥ , u(x, )≥ ε > . Furthermore, because
u(x, t) and u(x, t) are bounded functions, we can get

∫ ∫
QT

(u – u)t(u – u)+ dxdt ≤ C
∫ ∫

QT

(u – u)+ dxdt.

That is,

∫
�

(u – u)+ dx ≤
∫

�

(
u(x, ) – u(x, )

)
+ dx +C

∫ ∫
QT

(u – u)+ dxdt.

Since u(x, )≤ u(x, ), it follows that

∫
�

(u – u)+ dx ≤ C
∫ ∫

QT

(u – u)+ dxdt.

By Gronwall’s inequality, we can deduce that (u – u)+ = , and so u(x, t) ≤ u(x, t) in � ×
(,T).
For x ∈ ∂�, y ∈ �, we have

u – u ≤
∫

�

f (x, y)
(
u(y, t) – u(y, t)

)
dy≤ ,

in the case of
∫
�
(u – u)+ dy =  in �. Therefore, we obtain u(x, t) ≤ u(x, t) on ∂� × (,T),

and u(x, t)≤ u(x, t) in � × (,T). �

Next, we state the theorem of local existence and uniqueness without proof.

http://www.boundaryvalueproblems.com/content/2014/1/8
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Theorem (Local existence and uniqueness) Suppose that p ≥ , α ≥ , β > , m >  and
k > , the nonnegative initial data u ∈ L∞(�)∩W ,p

 (�) satisfies the compatibility condi-
tions ut(x, ) = div(|∇u(x)|p–∇u(x)) – kus(x) for x ∈ � and u(x) =

∫
�
f (x, y)u(y)dy for

x ∈ ∂�. Then there exists a constant T∗ >  such that problem (.)-(.) admits a nonneg-
ative solution u ∈ C(,T ;L∞(�))∩ Lp(,T ;W ,p

 (�)) for each T < T∗. Furthermore, either
T∗ =∞ or

lim
t→T∗ sup

∥∥u(x, t)∥∥∞ =∞.

Remark  The existence of local nonnegative solutions in time to problem (.)-(.) can
be obtained by combiningTheorem . in []withTheoremA′ in []. By the comparison
principle above, we can get the uniqueness of the solutions to problem (.)-(.) with
α + β ≥ ,m ≥ .

3 Blow-up solutions and blow-up rate
Comparing with the problem under a general homogeneous Dirichlet boundary condi-
tion, the existence of weight function in the boundary condition has a great influence on
the global and non-global existence of solutions.

Theorem  Suppose that α + β > max{p – ,m}, then the solution of problem (.)-(.)
blows up in finite time for arbitrary f (x, y) >  and sufficiently large initial data.

Proof In order to prove the blow-up result, we need to establish a self-similar blow-up
solution. Let

u(x, t) =
ω(r)
vξ (r, t)

, with  ≤ r ≤ R, ξ > ,  < t < T ,

where ω(r) = cos(πr
R ), v(x, t) = T –ωδ(t – T) = vv, and

v = T –ω
δ
 (t – T), v = T +ω

δ
 (t – T).

It is obvious that u(r, t) blows up at r =  as t approaches T . Set

δ ≥ , T ≤ 


such that v(r, t)≤ .

An explicit calculation yields

rxi =
xi
r
, rxixi = –

xixj
r

,

ωxi = ω′rxi = –
π

R
sin

πr
R
rxi , ∇ω = –

π

R
sin

πr
R
,

ωxixj =
(
ω′rxi

)
xj
= –

π

R cos
πr
R

xixj
r

–
π

R
sin

πr
R

(
–
xixj
r

)
,

–�ω =
π

R

(
π

R
cos

πr
R

+
n – 
r

sin
πr
R

)
,

vxi = –δ(t – T)ωδ–ω′rxi , ∇v = –δ(t – T)ωδ–∇ω, vt = –ωδ(t – T),

http://www.boundaryvalueproblems.com/content/2014/1/8
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∇u =
∇ωvξ –ωξvξ–∇v

vξ
=
T + (δξ – )ωδ(t – T)

vξ+ ,

�u =∇
(
v + δξωδ(t – T)

vξ+ ∇ω

)
≥ T + (δξ – )ωδ(t – T)

vξ+ �ω.

Then there exists r ∈ (,R) satisfying

–�ω ≤ , r ≤ r ≤ R,

 ≤ –�ω ≤ nπ

R , and ω ≥ cos
πr
R

,  ≤ r ≤ r,

and

∂u
∂xi

=
ω′rxivξ –ωξvξ–vxi

vξ
,

∂u
∂xi ∂xj

= ω′′v–ξ rxi rxj + ξδv–ξ–(t – T)ωδ–(ω′)rxi rxj +ω′v–ξ rxixj

+ ξδv–ξ–(t – T)ωδ–(ω′)rxi rxj + ξδv–ξ–(t – T)ωδω′′rxi rxj

+ ξδ(ξ + )v–ξ–(t – T)(t – T)ωδ–(ω′)rxi rxj
+ ξδv–ξ–(t – T)ωδ

(
ω′)rxixj

= v–ξ–
(
T + (δξ – )ωδ(t – T)ω′′ xixj

r

)

+ v–ξ–
(
T + (δξ – )ωδ(t – T)ω′

(
–
xixj
r

))

+ δ(ξ + )v–ξ–(t – T)ωδ–(ω′)[T + (δξ – )ωδ(t – T)
]xixj
r

+ δ(δξ – )v–ξ–(t – T)ωδ–(ω′) xixj
r

.

Therefore we have

∂u
∂xi ∂xj

≥ v–ξ–(t – T)ωδ–(ω′)[T + (δξ – )ωδ(t – T)
]�ω

xixj
r

,

and

N∑
j=

N∑
i=

∂u
∂xi

∂u
∂xi ∂xj

∂u
∂xj

≥ v–ξ–(t – T)ωδ–(ω′)[T + (δξ – )ωδ(t – T)
]�ω|∇ω|.

In view of the above, this gives

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds + kum

= ut –
(|∇u|p–�u + (p – )|∇u|p–(∇u)THx(u) · ∇u

)
– uα

∫ t


uβ ds + kum

= ut –

(
|∇u|p–�u + (p – )|∇u|p–

N∑
j=

N∑
i=

∂u
∂xi

∂u
∂xi ∂xj

∂u
∂xj

)
– uα

∫ t


uβ ds + kum

http://www.boundaryvalueproblems.com/content/2014/1/8
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≤ ξωδ+(t – T)
vξ+ –

(
T + (δξ – )ωδ(t – T)

vξ+

)p–{T + (δξ – )ωδ(t – T)

vξ+

+ (p – )
T + (δξ – )ωδ(t – T)

vξ+

}
�ω|∇ω|p– – ωα+β

vξα(r, t)

∫ t




vξβ (r, s)

ds + k
ωm

vmξ

=
ξωδ+(t – T)

vξ+ –
(p – )[T + (δξ – )ωδ(t – T)]p–

v(ξ+)(p–)
�ω|∇ω|p–

–
ωα+β

vξα(r, t)

∫ t




vξβ (r, s)

ds + k
ωm

vmξ
.

We will discuss the problem for two cases.
Case .  < t ≤ T

 , T
 < v≤ T. We need to show that for sufficiently small T ,

ξωδ+(t – T)
vξ+ + k

ωm

vmξ
–
(p – )[T + (δξ – )ωδ(t – T)]p–

v(ξ+)(p–)
�ω|∇ω|p– ≤ .

That is,

–�ω ≤ v(ξ+)(p–)–mξ [ξωδ+(T – t)vmξ – kωmvξ+]
(p – )[T + (δξ – )ωδ(t – T)]p–|∇ω|p–

≤ ξωδ+(T – t)v(ξ+)(p–)

(p – )[T + (δξ – )ωδ(t – T)]p–|∇ω|p– .

Let δ be sufficiently large, satisfying ξδ > . By the condition T < v≤ T,  < ω ≤ , and
|∇ω| < π

R , we just have to make the following equality hold:

–�ω ≤ 
p – 

ξωδ+(T)(ξ+)(p–)

(ξδT)p–


( π
R )p–

.

It is obvious that it holds for r < r ≤ R.
For  ≤ r < r, choose ξ > 

p– , T <min{ 
 , [

nπp(ξδ)p–
p–ξp–ξ–Rp (cos

πr
R )–(δ+)]


ξp–ξ– } such that

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds – kum ≤ .

Case . T
 < t < T , choose ξβ >  and we can get

uα

∫ t


uβ ds≥ ωα+β

vξαvξβ


∫ t




vξβ


ds =
ωα+β

ω
δ
 vξαvξβ




βξ – 

(


vξβ–


–


vξβ–
 ()

)

=
ωα+β– δ



vξ (α+β)–v


βξ – 
–

ωα+β– δ


vξαvξβ
 vξβ–

 ()


βξ – 
,

and

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds + kum

≤ ξωδ+T
vξ+ –

(p – )[T + (δξ – )ωδ(t – T)]p–

v(ξ+)(p–)
�ω|∇ω|p–

–
ωα+β– δ



vξ (α+β)–v


βξ – 
+

ωα+β– δ


vξαvξβ
 vξβ–

 ()


βξ – 
+ k

ωm

vmξ
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/8
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(i) r ≤ r ≤ R; we have –�ω ≤ , then

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds + kum

≤ ξωδ+T
vξ+ –

ωα+β– δ


vξ (α+β)–v


βξ – 
+

ωα+β– δ


vξαvξβ
 vξβ–

 ()


βξ – 
+ k

ωm

vmξ
.

Since α + β >max{p – ,m}, choose ξ ≥ max{(α + β – )–, β–, (α + β –m)–} and δ ≥
max{α + β – , (α + β –m), } to satisfy ξ (α + β – p +  –m) > p. However,

v
v()

=
T –ω

δ
 (t – T)

T +ω
δ
T

≤ T –ω
δ
 (T – T)

T +ω
δ
T

=
 + 

ω
δ


 +ω
δ


< ,

thus we find

vξβ–


vξβ–
 ()

≤ v
v()

≤  + 
ω

δ


 +ω
δ


for ξβ –  > .

Then

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds + kum

≤ ωα+β– δ


vξ (α+β)–v


βξ – 

[
ξT(ξβ – )vvξ (α+β–)–ω

δ
 –(α+β–)

+
vξβ–


vξβ–
 ()

–  + k
ωm–α–β+ δ

 v
vξ (m–α–β)+ (ξβ – )

]

≤ ωα+β– δ


vξ (α+β)–v


βξ – 

[
ξT(ξβ – )ω

δ
 –(α+β–)

+
 + 

ω
δ


 +ω
δ


–  + Tk(ξβ – )ωm–α–β+ δ


]

≤ ωα+β– δ


vξ (α+β)–v( +ω
δ
 )


βξ – 

[
ξT(ξβ – )ω

δ
 –(α+β–)( +ω

δ

)
+

(
 +



ω

δ


)

–
(
 +ω

δ

)
+ kT

(
 +ω

δ

)
(ξβ – )ωm–α–β+ δ



]

≤ ωα+β– δ


vξ (α+β)–v( +ω
δ
 )


βξ – 

[
ξT(ξβ – )ω

δ
 –(α+β–)

–


ω

δ
 + kT(ξβ – )ωm–α–β+ δ



]

in the sense of  < ω ≤  and v ≤ T ≤ .
In order to get the result, we have to show that

ξT(ξβ – )ω
δ
 +(α+β–) + kT(ξβ – )ωm–α–β+ δ

 ≤ 

ω

δ
 .

http://www.boundaryvalueproblems.com/content/2014/1/8
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Note that  < ω ≤  and δ ≥max{α + β – , (α + β –m), }, we choose

T ≤min

{


,


(ξ + k)(ξβ – )

}
,

in which case we can get the result.
(ii)  ≤ r < r; we have  ≤ �ω ≤ nπ

R and ω ≥ cos πr
R . Since  < ω ≤  and v(r, t) ≤ ,

we know that ξωδ+T
vξ+ ≤ ξT

v(ξ+)(p–) , and

(p – )[T + (δξ – )ωδ(t – T)]p–

v(ξ+)(p–)
(–�ω)|∇ω|p–

≤ (p – )(ξδT)p–

v(ξ+)(p–)
nπ

R

(
π

R

)p–

=
(p – )(ξδT)p–

v(ξ+)(p–)
nπp

Rp . (.)

Let A = (cos πr
R )δ , B = +A


+A , it is obvious that


 < B <  and ωδ ≥ A. Substituting equation

(.) into equation (.) gives

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds + kum

≤ ξT
v(ξ+)(p–)

+
(p – )(ξδT)p–

v(ξ+)(p–)
nπp

Rp +
ωα+β– δ



vξαvξβ
 vξβ–

 ()


βξ – 

–
ωα+β– δ



vξ (α+β)–v


βξ – 
+ k

ωm

vmξ

≤ ξT + (p – )(ξδT)p–nπp

v(ξ+)(p–)Rp +
ωα+β– δ



vξαvξβ
 vξβ–

 ()


βξ – 
–

ωα+β– δ


vξ (α+β)–v


βξ – 
+

k
vmξ

=
ξT + (p – )(ξδT)p–nπp + kRp

v(ξ+)(p–)+mξRp +
ωα+β– δ



vξαvξβ



βξ – 

(


vξβ–
 ()

–
Bξδ–

vξδ–


)

–
( – Bξδ–)ωα+β– δ



vξ (α+β)–v


βξ – 

≤ ξT + (p – )(ξδT)p–nπp + kRp

v(ξ+)(p–)+mξRp –
( – Bξδ–)A

α+β
δ

– 


vξ (α+β)–


βξ – 

+
ωα+β– δ



vξαvξβ



βξ – 

(


vξβ–
 ()

–
Bξδ–

vξδ–


)
.

However, since v = T –ω
δ
 (t – T) ≤ T + T

 ω
δ
 and 

 < B < , it follows that


vξβ–
 ()

≤ Bξδ–

vξδ–


.

Finally, we need to show that

ξT + (p – )(ξδT)p–nπp + kRp

v(ξ+)(p–)+mξRp ≤ ( – Bξδ–)A
α+β

δ
– 


vξ (α+β)–


βξ – 
.
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Because T ≤ 
 and v ≤ T ≤ , we have to show

[
ξ + (p – )(ξδ)p–nπp + kRp

Rp

](
T)ξ (α+β–p+–m)–p ≤ ( – Bξδ–)A

α+β
δ

– 


βξ – 
.

In other words, we just need the following inequality:

T ≤
[

( – Bξδ–)A
α+β

δ
– 
Rp

(ξβ – )(ξ + (ξδ)p–)nπp

] 
ξ (α+β–p+–m)–p

to hold. So choose T to be small enough, and we can get

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds – kum ≤ .

For x ∈ ∂�, ω(R) = ,

u(R, t) =
ω(R)
vξ (R, t)

=  ≤
∫

�

f (x, y)udy,

choose u(r, ) = ω(r)
vξ (r,) =

ω(r)
T–ωδT ≤ u, then u(r, t) is the lower solution of problem (.)-

(.). This implies that the solution blows up in finite time for large enough initial data.
�

Theorem  Suppose that
∫
�
f (x, y)dy ≥  for x ∈ ∂�. If α + β >m ≥ , then the solution

of problem (.)-(.) blows up in finite time for all strictly positive initial dates with T
sufficiently large.

Proof Consider the following problem:

v′(t) = Tvα+β – kvm, v() = v. (.)

As α + β >m, we know vα+β +  > vm, and Tvα+β – kvm ≥ (T – k)vα+β – k. Therefore, the
solution of equation (.) is an upper solution of the following problem:

v′(t) = (T – k)vα+β – k, v() = v.

Since T > k and α + β > , the solution of this problem blows up in finite time if v >
( k
T–k )


α+β .

It is obvious that the solution of problem (.) is a lower solution of problem (.)-(.)
when

∫
�

ϕ(x, y)dy≥  and u(x) > v. By Proposition , u(x, t) is a blow-up solution. �

Suppose that the solution u(x, t) of problem (.)-(.) with p =  blows up in finite time,
and let U(t) = maxx∈� u(x, t). We suppose that the initial data satisfies the following as-
sumptions:

(H) �u(x) + uα

∫ t
 u

β
 ds – kum > .

(H) There exists a constant δ >  such that �u(x) + uα

∫ t
 u

β
 ds – kum – δuα+β

 ≥ .
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Theorem  Suppose that
∫
�
f (x, y)dy≤  for x ∈ ∂�. If α + β > , u(x) satisfies condition

(H)-(H), and u(x, t) is the blow-up solution of problem (.)-(.) in finite time T with
p = , then the blow-up rate is

c(T – t)–


α+β– ≤ u(x, t) ≤ C(T – t)–


α+β– ,

where c = [(α + β – )T]–


α+β– and C = [δ(α + β – )]–


α+β– .

Remark  Choose � = (, ), α = , β = , m =  and f (x, y) = 
xy, one can easily verify

that u(x) = x satisfies (C)-(C), conditions in Theorem  are thus valid.

Lemma  If u(x) satisfies condition (H)-(H), p = , then there exists a positive constant
c = [(α + β – )T]–


α+β– such that U(t)≥ c(T – t)–


α+β– .

Proof It is obvious thatU(t) is Lipschitz continuous and differentiable almost everywhere.
By equation (.) with p =  and �U(t) ≤ , it yields

U ′(t)≤Uα

∫ t


Uβ ds – kUm ≤ TUα+β ,

and thus

–
(
U–α–β(t)

)′ ≤ T(α + β – ).

Integrating the result above over (t,T), we can obtain the conclusion. �

Proof of Theorem  Let J = ut – δuα+β , where δ >  is sufficiently small. Since α + β > , we
have

Jt = utt – δ(α + β)uα+β–ut

=�ut + αuα–ut
∫ t


uβ ds + uα+β – kmum–ut – δ(α + β)uα+β–ut ,

�J =�ut – δ(α + β)uα+β–ut + δ(α + β)uα+β–

×
∫ t


uβ ds – δ(α + β)(α + β – )uα+β–|∇u|,

Jt –�J ≥ αuα–ut
∫ t


uβ ds + uα+β – δ(α + β)uα+β–

∫ t


uβ ds – kmum–ut

=
(

αuα–
∫ t


uβ ds – kmum–

)
J + uα+β

(
 – δβuα–

∫ t


uβ ds + kmum–δ

)
,

so we can choose δ >  to be small enough and thus obtain

Jt –�J ≥ αuα–J
∫ t


uβ ds.
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On the other hand, as (x, t) ∈ ∂� × (,T), we get

J = ut – δuα+β =
∫

�

f (x, y)ut dy – δ

(∫
�

f (x, y)udy
)α+β

=
∫

�

f (x, y)J dy + δ

∫
�

f (x, y)uα+β dy – δ

(∫
�

f (x, y)udy
)α+β

.

Let  < F(x) =
∫
�
f (x, y)dy ≤ , By Jensen’s inequality, this gives

J ≥
∫

�

f (x, y)J dy + δF(x)
[∫

�

f (x, y)u
dy
F(x)

]α+β

– δ

(∫
�

f (x, y)udy
)α+β

≥
∫

�

f (x, y)J dy,

and

J(x, t) = ut – δuα+β =�u + uα

∫ t


uβ ds – δuα+β .

It follows from the assumptions of (H)-(H) that J(x, ) ≥ . Therefore, it is easy to deduce
that J(x, t) ≥  for (x, t) ∈ � × [,T). That is, ut ≥ δuα+β and integrating this over (t,T)
yields u ≤ C(T – t)–


α+β– . Combining the results with Lemma , we obtain the desired

result. �

4 Global existence of solutions
In this section, we give sufficient conditions of the global existence of solutions.

Theorem  Suppose that
∫
�
f (x, y)dy <  for x ∈ ∂�. If α + β ≤ max{p – ,m}, then the

solution of problem (.)-(.) exists globally for small initial data.

Proof Let u(x, t) = qentψ(x), where q,n >  are determined later, and ψ(x) solves the fol-
lowing problem:

–div |∇ψ |p–∇ψ = , x ∈ �,

ψ(x) =
∫

�

f (x, y)dy, x ∈ ∂�,

where  < ψ(x) < . Let η =max� ψ(x), η =max� ψ(x),

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds + kum

= qnentψ + qp–en(p–)t –

nβ

qα+βen(α+β)tψα+β + kqmemntψm

≥ qp–en(p–)t –

nβ

qα+βen(α+β)tψα+β + kqmemntψm;

since α + β <max{p – ,m}, choosing

n >max

{

kβ

(qη)α+β–m,

β
qα+β–p+η

α+β


}
,
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we can infer that

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds + kum ≥ .

For x ∈ ∂�,  <ψ(x) < 

u(x, t) = qent
∫

�

f (x, y)dy≥
∫

�

f (x, y)udy.

Selecting u(x) < qη, we can deduce that the result holds. �

Theorem  Suppose that
∫
�
f (x, y)dy ≤ ρ <  for x ∈ ∂�. If p –  < min{α,β + ,m}, and

α + β >m, then the solution of problem (.)-(.) exists globally for small initial data.

Proof Suppose that η(x) solves the following problem:

–div |∇η|p–∇η = , x ∈ �,

η(x) = , x ∈ ∂�,

in which  < η(x) < . Let C =max� η(x).
Set u(x, t) = k(A + t)–r( ρ

–ρ
+ η(x)

C ), where A,k ≥  and ≤ r ≤ 
p– , then

ut = –kr(A + t)–r–
(

ρ

 – ρ
+

η(x)
C

)
≥ –kr(A + t)–r–


 – ρ

≥ –kr(A + t)–r(p–)


 – ρ
,

and

–uα

∫ t


uβ ds = –kα+β

 (A + t)–rα
(

η(x)
C

+
ρ

 – ρ

)α+β ∫ t


(A + t)–rβ ds

≥ –
kα+β


 – rβ
(A + t)–rα–rβ

(
η(x)
C

+
ρ

 – ρ

)α+β

.

For p– <min{α,β +,m}, we choose  ≤ r ≤ 
p– such that – r(α+β –m) <  and rβ ≤ .

It follows that

–uα

∫ t


uβ ds≥ –

kα+β


 – rβ
(A + t)–rα–rβ

(


 – ρ

)α+β

,

and

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds + kum

≥ –kr(A + t)–r(p–)


 – ρ
+ kp– (A + t)–r(p–) –

kα+β


 – rβ
(A + t)–rα–rβ

(


 – ρ

)α+β

+ kkm (A + t)–mr
(

η(x)
C

+
ρ

 – ρ

)m

= k(A + t)–r(p–)
(

–r
 – ρ

+
kp–


)
+ kp– (A + t)–r(p–)
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×
[


–
kα+β–p+

 – rβ

(A + t)–r(α+β–p+)
(


 – ρ

)α+β

+ kkm–p+
 (A + t)–r(m–p+)

(
η(x)
C

+
ρ

 – ρ

)m]
.

Since A,k ≥ , choosing

k ≥max

{(
r

 – ρ

)p–

, 
}

and

A≥max

{[
k( – rβ)

(
 – ρ

k

)α+β–m] 
–r(α+β–m)

, 
}
,

we can get

ut – div
(|∇u|p–∇u

)
– uα

∫ t


uβ ds + kum ≥ .

On the other hand, for x ∈ ∂� and sufficiently large A, we have

u(x, t) = k(A + t)–r
ρ

 – ρ
≥ k(A + t)–r


 – ρ

∫
�

f (x, y)dy

≥
∫

�

k(A + t)–r
(

η(x)
C

+
ρ

 – ρ

)
f (x, y)dy

=
∫

�

uf (x, y)dy.

Choosing u to be sufficiently small such that u ≤ kA–r( η(x)
C + ρ

–ρ
), we can conclude

that u is an upper solution of problem (.)-(.). The proof is completed. �

Theorem  Suppose that
∫
�
f (x, y)dy <  for x ∈ ∂�. If α + β > m, then the solution of

problem (.)-(.) exists globally for small enough initial data.

Proof Choosing u(x, t) = A and A > max{( kT )


α+β– ,u(x)}, it is easy to see that the result
holds. �
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