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Abstract. High-resolution magnetic field data from Clus-
ter Flux Gate Magnetometer (FGM) and the Spatio-Temporal
Analysis of Field Fluctuations (STAFF) instruments are used
to study turbulent magnetic field fluctuations during the high-
altitude cusp crossing on 17 March 2001. Despite the quiet
solar wind conditions, the cusp was filled with magnetic field
turbulence whose power correlates with the field-aligned ion
plasma flux. The magnetic field wave spectra shows power
law behavior with both double and single slopes with break
in the spectra usually occurring in the vicinity of the local
ion cyclotron frequency. Strong peaks in the wave power
close to local ion cyclotron frequency were sometimes ob-
served, with secondary peaks at higher harmonics indicative
of resonant processes between protons and the waves. We
show that the observed spectral break point may be caused
partly by damping of obliquely propagating kinetic Alfvén
(KAW) waves and partly by cyclotron damping of ion cy-
clotron waves.

Keywords. Magnetospheric physics (Magnetopause, cusp
and boundary layers; Plasma waves and instabilities) – Space
plasma physics (Nonlinear phenomena; turbulence)

1 Introduction

The high-altitude cusps are regions where the magnetosheath
plasma has the most direct access to the ionosphere, and their
structure is determined by a complex interaction between the
shocked solar wind and the geomagnetic field. The cusps are
also a region of significant turbulence which can be created
by solar wind (bowshock) perturbations, magnetic reconnec-
tion or intrinsic instabilities present in the cusp. Prior to the
mid-1990s, in situ measurements of the cusp were relatively
infrequent, although important results came from the HEOS

Correspondence to:K. Nykyri
(k.nykyri@ic.ac.uk)

and Hawkeye missions (e.g. Paschmann et al., 1976; Kessel
et al., 1996; Dunlop et al., 2000). The recent Polar and In-
terball missions have been important in illuminating many
examples of cusp physics. Of particular interest for this pa-
per has been the identification of lobe reconnection (Scudder
et al., 2002; Fuselier et al., 2000; Russell et al., 2000), the
spatial extent of the cusp (Zhou et al., 1999, 2000) and in-
situ magnetic field turbulence (Savin et al., 1998; Chen and
Fritz, 1998; Le et al., 2001; Savin et al., 2002, 2004).

The four spacecraft, multi-instrument Cluster mission rep-
resents the first of a new generation of magnetospheric
physics missions, and is ideal for studying the high- and
mid-altitude cusps. Cluster has revealed for the first time
many important aspects of the structure of the high-altitude
cusps, and especially how they are related to the prevail-
ing solar wind conditions (e.g. Lavraud and Cargill, 2005;
Cargill et al., 2005; Lavraud et al., 2005). In particular, it is
becoming apparent that the orientation of the Interplanetary
Magnetic Field (IMF) plays a pivotal role. For Northward
IMF, a picture is emerging of a cusp influenced by lobe re-
connection (Vontrat-Reberac et al., 2003; Twitty et al., 2004)
with Earthward-directed plasma jets being observed, but also
containing regions of stagnant plasma (Lavraud et al., 2002,
2004). On the other hand, for Southward IMF, the cusp is
dominated by tailward convection due to sub-solar reconnec-
tion (Cargill et al., 2004).

A particularly interesting aspect of the cusp encounters
with Northward IMF have been observations of extensive
regions of magnetic field turbulence seemingly associated
with Earthward-directed plasma flows near the boundary be-
tween the cusp and lobe (Nykyri et al., 2003, 2004; Sundkvist
et al., 2005). The level of turbulence appears to correlate
with the magnitude of the flows and the plasma number flux,
and also shows strong peaks at the ion cyclotron frequency.
Both left and right-handed waves are seen: a puzzling ob-
servation is the presence of left-handed waves above the
ion cyclotron frequency (also observed by Polar spacecraft,
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Le et al., 2001). The waves show no significant correla-
tion between the spacecraft when the inter-spacecraft sepa-
ration is either 600 or 100 km (Nykyri et al., 2003). It is un-
clear whether these waves are generated in-situ by the plasma
flows, or whether they are convected from remote reconnec-
tion sites at the lobes. Since the reconnection site would be
severalRE away, this implies a damping time longer than
300 s for flows of 100 km/s. A recent study by Sundkvist
et al. (2005) is implying a local generation mechanism for
these waves: they observe that the Poyinting flux is changing
direction at the proton gyrofrequency.

Our previous studies (Nykyri et al., 2003, 2004) were car-
ried out using magnetic field data from the Flux Gate Magne-
tometer (FGM) instruments on Cluster (Balogh et al., 2001),
and focused on the frequency range between 0.1 Hz to over
1 Hz. For these examples, the proton cyclotron frequency
(fIC) was in the range 0.7–1.5 Hz. We found indications of
wave power at higher cyclotron harmonics, and the transi-
tion to a different turbulence regime abovefIC . The lat-
ter possibility has also been discussed by Sundkvist et al.
(2005), who suggest that the cusp waves belong to the kinetic
Alfv én branch below the proton cyclotron frequency and are
electromagnetic ion-Bernstein waves above that frequency.
This is also confirmed by Grison et al. (2005) who used the
k-filtering technique, and showed that kinetic Alfvén waves
dominate the electromagnetic spectrum up to 1Hz and above
0.8 Hz intense Bernstein waves are observed.

A limitation of our earlier studies was the level of in-
strument noise above a few Hz and so this paper returns to
the topic of cusp turbulence by examining magnetic field
turbulence at frequencies up to 10 Hz using measurements
from the Cluster Spatio-Temporal Analysis of Field Fluctu-
ation (STAFF) experiment (Cornilleau-Wehrlin et al., 1997;
Cornilleau-Wehrlin et al., 2003) as well as from FGM. The
main objective in using the two instruments is to get a contin-
uous spectra from lower (FGM) to higher (STAFF) frequen-
cies which enables us to study spectral structure both below
and above the local ion cyclotron frequency (fIC).

We return in this paper to the well-studied high-altitude
cusp crossing on 17 March 2001 (Vontrat-Reberac et al.,
2003; Nykyri et al., 2003, 2004). Section 2 presents the rele-
vant instrumentation and cusp overview, Sect. 3 the analysis
techniques, Sect. 4 the measurements and Sects. 5 and 6 our
interpretation of the observed spectral structure in terms of
wave damping.

2 Instrumentation and overview of cusp

We use data from three instruments on-board Cluster. High
resolution (22.4 vectors/s) magnetic field measurements are
obtained from the Flux Gate Magnetometer (FGM: Balogh
et al., 1997, 2001) from all four spacecraft. FGM data
provides the overall cusp magnetic field context, and wave
power at frequencies up to 3 Hz can be accurately calculated.

Search coil magnetometers (STAFF: Spatio-Temporal Anal-
ysis of Field Fluctuation experiment: Cornilleau-Wehrlin
et al., 2003; Cornilleau-Wehrlin et al., 1997) on-board all
four spacecraft are used to calculate wave power from 1 Hz
up to 10 Hz. Ion plasma measurements are obtained using
the Cluster Ion Spectrometry (CIS: Rème et al., 2001) ex-
periment and are essential for providing the plasma context.
Data from the Hot Ion Analyser (HIA) instrument on-board
spacecraft 1 and 3 and the ion COmposition and DIstribu-
tion Function analyser (CODIF) instrument on-board space-
craft 4 are used. The plasma velocity moments are avail-
able every∼4 s from spacecraft 1 and 4 and every 12 s from
spacecraft 3.

The cusp crossing chosen occurs on an outbound orbit be-
tween 05:00 and 07:00 UT on 17 March 2001. This interval
has been extensively studied (Vontrat-Reberac et al., 2003;
Nykyri et al., 2003, 2004), so that the overall phenomenology
is well established. Figure 1 shows the power spectral slopes
(discussed later in Sects. 4.3 and 4.4) and plasma parameters
measured by spacecraft 1, 3 and 4 between 05:00–06:00 UT.
The color code used in this paper is as follows: black, red,
green and blue correspond to spacecraft 1, 2, 3 and 4 respec-
tively (referred to hereafter as sc1, sc2, sc3, sc4). Panels b-f
show the ion beta (β), plasma density (N), parallel plasma
velocity (V‖), Alfv én Mach number (MA) and the angle be-
tween plasma flow and the magnetic field (θBV ). The space-
craft separation is 600 km and Cluster altitude in the cusp is
∼ZGSM=8RE .

The spacecraft leave the magnetosphere shortly after
05:00 UT, and cusp entry can be seen first as an enhanced
density at sc3 (Fig. 1c). Between 05:07 and 05:13 UT, the
spacecraft sequentially entered the cusp, a region charac-
terized here by a density of a few particles cm−3 with an
Earthward-directed plasma flow of approximately 250 km/s
(Fig. 1d), although this value varies between the spacecraft.

Cluster remains in the cusp from approximately 05:13 to
06:20 UT, and during this time the flows decline to almost
zero. However, this decline masks considerable structure,
with strong velocity shears being present over timescales of
a few minutes. Between 05:00–06:00 UT the magnetic field
gradually decreases (not shown) from∼100 nT to 45 nT, im-
plying proton cyclotron frequencies of 1.5–0.7 Hz. In this
paper we only focus on data up to 06:00 UT.

The solar wind conditions (not shown) are obtained from
Advanced Composition Explorer (ACE) spacecraft at the L1
point (a lag time was applied assuming 285 km/s solar wind
speed). During the interval of 04:30–06:30 UT solar wind
had a magnetic field magnitude of approximately 5 nT,Bz

was mostly pointing northward (except for a brief southward
turning at about 05:40 UT), with a magnitude of approxi-
mately 3 nT.By was mostly positive with a magnitude of 3 nT
but turned negative at about 05:17 UT for about 35 min.Bx

was close to zero until∼5:17 UT at Cluster after which it
turned to∼2.5 nT.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. Power spectral slopes and plasma parameters between 05:00–06:00 UT. Panel(a) shows inertial (s1) and dissipation (s2) range slopes.
The solid line is at 5/3. Panels(b)–(f) show the ion plasma beta (β), the plasma density (N), parallel plasma velocity (V‖), Alfv én Mach
number (MA) and the angle between plasma flow and the magnetic field (θBV ). Black is data from spacecraft 1 (hereafter sc1), red from sc2,
green from sc3 and blue from sc4. The spacecraft separation is 600 km and Cluster altitude in the cusp is∼ZGSM=8RE .

In analyzing the magnetic field turbulence we use same
temporal demarcation of the cusp as described in Nykyri
et al. (2004) who divided the analysis into regions based on
the local plasma properties: a strong shear-flow cusp between
05:07 and 05:25; a stagnant cusp between 05:25 and 05:35
and a moderate shear-flow cusp between 05:35 and 05:56.

3 Analysis methods of cusp magnetic field fluctuations

We evaluated the total power of the magnetic field fluctu-
ations between 05:00–06:00 UT using data from both the

STAFF and FGM instruments. The magnetic field time series
was examined and the short duration data gaps were linearly
interpolated. Before evaluating the Fast Fourier Transform
(FFT) for each interval, a Hanning window was applied to
the de-trended data set. The total power is then the trace of
the power spectral matrix:Ptot=Px+Py+Pz.

3.1 Combining STAFF and FGM: waves close to the ion
cyclotron frequency

In order to ensure that the spectra from the two instruments
can be combined we have checked that in the instrumental
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Fig. 2. Total power of magnetic field fluctuations observed by Clus-
ter FGM (red) and STAFF (black) instrument on-board of space-
craft 1 centered at 05:27:25 UT (2×256 data points are used).

overlap region (∼0.5–2 Hz) both instruments measure the
same power. For this purpose 512 point windows (∼22.9 s)
were used at each interval of the comparison study in
Sect. 4.3.

As an example of how FGM and STAFF data can be com-
bined, we first look at the strong spectral peaks near the ion
cyclotron frequency and its harmonics when the spacecraft
are in the stagnant cusp. Examination of the magnetic field
time series shows that the several small amplitude (∼1–2 nT)
wave trains were observable at all four spacecraft between
∼05:25–05:29 UT and between∼05:45–05:49 UT, showing
no correlation between the spacecraft pairs (see Nykyri et al.
(2004) for more details).

Figure 2 shows the total power in the magnetic field fluc-
tuations centered at 05:27:25 UT (for each instrument the
data is averaged over 2 windows of 256 points) measured by
FGM (red) and STAFF (black) on spacecraft 1. It is clear
that between 0.5–2.8 Hz, the power from both instruments
are in good agreement. The frequency corresponding to the
dominant peak is about 1.1 times the local ion cyclotron fre-
quency. The first harmonic of the fundamental frequency is
also observable from both FGM and STAFF. Because of the
better sensitivity at higher frequencies, STAFF can also de-
tect the 2nd, 3rd and 4th harmonics (see also Cargill et al.,
2005).

Thus, both instruments measure the same peak of the fun-
damental frequency where their measurements overlap, so
we have confidence in combining their spectra when using
longer (approximately 6.1 min) intervals.

3.2 Slope validation

However, longer window sizes have better statistics and are
used to evaluate the slope of the power spectra (Sect. 4.3).
There we use∼6.1 min windows for both instruments which
corresponds to 8192 points with FGM sampling frequency of
22.4 vectors/s. Because the sampling frequency for STAFF is
slightly higher than for FGM, we require more STAFF points
to give the same total time interval. However, instead of a
single window it is sometimes better to use short but numer-
ous windows for STAFF spectra.

The magnetic field power spectra shows a clear break dur-
ing some intervals dividing the spectra in two different power
law regimes. We define the frequency at which this dis-
persion in spectrum occurs as a break point frequency,fbf .
For each interval, we have visually determined thefbf and
the frequency range of the slope calculation for both instru-
ments. FGM data are used below the dispersion breakpoint
(typically below 1 Hz) and STAFF-SC above it (up to 10 Hz).
We illustrate this point in Fig. 3c (the rest of Fig. 3 will be
discussed fully in Sect. 4.3), which shows the total power
of magnetic field fluctuations measured by sc3 from FGM
(red) and STAFF (black) instrument at an interval centered
at 05:19 UT. The breakpoint is visually determined to be at
1 Hz which is indicated by a black vertical line. During this
interval the FGM data is used in slope calculation between
0.015–0.15 Hz and STAFF data is used between 3-10 Hz. It
can be seen that both instruments agree between 0.6–3 Hz.

In addition to these studies, the slopes have been evaluated
over a common range of frequencies (between 0.5 and 2 Hz)
from both instruments. These slopes do not have a phys-
ical meaning but they indicate that the spectral breaks are
not an instrumental effect. Table 1 contains a comparison of
the slopes estimated from STAFF and FGM in the frequency
range [0.5, 2Hz] for intervals centered at 05:41:00 UT. The
comparison of the results obtained from one large-window
FFT and the mean of many short windows cannot be made
when spectral peaks are detected because of the number of
frequencies present in the peak (512 point windows have a
low resolution in frequency). So, the comparison has been
performed during an interval that displays no peaks, and
where almost no spectral break is detected (see Fig. 14a,
which will be fully explained in Sect. 6).

The upper part of the table presents results obtained using
a single FFT window for STAFF, whereas the lower table
uses the mean of 18 consecutive 512 point FFTs (avoiding
data gaps). The difference of the duration between the FGM
8192 point window and the 9216 point STAFF window is
less than 1%. The presence of data gaps in the STAFF data
induces large errors in the spectrum at low frequency and also
makes the slope steeper. On the contrary, the use of 512 point
windows gives results similar to those obtained from FGM.
When no data gaps are present (e.g. sc1), the use of one large
window or 18 shorter windows is equivalent. Thus it is better
to use short but numerous windows for STAFF spectra.
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(b)

(d)

(a)

(c)

Fig. 3. The power spectrum of magnetic field fluctuations observed by Cluster FGM (red) and STAFF (black) instrument at interval centered
at 05:19 UT by sc1(a), sc2(b), sc3(c), and sc4(d). Power law slopes are shown above the spectra, and their methods of evaluation are
discussed fully in the text. The spectral breakpoint is marked with black vertical line and localfIC with purple arrow.

Thus the agreement between slope measurements from
FGM and STAFF data during the same time interval and in
the same frequency range ensure us that the spectral breaks
do not originate from instrumental artifact but have a physi-
cal meaning.

3.3 Stationarity of the time series

In order to assess the stationarity of the time series, we have
computed the variance of the plasma velocity field at each
spacecraft for the same time intervals as the slope calcula-
tion. Figure 4a shows the velocity field variance using a
∼6.1-min window and the total plasma velocity measured
by sc1, sc3 and sc4 is shown in Fig. 4b. The variance is
less than 45 km/s for all the intervals after 05:17 UT, which
is less than 10% of the local Alfvén speed (Fig. 2c). Be-
cause the Alfv́en/ion cyclotron modes have phase speeds
of vph=vAcosθkB , whereθkB is the angle of propagation
with respect to magnetic field, for most cases the waves will

Table 1. Slopes of power spectra between [0.5–2 Hz] at 5:41:00 UT.

FGM STAFF FGM-STAFF gaps
(8192 pts.) (9216 pts.)

Sc1 –3.18 –3.32 0.14 none
Sc2 –2.46 –3.93 1.47 many
Sc3 –2.38 –2.53 0.15 small
Sc4 –2.6 –3.89 1.29 small

FGM STAFF FGM–STAFF gaps
(8192 pts.) (18×512 pts.)

Sc1 –3.18 –3.31 0.13 none
Sc2 –2.46 –2.4 –0.06 two
Sc3 –2.38 –2.58 0.2 one
Sc4 –2.6 –2.56 –0.04 one
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(a)

(b)

(c)

Fig. 4. Variance (σ ) of the plasma velocity shown(a) during each∼6.1-min interval used in the power spectral slope calculations. The total
plasma velocity(b) and the Alfv́en speed(c) measured by sc1, sc3 and sc4 between 05:00–06:00 UT are shown.

(a)

(b)

Fig. 5. Panel(a) shows the total integrated power in the magnetic field fluctuations observed by the FGM instruments on all four spacecraft
between 05:00–06:00 UT. The frequency range is 0.06 Hz–3 Hz and a 2048 point window shifted with a 4-s increment is used). Panel(b)
shows the total ion plasma number flux measured by sc1, sc3 and sc4.

propagate faster than the flows, and the intervals centered af-
ter 05:17 UT may be considered reasonably steady.

In addition to the intervals used in the comparison study
we have also evaluated FGM spectra with 1024, 2048, 4096,
and 16 384 points corresponding to 45.4, 90.7, 182.9 and
731.5 s, respectively. Although there are intervals before
05:17 UT where the variance is less than 45 km/s using the
90.7-s interval, errors in the power law indices increase for

such short intervals. With a 182.9-s (∼3 min) interval the
variance shows little change, but the errors in slopes are again
larger. Longer∼12-min windows are used to check the re-
sults of the 6.1-min slope calculations during intervals when
the spectral breakpoint was observed at lower frequencies.
Thus, the 6.1-min windows (8192 FGM points) give the best
estimates for spectral indices.
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(a)

(b)

Fig. 6. The ratio of the integrated perpendicular and parallel (with respect to the magnetic field) power,P⊥/P||, at the inertial range(a)
between 0.015 Hz–fbf and at the range betweenfbf –3.0 Hz(b). Calculations use 8192 point window shifted by 1-min increments over
FGM data.

4 Observations

4.1 Total integrated power of magnetic field fluctuations

To set our investigation in context, we present the time his-
tory of the magnetic field fluctuations. Figure 5a shows
the integrated power in magnetic field fluctuations between
05:00 and 06:00 UT measured by FGM with a 2048 point
window (∼93.1 s) sequentially shifted with a 4-s increments
through the cusp. The integration is performed over a fre-
quency range of 0.06 Hz–3 Hz (The upper limit of 3 Hz is
chosen to avoid the lower sensitivity of FGM at higher fre-
quencies). Figure 5b shows the ion number flux,f =nvtot ,
(or ion currentJi/q) measured by sc1, sc3 and sc4. One can
see that the integrated power of the magnetic field fluctua-
tions correlates well with the ion number flux. (Grison et al.
(2005); Sundkvist et al. (2005) also show the correlation be-
tween wave activity and field-aligned ion fluxes). This is es-
pecially clear at cusp entry∼05:07:30 UT, where sc1 and sc4
measure a low flux while also seeing a low level of magnetic
field fluctuations, while sc3 sees an increased flux. The total
plasma velocity (see Fig. 4b) and field-aligned plasma veloc-
ity (see Fig. 1d) at cusp entry is similar for all 3 spacecraft
but sc3 sees an enhanced plasma density (Fig. 1c) compared
to other two which results in enhanced plasma number flux.
When the flow and number flux vanish before 05:30 UT, so
does much of the power in the waves (see Fig. 2. and also
Cargill et al. (2005); Grison et al. (2005)). Smaller scale ve-
locity fluctuations re-appear at about 05:35 UT and persist
throughout the rest of the interval.

4.2 Transverse vs. compressional fluctuations

Using FGM data we have evaluated the ratio of the perpen-
dicular and parallel (with respect to the ambient magnetic

field) wave power,P⊥/P||, whereP⊥=Ptot−P|| andP|| is
the power in mean field (|b|) fluctuations. Figure 6 shows
the ratio of the integrated perpendicular and parallel wave
power,P⊥/P|| between 0.015 Hz and break frequency (fbf )
(a), and betweenfbf and 3.0 Hz (b). An 8192 point window
slided with 1-min increments through the data set between
05:00–06:00 UT is used. In both ranges the fluctuations are
mostly transverse.

4.3 Calculation of power spectral indices below and above
spectral breakpoint

We have evaluated the power spectra obtained from FGM
and STAFF data from all four spacecraft using∼6.1-min in-
tervals, centered at seven different times: 05:11 (cusp entry)
(However, we note that this interval has a problem of sta-
tionarity as described in Sect. 3.3), 05:19 (shear-flow cusp),
05:25 (stagnant cusp boundary), 05:29 (stagnant cusp), 05:41
(moderate shear flow cusp), 05:47 (stagnant cusp boundary)
and 05:55 UT (moderate shear flow cusp). In this section we
first discuss in detail one of the seven periods, that centered
at 05:19 UT, then review the others.

As an example of the power spectra, Figs. 3a–d show
the total power in the magnetic field fluctuations measured
by spacecraft 1–4 respectively during intervals centered at
05:19 UT. The black curve and the regression line corre-
spond to STAFF data and the corresponding red ones to FGM
data. One can clearly distinguish two slopes of the power
spectra. Such a double slope spectra in the cusp has also
been reported from Interball-1 and Polar observation (Savin
et al., 2002) as well as from Cluster observations (Sund-
kvist et al., 2005). In the solar wind such a double slope
magnetic field spectra has been interpreted in terms of an in-
ertial range and dissipation range (i.e. Goldstein et al. (1994);
Leamon et al. (1998) and references therein). The solar wind

www.ann-geophys.net/24/1057/2006/ Ann. Geophys., 24, 1057–1075, 2006



1064 K. Nykyri et al.: Turbulence in high-altitude cusp

has the same –5/3 power law in the inertial range as a high
Reynolds number fluid (Kolmogoroff, 1941). In the solar
wind the plasma flow speed is much larger than the typical
wave speed (VSW�Vphase), so that a time series can be inter-
preted as a 1-D spatial cut, enabling a transition from the fre-
quency space to the wave number (k) space. However, in the
high-altitude cusp (and for the presented crossing) the Alfvén
speed and thus the phase speed of the waves is much larger
than the plasma flow speed (Vphase�V ), so that one cannot
do a direct transition fromf -space to thek-space. The mag-
netic field power spectrum is thus likely to be dominated by
propagating temporal fluctuations (waves) from the different
sources. In the regions of enhanced flows the frequency of
these waves is Doppler-shifted according to

fSC =
1

2π
(V k cos(θkV ) + ω) , (1)

wherek is the wavenumber andθkV is the angle between
thek-vector and the plasma velocity. It is also possible that
some Doppler shifted spatial structures are present. In Sect. 5
we will discuss possible interpretations for this double sloped
spectra. However, for simplicity we will refer hereafter to the
spectra below the spectral breakpoint (usually atfIC) as an
“inertial” range and above as a “dissipation” range, although
they cannot be directly compared with the existing turbulent
theories of the solar wind.

The frequency ranges used in the slope calculations in the
inertial and dissipation ranges are visually determined based
on the shape of the spectra. During this interval the upper
frequency limit for the inertial range is below 0.2 Hz which
gives slopes of –1.12, –1.25, –1.66 and –1.31 with error-bars
of 25 %, 24%, 15%, and 32 % for sc1, sc2, sc3 and sc4,
respectively. Here the spacecraft separation is 600 km and
we did not observe any correlation of the magnetic field time
series between different spacecraft pair. Therefore we cannot
apply thek-filtering technique (Sahraoui et al., 2003; Grison
et al., 2005) (which works if the wave length of the waves is
larger than the spacecraft separation) to do a transition from
the frequency space to thek-space.

The slopes calculated from STAFF data above 1 Hz are
much steeper and for this time interval vary between –4.9
and –4.1, such slopes being characteristic of a turbulent dis-
sipation range (see (Goldstein et al., 1994) for a discussion
of this in the solar wind). In each case, the spectral break-
point of ∼1 Hz is slightly below the local proton cyclotron
frequency, which is marked with purple arrow in Fig. 3.

This analysis can be extended to other intervals with the
aim of investigating whether there is any connection between
the values of the indices and the local plasma properties, es-
pecially the velocity. Figure 1a shows the magnitudes of iner-
tial, s1, (squares) and dissipation range,s2, (stars) power law
slopes with the associated error bars (these are smaller than
the size of the square) during the seven intervals described in
the beginning of this section.

Figure 13a shows the magnitudes of inertial range slopes
with error bars (the range of slope calculation is visually de-
termined for each interval) determined from the FGM for
each minute through the cusp. The solid, horizontal line is
at 5/3, and the solid wavy line marks the average slope value
of all four spacecraft at each interval. There are significant
differences between different times, and between different
spacecraft at the same time.

When considering all intervals, the inertial range slopes
vary from –1.0 to –2.7. In the dissipation range, we find
slopes between –2.9 and –5.2. The exact frequency range for
slope calculation for both instruments is determined individ-
ually for each spacecraft based on the shape of the spectra as
explained in Sect. 3.2.

4.4 Comparison of spectral indices with the plasma param-
eters

As Cluster moves through the cusp, not only do the plasma
parameters change, but so does the background magnetic
field. The local Alfv́en speed decreases from about 800 km/s
to 350 km/s between 05:13 and 06:00 UT (see Fig. 4c) and
during each 6.1-min interval Cluster moves approximately
1100 km in a Sunward direction. After 05:12 UT the ion tem-
perature (not shown) is almost constant at all four spacecraft,
and the density increases as shown in Fig. 1c, albeit with
fluctuations. In order to compare the plasma parameters with
spectral indices at each interval we have calculated∼6.1-min
averages of the plasma parameters, their maximum and min-
imum value and the difference between these maximum and
minimum value during each interval (this is done for those
parameters shown in Fig. 1 but also for others such as per-
pendicular velocity, parallel number flux, total number flux,
perpendicular number flux, temperature, plasma pressure and
total pressure). No correlation with the power spectral slopes
was found in either inertial or dissipation ranges.

4.5 Ion distribution functions and plasma velocity during
wave observations

The plasma velocity shows significant changes in this in-
terval. Between 05:07 and 05:25 UT the field-aligned ve-
locity component (Fig. 1d) occasionally differs between the
spacecraft, indicative of a velocity shear with a scale of
600 km. These field-aligned flows can be interpreted as a
signature of lobe reconnection tailward of the cusp (Vontrat-
Reberac et al., 2003). Figures 7a–c show ion distribution
functions in the parallel-perpendicular velocity plane during
3 intervals measured by HIA on sc1 (Fig. 7a) and CODIF on
sc4 (Figs. 7b–c). At 05:15:21 UT sc4 encounters a field-
aligned flow of ∼150 km/s (Fig. 1d) and measures a D-
shaped shell (horseshoe) distribution (Fig. 7c), characteristic
of a recently reconnected field line (Cowley, 1982). These
shell distributions are known to be unstable to the generation
of electrostatic Ion Bernstein (IB) waves (Janhunen et al.,
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HIA / SC1 @ 05:27:27 UT CODIF / SC4 @ 05:15:05 UT CODIF / SC4 @ 05:15:21 UT

Fig. 7. Ion distribution functions in parallel/perpendicular-plane (from HIA-instrument) at 05:27:27 UT(a). Proton distribution functions
(from CODIF-instrument) at sc4 (at 05:15:01 UT(b) and at 05:15:21 UT(c)), respectively.

2003) and to the electromagnetic ion cyclotron waves (Sund-
kvist et al., 2005). Figure 7a of Nykyri et al. (2004) shows
that sc4 also observes waves close to the ion cyclotron fre-
quency between 05:15:29–5:15:41 UT, but only the funda-
mental peak is clear (with FGM) and the waves do not form
as regular wave train as at∼05:27:27 UT. The STAFFbx

spectra at sc4 between 05:15:35–05:15:45 UT shows two
peaks: one at the cyclotron frequency at≈1.3 Hz and other at
≈3 Hz, so that the second peak is not a harmonic. Prior to this
interval sc4 observes an isotropic distribution at 05:15:05 UT
(Fig. 7b) corresponding to a diminished field-aligned flow
(Fig. 1d). There is also an extensive literature concerning the
generation of IC waves due to instabilities in plasma flows,
especially for ionospheric parameters (e.g. Kindel and Ken-
nel, 1971; Penano and Ganguli, 2002). For field-aligned flow
(such as we mostly detect here (see Fig. 1d and 1f), only
electrostatic calculations have been carried out, but they sug-
gest that waves can be excited at many harmonics of the�i

(Gavrishchaka et al., 2000; Ganguli et al., 2002). However,
electrostatic is just a limiting case. Because the ion cyclotron
perturbations are two dimensional they will always be asso-
ciated with current and hence magnetic fluctuations. Trans-
verse flow layers can also become unstable and excite IB
waves (Reynolds and Ganguli, 1998).

The diminution of the flow magnitude, especially after
05:25 UT, has two possible explanations. First, the ACE data
shows that the IMFBz slightly rotates (and also theBy), turn-
ing negative at about 05:30 UT, so that the amount of the re-
connecting flux tailward of the cusp decreases, resulting in a
weaker flow. Indeed parallel flows (with a lower magnitude)
reappear after the IMF turns northward at about 05:35 UT.

Secondly, Cluster is moving further into the cusp, encoun-
tering field lines that have reconnected some time in the past.
This can be seen as a more symmetric ion distribution func-
tion measured by sc1 at 05:27:27 UT (Fig. 7a). This distribu-
tion coincides with the magnetic field observations of the ion
cyclotron harmonics at 05:27:14–05:27:37 UT (Fig. 2). One

can notice that the parallel part of the distribution (beam) is
slightly enhanced, and in the other direction a small deple-
tion can be seen, reminiscent of a small loss cone. The mag-
netic hodograms calculated by Nykyri et al. (2004) (Figs. 10
and 13) show that the waves are clearly electromagnetic at
∼05:25–05:29 UT and 05:45–05:49 UT during the observa-
tions of the several harmonics. It is presently not clear why
the harmonics are not clearly evident during the strongest
velocity shear (05:15:21 UT) but favor the regions where
plasma has become nearly stagnant (and has small velocity
shear 10–40 km/s) and has these more symmetric distribu-
tion functions. However, they are not present in the regions
where the plasma has been stagnant for several minutes (i.e.
05:30 UT).

5 The origin of the spectral breakpoint

There are a few possible ways to interpret the structure of the
spectra presented in Fig. 3 and during other intervals. One
is in terms of an “inertial” and a “dissipation” range. The
examination of the magnetic field time series during each of
these intervals shows the existence of several temporal scales
and amplitudes (broadband spectra). Structures look mostly
incoherent and random, but occasionally there are short du-
ration intervals when more sinusoidal, clearly polarized dis-
crete wave trains are observed “riding the lower frequency
waves”. Each of the 6.1-min spectra is therefore likely to be
composed of a continuous broad band (power law) spectra as
well as of discrete wave modes (peaks) superimposed on this
spectra during some intervals. In MHD, oppositely propagat-
ing fluctuations can give rise to a turbulent energy cascade
due to the non-linear interactions (Kraichnan, 1965). If a
strong magnetic field is applied, the cascade is suppressed in
the direction of the magnetic field. The Cluster trajectory is
perpendicular to the ambient magnetic field direction, so that
the observed broad band spectra may be a result of the tur-
bulent cascade. Numerical MHD simulations (designed for
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Fig. 8. Solutions from WHAMP code.(a) shows the real frequency of a kinetic Alfvèn wave withk‖=0.1 normalized to ion cyclotron
frequency atB=85 nT as a function ofk⊥ (blue). The green line in(a) shows the solution of the real frequency calculated from the
dispersion relation of kinetic Alfv́en (Eq. 2) waves normalized to WHAMP units.(b) Damping (imaginary frequency) as a function ofk⊥.
(c) E⊥/B⊥-ratio.

open solar coronal magnetic field region) by Dmitruk et al.
(2004) show the coexistence of discrete modes and turbu-
lence in a presence of a strong background magnetic field. It
therefore may be possible that both energy cascade and lin-
ear modes coexist in the cusp geometry (with magnetic field
of 100–60 nT and ion beta of 0.02–0.4).

Here we first consider the possibility that the break point
frequency may arise due to fluctuations that cannot be re-
supplied by the cascade because they damp too efficiently.
In a collisionless plasma there is no dissipation due to col-
lisions, but dissipation arises due to wave-particle interac-
tions such as Landau and cyclotron damping. Nykyri et al.
(2003, 2004) show that the waves were propagating at va-
riety of angles with respect to background magnetic field
(θkB=0◦–90◦), thus all of parallel, obliquely and perpen-
dicularly propagating waves need to be damped to give a
spectral break point. To investigate wave damping in the
vicinity of the ion cyclotron frequency, we have used the
WHAMP (Rönnmark, 1982) code with Maxwellian distri-
butions with number density ofn=10/cm3 and temperatures
of 17 eV (0.2 MK) and 170 eV (2.0 MK) for electrons and
protons, respectively. These values correspond to measured
values by Cluster PEACE and CIS instruments. We run the
model with magnetic fields of 85 nT and 60 nT, correspond-
ing to different regions in the cusp. There are four wave
modes at the vicinity of cyclotron frequency that may be
present in the observed spectra: 1) Kinetic Alfvén waves,
2) Ion cyclotron/Alfv́en waves, 3) Ion Bernstein waves and
4) Fast/magnetosonic waves. In the following we will discuss
their importance in determining the breakpoint frequency.

We require that the imaginary frequency exceeds 20% of the
real frequency in order to ensure that the particular mode is
important contributing to the break frequency. We identify
the range of parallel (k‖) and perpendicular (k⊥) wave num-
bers andω for these damped waves and evaluate the Doppler
shift for these solutions in the end of this section.

5.1 Damping of the kinetic Alfv́en waves

Kinetic Alfv én waves (KAW) can be viewed as a coupling of
the ion acoustic and shear Alfvén modes (Lysak and Lotko,
1996). They can exist in a plasma withme/mi≤βe<1. For
this cusp crossing, the ion beta between 05:00–06:00 UT
varies between 0.02 and 0.4, and the electron and ion temper-
ature ratio,Te/Ti is about 0.1 (this can be determined from
PEACE data), so thatβe lies between 0.002 and 0.04 and is
within the required range.

In the limit ofω<ωi , Stasiewicz et al. (2000) derived a dis-
persion relation for KAW including the finite Larmor radius
and finite frequency effects:

ω = k||vA

√
1 + k2

⊥
(r2

i + r2
s ) −

ω2

ω2
i

(1 + k2
⊥
r2
i ) , (2)

whereri is ion cyclotron radius,ωi is the ion cyclotron fre-

quency,vA is Alfv én speed, andrs=
√

kbTe/(miω
2
i ).

Figure 8a shows the real frequency of the KAW normal-
ized to the ion cyclotron frequency (forB=85 nT) calculated
from WHAMP (blue) and from Eq. (2) (green). Although,
there is some discrepancy betweenk⊥=3−6, the solution
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Fig. 9. Solutions from WHAMP code for kinetic Alfv́en waves.(a) shows the real part and(b) shows the imaginary part of frequency
with k‖=0.1 (blue),k‖=0.13 (green),k‖=0.16 (orange),k‖=0.2 (aqua),k‖=0.25 (magenta),k‖=0.32 (yellow) normalized to ion cyclotron
frequency atB=85 nT as a function ofk⊥.

Table 2. Properties of Kinetic Alfv́en waves (KAW) when damping becomes 20% of the real frequency (calculated from WHAMP model
with Maxwellian electron and proton species withB=85 nT). Columns list parallel and perpendicular wave numbers and wave lengths, real
frequency and wave propagation angle with respect to magnetic field. Ion cyclotron radius,rthi , used here is 22 km.

KAW k‖(1/rthi ) k⊥(1/rthi ) λ‖ (km) λ⊥ (km) ω/ωi θkB (degrees)

0.32 1.0 432 138 0.67 72
0.25 2.2 553 63 0.78 84
0.2 3.5 691 39 0.85 87

from the dispersion relation matches the WHAMP solution
quite nicely withk‖=0.1. The wave numbersk⊥ andk‖ are
normalized to the inverse gyroradius, 1/ri=ωi/vthi . Fig-
ure 8b shows the imaginary part (damping) of the frequency
(γ /fi). One can see that damping increases rapidly above
k⊥=4 and reaches over 10% of the real frequency atk⊥=7.9.
TheE⊥/B⊥-ratio (shown in Fig. 8c) is of the order of unity
(in units (mV/m)/nT). This is of the order of the Alfvén speed
indicating that the wave is mostly electromagnetic.

Figure 9a is in the same format as Fig. 8a, but in addi-
tion to solution withk‖=0.1 (blue), WHAMP solutions with
k‖=0.13 (green),k‖=0.16 (orange),k‖=0.2 (aqua),k‖=0.25
(magenta) andk‖=0.32 (yellow) are shown. Panel (b) shows
that damping becomes more important ask‖ increases.

Let us consider the following physical argument that de-
termines the values ofk⊥ at which dissipation of KAW be-
comes significant. Hasegawa and Chen (1976) state that in
the collisionless regime ifβ>(<)0.1, ion (electron) Lan-
dau damping dominates the dissipation of the KAW. Here
the ion beta varies between 0.02–0.4 so it is likely that ei-
ther damping mechanism may occur in different regions of
the cusp. Let us first consider electron Landau damping.
By neglecting the finite frequency effects in Eq. (2), it can

be shown that whenω/k‖=VA

√
1+(1+Te/Ti)k

2
⊥
r2
i ≈Vthe,

(where the electron thermal speed,Vthe=

√
βiTemi

2Time
VA), the

dissipation becomes significant fork⊥≈(1−6)/ri (corre-
sponding toβi=0.02−0.4). The maximum heating rate for
ions due to the ion Landau damping is obtained withk⊥ri=1
(Hasegawa and Chen, 1976).

Table 2 lists the properties of the KAW when damping
becomes 20% of the real frequency. Only solutions with
k‖>0.19 have damping rates exceeding 20% of the real fre-
quency. Calculations of the Doppler shifted theoretical spec-
tral breakpoint frequencies of the KAW waves in Fig. 13c
(Fig. 13 will be fully discussed at the end of this section)
use these values fork‖, k⊥, ω, andθkB . It can be seen that
damping of the obliquely propagating (θkB=72–87◦) KAW
can lead to the observed spectral breakpoint frequency. This
implies parallel wave lengths of 430–690 km and perpendic-
ular wave lengths of 40–140 km (the ion gyroradius used here
is 22 km (forTi=2 MK, B= 85 nT)). Table 3 is in the same
format as Table 2 showing WHAMP solutions forB=60 nT
(ri=31 km). These solutions are very similar to those of Ta-
ble 2.

5.2 Damping of the Alfv́en/ion cyclotron modes

Figure 10 is in the same format as Fig. 8a and shows the
real and Fig. 8b imaginary frequencies, and Fig. 8c the
E⊥/B⊥−ratio of ion cyclotron (IC) waves as a function
of k‖ with k⊥=0. The damping rate increases significantly
above k‖=0.4 and becomes 20% of the real frequency
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Table 3. Properties of Kinetic Alfv́en waves (KAW) when damping becomes 20% of the real frequency (calculated from WHAMP model
with Maxwellian electron and proton species withB=60 nT). Columns list parallel and perpendicular wave numbers and wave lengths, real
frequency and wave propagation angle with respect to magnetic field. Ion cyclotron radius,rthi , used here is 31 km.

KAW k‖(1/rthi ) k⊥(1/rthi ) λ‖ (km) λ⊥ (km) ω/ωi θkB (degrees)

0.32 2.0 612 98 0.71 81
0.25 3.2 783 61 0.8 85
0.2 5.0 980 39 0.86 88
0.16 7.2 1224 27 0.86 89
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Fig. 10. Solutions from WHAMP code.(a) shows the real part,(b) shows the imaginary part of frequency normalized tofIC at B=85 nT
and(c) shows theE⊥/B⊥-ratio of the ion cyclotron wave as a function ofk‖ with k⊥=0.

at ≈0.55fIC . The wave is mostly magnetic with the
E⊥/B⊥−ratio being of the order of the local Alfvén speed
(in units (mV/m)/nT)<1). Figure 11 is in the same format
as Fig. 10a and 10b, but in addition solutions withk⊥=0.79
(orange),k⊥=1.0 (aqua),k⊥=1.26 (magenta),k⊥=1.58 (yel-
low), k⊥=2.0 (gray),k⊥=2.51 (blue) andk⊥=3.16 are shown.
Table 4 shows properties of these waves when damping be-
comes 20% of the real frequency. It can be seen that ion
cyclotron modes with all angles of propagation (θkB=0–86◦)
are efficiently damped. This implies parallel wave lengths
of 360–660 km and minimum perpendicular wave lengths
of 40 km (the ion thermal gyroradius used here is 22 km
(for Ti=2 MK, B=85 nT)). Calculation of the Doppler shifted
theoretical spectral breakpoint frequency of the IC waves
in Fig. 13d uses the solutions listed in Table 4. WHAMP
calculations withB=60 nT (not shown) indicate that the
damping of the parallel propagating solution reaches 20% at
k‖=0.42 andω=0.46ωi , which is at lower frequency than the
corresponding solution calculated withB=85 nT. Also the
obliquely propagating solutions reach the 20 % damping at
lower frequencies forB=60 nT.

5.3 Damping of the Ion Bernstein waves

Figure 12 is in the same format as Fig. 8 showing the real
(a) and imaginary (b) frequencies, and theE⊥/B⊥−ratio (in
units (mV/m)/nT) (c) of the ion Bernstein (IB) waves as a
function ofk⊥. Several curves (with increments of 0.003 and
with cyclic color table) are shown withk‖=0.01–0.06. When
k⊥<0.7, the real frequency increases to 1.8fIC for all the
solutions. Whenk⊥ increases the real frequency gradually
decreases towardfIC , but then diverges again for solutions
with highestk‖.

Maximum damping is obtained for solution withk‖=0.06
(orange) (b), but remains still less than 5% of the real
frequency belowk⊥=10. For the most damped solution
f=1.4fIC , k‖=0.06,k⊥=10, andθkB=89.7◦

Damping is negligible for solutions withk‖<0.02. For in-
creasedk‖ the waves have a magnetic component but become
more electrostatic ask‖ decreases (c): fork‖=0.01, the
E⊥/B⊥−ratio is 30 times larger than fork‖=0.06. When
k‖=0, the wave is entirely electrostatic (not shown). Based on
these WHAMP calculations, damping of the IB modes is not
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Fig. 11.Solutions from WHAMP code.(a) shows the real part and(b) shows the imaginary part of frequency of the ion cyclotron wave with
k⊥=0 (blue solution continuing to highestk‖), k⊥=0.32 (green),k⊥=0.79 (orange),k⊥=1.0 (aqua),k⊥=1.26 (magenta),k⊥=1.58 (yellow),
k⊥=2.0 (gray),k⊥=2.51 (blue),k⊥=3.16 (green) normalized to ion cyclotron frequency atB=85 nT as a function ofk‖.

Table 4. Properties of Ion Cyclotron waves (IC) when damping becomes 20% of the real frequency (calculated from WHAMP model with
Maxwellian electron and proton species). Columns list parallel and perpendicular wave numbers and wave lengths, real frequency and wave
propagation angle with respect to magnetic field. Ion cyclotron radius,rthi , used here is 22 km.

IC k‖(1/rthi ) k⊥(1/rthi ) λ‖ (km) λ⊥ (km) ω/ωi θkB (degrees)

0.38 0.0 364 Inf 0.55 0
0.36 0.1 395 1382 0.56 16
0.35 0.32 395 432 0.59 42
0.34 0.79 407 175 0.66 67
0.32 1.0 432 138 0.67 72
0.31 1.26 446 110 0.70 76
0.29 1.58 477 87 0.73 80
0.26 2.0 531 69 0.76 83
0.24 2.51 576 55 0.80 85
0.21 3.16 658 44 0.83 86

as efficient as damping of the KAW or IC waves for the pre-
vailing cusp conditions. The IB mode is coupled to the mag-
netosonic mode atk⊥<0.5 andf <1.8fIC (not shown here),
but the damping for that mode is negligible belowk⊥<1 and
at the vicinity of thefIC .

5.4 Discussion on Doppler effect and summary

Figure 13 summarizes the results of this section. The first
panel shows the observed slopes at the inertial range every
minute (using a 8192 pt. window). The second panel shows
the ratio of the observed spectral break point frequency (fbf )
to the local ion cyclotron frequency for all four spacecraft
between 05:00–06:00 UT (for the same spectra as calculated
for panel a). The empty points indicate that the break point
was not clearly identifiable. The observed spectral break-
point frequency is at the vicinity of the local cyclotron fre-
quency between 05:08–05:28 UT, and usually belowfIC af-
ter 05:30 UT. There are few points where the observed break
is above thefIC .

As discussed above, only the KAW and IC waves are ef-
ficiently damped, so we will calculate the Doppler shift (ac-
cording to Eq. 1) for each of these wave modes using the
values ofk⊥, k‖, ω and θkB listed in Tables 2 and 4. The
Doppler shift is calculated for every minute and the plasma
parameters used in these calculations are averaged using a
11.4-s window andθkV =θBV -θkB . We note that the spectral
calculations are using 6.1-min window, so that such a spec-
tra has a superposition of the different Doppler-shifted wave
modes. However, using 6.1-min averaging of the plasma pa-
rameters will underestimate the Doppler-shift for some in-
tervals, which is why we use the higher resolution in or-
der to get a broader range of Doppler-shifts. In addition
to the waves withθkB , the Doppler shift is also calculated
for θkB+180◦, corresponding to the solutions wherek has
a component anti-parallel to the magnetic field (i.e. waves
propagating tailwards). Panels (c)–(d) show the ratio of the
Doppler shifted theoretical spectral breakpoint frequency to
fIC for B=85 nT (corresponding to time at≈05:15 UT) for
KAW and IC waves, respectively. The panels (c) and (d)
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Fig. 12. Solutions from WHAMP code.(a) shows the real part and(b) shows the imaginary part of frequency of ion Bernstein modes with
k‖=0.06 (orange)–k‖=0.01 (blue among cluster of lines) normalized to ion cyclotron frequency atB=85 nT as a function ofk⊥. (c) shows
E⊥/B⊥-ratios. Note that a cyclic color table is used such thatk‖=0.06 (k‖= 0.01) is corresponding to the curve with lowest (highest)
E⊥/B⊥-ratio and thatk‖=0.06-solution is most strongly damped (b).

are assuming that the magnetic field magnitude is at con-
stant 85 nT, although the field gradually decreases and has
slightly different magnitudes at all spacecraft. The WHAMP
curves look quite similar atB=60 nT (corresponding to time
at ≈05:40 UT) for KAW, and show damping at lower fre-
quencies for IC waves.

During times of enhanced flows (associated with D-shaped
distributions) the Doppler shift generates a larger envelope
in frequency space between parallel and anti-parallel propa-
gating solutions (Figs. 13c and d): the waves that are gen-
erated below (above) the spacecraft and that are propagat-
ing against (along) the flow have decreased (increased) fre-
quency from the plasma frame. Sundkvist et al. (2005) show
that D-shaped distributions could generate waves along the
field lines (propagating in both directions) at the vicinity of
the local ion cyclotron frequency. Between 05:08–05:10 UT
sc4 is observing the break frequency,fbf , below 0.4fIC in
agreement with the Doppler-shifted solutions of the waves
that propagate against the flow (reduced frequency from the
plasma frame). During this interval the other three spacecraft
observe the break between 0.7–0.9fIC . These correspond
quite nicely to the IC modes that have a smallθkB and prop-
agate along the flow (increased frequency from the plasma
frame). Between 05:10–05:12 UT the Doppler-shifted so-
lutions do not match the observed break frequencies. The
observedfbf are in fact closer to theoretical frequencies in
the plasma frame (see column 6 in Tables 3 and 4). The abso-
lute magnitudes for the Doppler-shift during this interval are
in range of 0.3–2fIC , so that the waves causing the break
point frequency at 0.7–0.9fIC could be formed by a) con-

vecting spatial structures (zero plasma frequency) along the
flow, b) propagating waves that are generated in low field re-
gion along the flow, or c) waves that are generated in the high
field region and are propagating against the flow. Between
05:12–05:27 UT there is a range of Doppler-shifted waves
that match the observedfbf . Between 05:30–05:34 UT the
Doppler-shift is small, and yet the observed break points dif-
fer from the theoretical break points in the plasma frame.
This could indicate that the fluctuations causing the break
point are generated in the lower field region and propagate to
Cluster. Between 05:35-05:42 UT the break point can be ex-
plained by the Doppler shifted obliquely propagating waves
that have a component of thek-vector against the flow. Be-
tween 05:47–05:48 UT sc1 and sc3 measure break points
that can be explained by damping of the waves that propa-
gate with oblique angles and havek-vectors along the flow,
but sc4 observes the break at much lower frequencies and
not in agreement with the calculated Doppler-shifted solu-
tions at 85 nT, which could indicate that these fluctuations
are generated in the low field region and propagating along
the flow (20% damping of the IC modes occurs at lower fre-
quencies at low field region). The same is true also for all in-
tervals after 05:50 UT at sc4 and sc3, and for two intervals at
sc1. In summary the observed break frequencies could be ex-
plained by the wave damping of KAW and IC waves assum-
ing these waves are generated both locally as well as below
and above the spacecraft trajectory. We have assumed here
that the imaginary frequency must become 20% of the real
frequency in order to ensure that the particular wave mode
is contributing to the break point. If lower values e.g. 10%
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(a)

(b)

(c)

(d)

Fig. 13. (a)The inertial range slopes calculated every minute using a 8192-point window with FGM data.(b) The ratio of the observed
spectral breakpoint frequencyfbf to fIC for the same spectra as calculated for panel (a). The empty points indicate that the break point was
not clearly identifiable. Panels(c)–(d) show the ratio of the Doppler shifted theoretical spectral breakpoint frequency tofIC (at B=85 nT):
(c) shows the kinetic Alfv́en wave solutions with values ofk⊥, k‖, θkB listed in Table 2 (d) shows the IC wave solutions according to Table 4.
Note that the Doppler shift for each solution is calculated both forθkB andθkB + 180◦. The colors correspond to different spacecraft and
the Doppler shift is not calculated for sc2 due to lack of plasma data. The calculation of the Doppler-shift uses 11.4-s averages of variables
V andθkV in Eq. (1).

are used, the plasma frame frequency used in Doppler shift
calculations would move to lower frequencies andθkB would
slightly decrease for KAW (see Figs. 9 and 11).

During times when cyclotron harmonics are observed at
the stagnant cusp boundary (between 05:25–05:29 UT and
05:45–05:49 UT, see also Figs. 10 and 12 of Nykyri et al.,
2004) the Doppler effect is small and these wave trains are
more clearly structured and last longer than the waves ob-
served during the sheared flows. It thus appears that the
wave modes at the stagnant cusp boundary are observed be-
cause either a) they are not efficiently damped, or b) because
the spacecraft are passing through the region where they are
constantly being generated, rather than being convected by
the flow.

We have here considered the possibility that the broad-
band power law spectra may be composed of an inertial range
and a dissipation range. The inertial range fluctuations could
be generated by lobe reconnection and associated shear flow
layers. An energy cascade may take place perpendicular to
the magnetic field (approximately along Cluster trajectory).

The break point frequency could be generated by efficient
damping of obliquely propagating KAW modes and ion cy-
clotron modes.

Another possibility (private communication from D. Sund-
kvist) is that instead of single inertial and dissipation ranges,
the spectra is formed of two inertial ranges. It may be possi-
ble that the first inertial range is caused (as described above)
by the cascade of the fluctuations driven by the lobe re-
connection time scale. The second inertial range could be
caused by the cascade of the fluctuations generated by several
sources at the vicinity of the local ion cyclotron frequency.

We also cannot rule out the possibility that the broadband
nature of the spectra is formed partly by the Doppler shift
of the different wave modes. However, the broad band na-
ture of the spectra (with a single slope) is also present be-
tween 05:28–05:34 UT, when there is no plasma flow and
thus no Doppler-effect. For this interval the slopes at the in-
ertial range are –1.35, –1.75, –2.26 and –1.83, for sc1, sc2,
sc3, and sc4, respectively.
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(b)(a)

Fig. 14. Power spectra measured by sc4 at 05:41 UT(a) and at 05:47 UT(b) and their spectral slopes at inertial and dissipation range.

Smaller spacecraft separations (of the order ofri) would
be required in order to accurately determine the Doppler ef-
fect for the each wave mode at the vicinity of the ion cy-
clotron frequency, by using thek-filtering technique. Even
better would be to have a cluster of clusters covering differ-
ent scales, from MHD to kinetic ion and electron scales.

6 Feeding of the dissipation range

We suggested earlier that the inertial range fluctuations
that are in the frequency range of FGM measurements are
generated both remotely (perhaps due to lobe reconnection)
and locally due to sheared flows arising from reconnection
process. In addition, there are sometimes occasions when lo-
cal processes generate the harmonic peaks, and these peaks
can then feed the dissipation range. Some evidence for this is
shown in Fig. 14 which presents power spectral slopes mea-
sured by sc4 during 6.1-min intervals centered at 05:41 UT
(left) and 05:47 UT (right).

The shape of the spectra during these two intervals is very
different: the 05:41 UT-centered interval shows a more con-
tinuous spectra with a not-so-clearly observable break point,
whereas the 05:47 UT-centered interval shows a clearer break
at 0.14 Hz with harmonics in the dissipation range.

Slopes in the inertial range are –1.72 and –1.62 (calculated
from the FGM between 0.015-0.3 Hz (a) and between 0.015-
0.14 Hz (b)), respectively. The break frequency is determined
visually and its location can be confirmed by the steepened
slope (measured by FGM) of –2.57 between 0.3–0.5 Hz (a)
and –2.7 between 0.15-0.5 Hz (b). The purple arrow marks
the local ion cyclotron frequency, so for both intervals the
break is observed below the proton cyclotron frequency. The
dissipation range slope at 05:41 UT is –2.91 and is calcu-
lated from STAFF between 0.5–10.0 Hz. In the 05:47 UT-
centered interval there is also a steeper slope of –3.34 mea-

sured from STAFF between 3.5–10 Hz (which is above the
spectral peaks).

The interval centered at 05:41 UT includes an interval of
parallel flow of≈100 km/s, presumably associated with lobe
reconnection. The total integrated power in the inertial range
calculated from FGM between 0.015–0.3 Hz is 0.39 nT2, and
the dissipation range power calculated from STAFF between
0.6–10 Hz is 0.0035nT2.

The interval centered at 05:47 UT is during a time when
coherent wave trains (similar to 05:26–05:29 UT) with har-
monics of the ion cyclotron frequency were observed (see
also Figs. 12 and 13 in Nykyri et al. (2004)). The total in-
tegrated power between 0.015–0.14 Hz (from FGM) at this
time is 0.098 nT2, which is a factor four smaller than during
the 05:41 UT-centered interval. However, the fundamental
harmonic peak (slightly abovefIC), and its first harmonic,
have piled up power in the dissipation range. The integrated
power measured by STAFF between 0.6–10 Hz is 0.0047 nT2

which is about 1.3 times larger than during the 05:41 UT-
centered interval. This seems to indicate that some of the
power from the inertial range has shifted into the dissipation
range. However, we note here that this is not just a temporal
effect but spatio-temporal because the spacecraft have moved
∼2300 km between 05:37 UT and 05:50 UT (from the begin-
ning of the measurements used in 05:41 UT-centered interval
to end of measurements used in 05:47 UT-centered interval).

7 Discussion and conclusions

We have used combined data from the Cluster STAFF and
FGM instruments to evaluate slopes of the magnetic field
power spectra in the high-altitude cusp. We found examples
of double sloped, broadband spectra with shallower “iner-
tial” and steeper “dissipation” range: the inertial range slopes
vary between –2.7 to –1. The dissipation range slopes vary
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between –5 to –3. For most of the intervals the spectral
breakpoint was clear and occurred at the vicinity of the lo-
cal ion cyclotron frequency (fIC). We also found examples
of single sloped spectras where break was not as clearly iden-
tifiable (see Fig. 14a). During some intervals clear peaks at
cyclotron harmonics were superimposed on this broad band
spectra

Slopes of the power spectra both in the inertial and dis-
sipation ranges vary throughout the cusp crossing, and even
in the same intervals can differ by 100% at different space-
craft. Although the plasma properties vary on scales of the
spacecraft separation (∼600 km), we found no clear corre-
lation between any local plasma parameters and the power
spectra slopes. However, we did find a correlation between
the integrated power of the magnetic field fluctuations and
plasma number flux (this is also observed in recent studies
by Sundkvist et al., 2005; Grison et al., 2005), indicative that
the solar wind interaction with the cusp magnetic field due to
lobe reconnection provides free energy for these fluctuations
to grow. We also calculated the ratio between the perpen-
dicular and parallel power indicating that in both ranges the
fluctuations are mostly transverse.

It may be possible that the cusp geometry with reason-
ably strong magnetic field (100–60 nT) allows the coexis-
tence of both turbulence and discrete wave modes. Indeed,
this is shown to be possible in simulations corresponding to
the open coronal magnetic field lines (Dmitruk et al., 2004).
We have considered two mechanisms for the generation of
the spectral breakpoint and double sloped spectra:

1. In terms of inertial and dissipation range: The onset of
the inertial range fluctuations (<fIC) could be formed
partly by the Alfv́enic fluctuations that are generated
in the lobe reconnection process (propagating Earth-
wards) and partly by the velocity shears that arise from
the reconnection process. Indeed, we have observed
velocity shears of∼100 km/s at the spacecraft separa-
tion scale of 600 km. The broadband (power law) na-
ture of the spectra may be formed due to the turbulent
cascade (operating perpendicularly to the ambient mag-
netic field) of these fluctuations. The onset of the dis-
sipation range may be caused by damping of the fluc-
tuations that cannot be re-supplied by the cascade from
the inertial range. We have used the WHAMP code to
study the linear damping properties of the waves at the
vicinity of the local ion cyclotron frequency. The re-
sults show that an efficient damping (20% of the real
frequency) is occuring for obliquely propagating kinetic
Alfv én modes withθkB=70–90◦, and for ion cyclotron
modes with all angles of propagation. Damping of the
magnetosonic modes and ion Bernstein modes is negli-
gible.

2. In terms of two inertial ranges: The first inertial range
is generated as described above (one source being at the

MHD frequencies due to lobe reconnection). The sec-
ond inertial range may be formed by cascading of the
fluctuations that are generated by one or several sources
at the vicinity of the local cyclotron frequency. The ob-
servations of the single slope spectra at 05:41 UT could
indicate that these sources were absent at the vicinity
of thefIC , and the spectra is formed by a single inertial
range during this interval. Alternatively, (supporting the
first mechanism) it may be possible that during this in-
terval the energy cascading time scale is shorter than the
damping time scale of the waves.

We will study this possibility of the second inertial range in
future by studying unstable distribution functions. Because
cusp is not homogeneous, dispersion solvers including gra-
dients in the plasma flow would also be necessary.

In order to understand the formation of the first inertial
range we plan to do comparisons between the observed iner-
tial range slopes with high-resolution 3-D MHD cusp simula-
tions. Cuts can be taken through the simulation box in agree-
ment with the real Cluster trajectory. Initial results (Adam-
son et al., 2005) of this comparison look highly promising,
suggesting that lobe reconnection process and resulting ve-
locity shears play role in generating inertial range fluctua-
tions in the high-altitude cusp.

Another interesting topic is the generation of the ion cy-
clotron harmonics. They occur at the stagnant cusp bound-
ary (05:25–05:29 UT and 05:45–05:49 UT), are electromag-
netic in nature and have quite symmetric distribution func-
tions. Ion Bernstein waves are mostly electrostatic and are
generated by the shell distributions, excluding them as a pos-
sible source for the observed harmonics. One possibility is
that ion harmonics are generated by the strong velocity shear
but have propagated and observed by Cluster at the stagnant
cusp boundary. Figures 9 and 10 of Nykyri et al. (2004) show
that harmonics appear after 05:25 UT, about 2 min later than
the observed large (∼100 km/s) velocity shear at 05:23 UT.
It is well known that field-aligned velocity shears can ex-
cite waves at many harmonics of the�i (Gavrishchaka et al.,
2000; Ganguli et al., 2002). However, if this is the case it
is surprising why harmonics are not observed when the lo-
cal velocity shear is the strongest. There are smaller scale
≈5–40 km/s gradients in velocity during the harmonics ob-
servations (i.e. at 05:47:30 UT), so perhaps the velocity shear
mechanism is able to generate harmonics only in narrow
range favoring lower magnitudes for shear.
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