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Linear multiple kernel learning model has been used for predicting financial time series. However, �1-norm multiple support
vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures
that generalize well, we adopt �p-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model.
The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to
solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China.
Experimental results show that our proposed model performs better than �1-norm multiple support vector regression model.

1. Introduction

Forecasting the future values of financial time series is an
appealing yet difficult activity in the modern business
world. As explained by Deboeck and Yaser [1, 2], the
financial time series are inherently noisy, nonstationary, and
deterministically chaotic. In the past, many methods were
proposed for tackling this kind of problem. For instance,
the linear models for forecasting the future values of stock
prices include the autoregressive (AR) model [3], the
autoregressive moving average (ARMA) model [4], and the
autoregressive integrated moving average (ARIMA) model
[4]. Over the last decade, nonlinear approaches have received
increasing attention in financial time series prediction and
have been proposed for a satisfactory answer to the problem.
For example, Yao and Tan [5] used time series data and
technical indicators as the input of neural networks to
increase the forecast accuracy of exchange rates; Cao
and Tay [6, 7] applied support vector machine (SVM) in
financial forecasting and compared it with the multilayer
back-propagation (BP) neural network and the regularized
radial basis function (RBF) neural network; Qi and Wu
[8] proposed a multilayer feed-forward network to forecast

exchange rates; Pai and Lin [9] invested a hybrid ARIMA and
support vector machines model in stock price forecasting;
Pai et al. [10] presented a hybrid SVM model to exploit the
unique strength of the linear and nonlinear SVM models in
forecasting exchange rate; Kwon and Moon [11] proposed
a hybrid neurogenetic system for stock trading; Hung and
Hong [12] presented an improved ant colony optimization
algorithm in a support vector regression (SVR) model, called
SVRCACO, for selecting suitable parameters in exchange
rate forecasting; Jiang and He [13] introduced local grey
SVR (LG-SVR) integrated grey relational grade with local
SVR for financial times eries forecasting; and so on.

In comparison with the previous models, SVR with a
single kernel function can exhibit better prediction accuracy
because it conceives the structural risk minimization princi-
ple which considers both the training error and the capacity
of the regression model [14, 15]. However, the researchers
have to determine in advance the type of kernel function and
the associated kernel hyper parameters for SVR. Unsuitably
chosen kernel functions or hyper parameter settings may lead
to significantly poor performance [16, 17].

In recent years there has a lot of interest in designing
principled regression algorithms over multiple cues, based
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on the intuitive notion that using more features should
lead to better performance and decreasing the generalization
error. When the right choice of features is unknown, learning
linear combinations of multiple kernels is an appealing
strategy. The approach with a optimization process is called
multiple kernel learning (MKL). A first step towards a more
realistic model of MKL was achieved by Lanckriet et al.
[18], who showed that, given a candidate set of kernels, it is
computationally feasible to simultaneously learn a support
vector machine and a linear kernel combination at the
same time. In MKL we need to solve a joint optimization
problem while also learning the optimal weights for combing
the kernels. Several practitioners have adopted the linear
multiple kernels to deal with the practical problems. For
example, Rakotomamonjy et al. [19] addressed the MKL
problem through a weighted 2-norm regularization formu-
lation and proposed an algorithm, named Simple MKL,
for solving this MKL problem. Bach [20] proposed the
asymptotic model consistency of the group Lasso. Zhang
and Shen [21] presented multimodal multitask learning
algorithm for joint prediction of multiple regression and
classification variables in Alzheimer’s disease. Especially,
Chi-Yuan Yeh and his coworkers [22] developed a two-
stage MKL algorithm by incorporating sequential minimal
optimization and the gradient projection method. The
new method [22] performed better than previous ones for
forecasting the financial time series. Previous approaches to
multiple kernel learning (MKL) have promoted sparse kernel
combinations to support interpretability and scalability.
Unfortunately, sparsity at the kernel level may harm the
generalization performance of the learner, therefore �1-
norm MKL is rarely observed to outperform trivial baselines
in practical applications [23]. To allow for robust kernel
mixtures that generalize well, the researchers extend �1-
norm MKL to arbitrary norms, that is, �p-norm MKL
(1 ≤ p < ∞). For example, Marius Kloft et al. developed
two efficient interleaved strategies for �p-norm MKL and
showed that it can achieve better accuracy than �1-norm
MKL for real-world problems [23]; Francesco Orabona et al.
presented a MKL optimization algorithm based on stochastic
gradient descent for �p-norm MKL, which possessed a
faster convergence rate as the number of kernels grows
[24].

In this paper, a multiple kernel learning framework is
established for learning and predicting the stock prices.
We present a regression model for the future values of
stock prices, that is, �p-norm multiple kernel support
vector regression (�p-norm MK-SVR), where 1 ≤ p <
∞. We decompose the optimization problem into smaller
subproblem and adopt the interleaved optimization strategy
to solve the regression model. Our experimental results
show that �p-norm MK-SVR performs a better perfor-
mance.

The rest of this paper is arranged as follows. Section 2
details the processing of the �p-norm MK-SVR model con-
struction and describes the algorithm for our regression
model. Experimental results are presented in Section 3.
Section 4 concludes the paper and provides some future
research directions.

2. Forecasting Methodology

2.1. �p-Norm Multiple Kernel Support Vector Regression. In
this section, the idea of �p-norm multiple kernel support
vector regression (�p-norm MK-SVR) is introduced formally.

Let {xi, yi}Ni=1, where xi ∈ Rn and yi ∈ R, be the training
set. Each yi is the desired output value for the input vector
xi. Consider a function φ(xi) : Rn → H that maps the
samples into a high, possibly infinite, dimensional space.
A regression model is learned from the previous and used
to predict the target values of unseen input vectors. SVR
is a nonlinear kernel-based regression method which tries
to locate a regression hyperplane with small risk in high-
dimensional feature space [14]. Considering the soft margin
formulation, the objective function and constraints for SVR
should be solved, as follows:

min
w̃,b

λ

2
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+
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N

l
∑
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(1)

SVR model usually uses a single mapping function φ
and hence a single kernel function K . Although the SVR
model has good function approximation and generalization
capabilities, it is not fit for dealing with a data-set which has
a locally varying distribution. For resolving this problem,
we can construct a MK-SVR model. Combining multiple
kernels instead of using a single one, �p-norm MK-SVR
model can catch up the varying distribution very well.
Therefore we can use the composite feature map φ which has
a block structure:

φ(x) =
[
√

d1φ1(x)×
√

d2φ2(x)× · · · ×
√

dMφM(x)
]

(2)

to map the input space to the feature space, where
d1,d2, . . . ,dM are weights of component functions. Given a
set of base kernels Kk which correspond the previous feature
maps {φk}(k = 1, 2, . . . ,M), linear MK-SVR aims to learn
a linear combination of the base kernels as K = ∑

k dkKk.
In learning with MK-SVR we aim at minimizing the loss on
the training data with respect to the optimal kernel mixture
∑

k dkKk in addition to regularizing d to avoid overfitting.
The primal can therefore be formulated as

min
w̃,b

λ

2

⎛

⎝

∑

k

∥

∥w̃k

∥

∥

2

⎞

⎠

2

+
1
N

l
∑

i=1

(

ξi + ̂ξi
)

+ μ̃ ˜Ω[d]

s.t.
(〈

w̃,K(xi)
〉

+ b
)− yi ≤ ε + ξi,

yi −
(〈

w̃,K(xi)
〉

+ b
) ≤ ε + ̂ξi,

μ̃ > 0,

d1,d2, . . . ,dM ≥ 0,

ξ, ̂ξi ≥ 0, i = 1, 2, . . . ,N.

(3)
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Previous research to MK-SVR employs the regularizer of the
form ˜Ω[d] = ‖d‖1(d = (d1,d2, . . . ,dM)) which can promote
sparse kernel mixtures. However, sparsity is not always
desirable, since the information carried in the zero-weighted
kernels is lost. Therefore we propose to use nonsparse and
thus more robust kernel mixtures by employing an �p-norm

constraint with p > 1, that is, ˜Ω[d] = ‖d‖2
p, and ‖d‖p =

(
∑

k dk
p)1/p, 1 < p < ∞. In (3), let

√

dkw̃k = wk, C = 1/nλ,
μ̃ = μλ, and the first equation be divided with λ, then the
following �p-norm MK-SVR is obtained:

min
w,b

1
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‖wk‖2
2

dk
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l
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yi − (〈w,K(xi)〉 + b) ≤ ε + ̂ξi,

μ > 0,

d1,d2, . . . ,dM ≥ 0,

ξ, ̂ξi ≥ 0, i = 1, 2, . . . ,N.

(4)

An alternative approach previous equations has been
considered by studiers. For example, Zien and Ong [25]
upperbound the value of the regularizer ‖d‖1 and incorpo-
rate the regularizer as an additional constraint into the opti-
mization problem. According to this thought, �p-norm MK-
SVR model (4) can be transformed into the following form:
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(5)

It can be shown (see the Appendix for details) that the
dual of (5) is

max
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s.t. 1T(α̂− α) = 0,

0 ≤ α̂,α ≤ C1,

d1,d2, . . . ,dM ≥ 0,

(6)

where y = (y1, y2, . . . , yN )T , ε = (1, 1, . . . , 1)T , α = (α1,α2,
. . . ,αN )T ∈ RN , α̂ = (α̂1, α̂2, . . . , α̂N )T ∈ RN , and p∗ =
p/(p − 1) is the dual norm of p. Suppose the optimal α̂∗i ,
α∗i (i = 1, 2, . . . ,N) and d∗1 ,d∗2 , . . . ,d∗M are found by solving
(6), the regression hyperplane for �p-norm MK-SVR model
is given by

f ∗(x) =
N
∑

i=1

(

α̂∗i − α∗i
)

K(xi, x) + b∗, (7)

where b∗ = yj + ε−∑N
i=1(α̂∗i −α∗i )K(xi, x j) is obtained from

any α̂∗i and α∗i , with 0 < α̂∗i ,α∗i < C1. In the following
section, an efficient algorithm is proposed for solving the
optimization problem (6).

2.2. An Optimistic Algorithm. �p-norm MK-SVR model
(6) can be trained with several algorithms, for example,
the Sequential Minimal Optimization algorithm [26] and
multi-kernel learning with online-bath optimization [24].
In this paper, the interleaved optimization is used for the
optimization scheme according to the idea of [23]. As a
matter of fact, we can exploit the structure of �p-norm
MK-SVR cost function by alternating between optimizing
the linear combination of the base kernels K = ∑

k dkKk

and the remaining variables as α̂ and α. We can do so by
setting up a two-stage optimization algorithm. The basic
idea of the algorithm is to divide the optimization variables
of �p-norm MK-SVR problem (6) into two groups, (α̂,α)
on one hand and d = (d1,d2, . . . ,dM) on the other. Our
procedure will alternatingly operate on those two stages
via a block coordinate descent algorithm. Therefore the
optimization d will be carried out analytically and the (α̂,α)
will be computed in the dual. The two stages are iteratively
performed until the specified stopping criterion is met, as
shown in Figure 1.

In the first stage, the variables (α̂,α) are kept fixed, that
is, the (α̂,α) are known. Then the optimal d in �p-norm MK-
SVR model (6) can be calculated analytically by the following
process.

According to (A.4), let
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Data sets

Training data Validation data Testing data

Train SVR with the standard
one used in LibSvm [27].

No
Stopping criterion

is met.

Yes

Stop and output

are optimized in
an interleaving way.

is selected.

Testing errors

Input the adjustable constant P > 1,

t = 0

t = t + 1

The optimal ℓp-norm MK-SVR

feasible α̂, α, and dk =

α̂, α, and d

Kernel weighting d and (α̂, α)

1/M, k = 1, 2, . . ., M.

Figure 1: �p-norm MK-SVR model learning algorithm (see [27]).
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In the optimal point γk = 0 holds, so the previous equa-
tion yields
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,

(10)

where (1/p) + (1/q) = 1, and k = 1, 2, . . . ,M.
In the second stage, the following algorithm is used. We

give a chunking-based training algorithm (Algorithm 1) via
analytical update for �p-Norm MK-SVR. Kernel weighting d
and (α̂,α) are optimized in an interleaving way. The basic
idea of this algorithm is to divide the optimal problem
into an inner subproblem and an outer subproblem. The
algorithm alternates between solving the two subproblems
until convergence.
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1. Input fm,i = ̂fi = α̂i = 0, gm,i = ĝi = αi = 0,∀i = 1, 2, . . . ,N ; L = S = −∞, dk = (
√

1/k)
p
,

∀k = 1, 2, . . . ,M.
2. Iterate

(1) Select 2Q variables based on the gradient of (6): α̂Q = α̂i1, . . . , α̂iQ, αQ = αi1, . . . ,αiQ.

(2) Store α̂old
Q = α̂Q, αold

Q = αQ and new α̂Q, αQ can be obtained according to (6) with
respect to the selected variables.
(3) Update gradient fm,i ← fm,i +

∑Q
q=1(α̂iq − α̂old

iq )Kk(xiq, xi), gm,i ← gm,i +
∑Q

q=1(αiq − αold
iq )Kk(xiq, xi),

∀k = 1, 2, . . . ,M, i = 1, 2, . . . ,N .
(4) Compute the quadratic terms Sk = (1/2)

∑

i( fm,i − gm,i)(α̂i − αi),∀k = 1, 2, . . . ,M.

(5) Lold = L, L =∑i yi(α̂i − αi)−
∑

i ε(α̂i + αi), Sold = S, S =∑k dkSk .

(6) If |1− (L− S)/(Lold − Sold)| ≥ ε, update dk with (10),∀k = 1, 2, . . . ,M,
else

break
endif

3. Output α̂,α, d.

Algorithm 1

In every iteration process, the inner subproblem (α̂ and α
step) identifies the constraint that maximises (6) with fixing
kernel weighting d. The outer subproblem (d step) is also
called the restricted master problem. dk is computed with the
(10), k = 1, 2, . . . ,M.

The interleaved optimization algorithm is depicted in
Algorithm 1, and the details of it are as follows.

2.2.1. Initialization. Assume the original values of α̂i and αi
are 0, for all i = 1, 2, . . . ,N , and the initial value of dk is√

1/k
p
, for all k = 1, 2, . . . ,M, where p > 1 is a constant.

2.2.2. Chunking and Carrying out with SVR. In the iteration
process, the procedure is standard in chunking-based SVR
solvers and is carried out by SVMlight, where Q is chosen as
described in [28]. We implement the greedy second-order
working set selection strategy of [28]. Rather than compute
the gradient repeatedly, we speed up variable selection by
caching, separately for each kernel. The cache needs to be
updated every time we change α̂Q and αQ in the reduced
variable optimisation. In Algorithm 1, (4) and (5) compute
the objective values of SVR. Finally, the analytical value of d
is carried out in (10).

2.2.3. Stopping Criterion. When the duality gap falls below a
prespecified threshold, that is, |1−((L−S)/(Lold−Sold))| < ε,
we terminate the algorithm and output α̂, α, d.

3. Experimental Results

In this section, two experiments on a real financial time
series have been carried out to assess the performance of �p-
norm MK-SVR. The motivation behind the two experiments
are to compare the performance of our proposed method
with that of other methods, that is, single kernel support
vector regression (SKSVR) [29] and �1-norm MK-SVR [22].
All calculations are performed with programs developed in
MATLAB R2010a.

Table 1: The data sets for the first experiment.

Dataset Training Validating Testing

data1 2003/1–2006/12 2007/1–2007/3 2007/4–2007/6

data2 2003/4–2007/3 2007/4–2007/6 2007/7–2007/9

data3 2003/7–2007/6 2007/7–2007/9 2007/10–2007/12

3.1. Experiment I. Firstly, we compare the performance of �p-
norm MK-SVR with that of SKSVR. In this experiment, the
daily stock closing prices of Shanghai Stock Index in China
for the period of January 2003 to December 2007 are used,
and the training/validating/testing data set is generated by a
one-season moving-window testing approach. Following the
way done in [29], three data sets, data1 to data3, are formed.
For instance, data1 contains the daily stock closing prices
from January 2003 to December 2006 are selected as the
training data set, the daily stock closing prices from January
2007 to March 2007 are selected as the validating data set,
the daily stock closing prices from April 2007 to June 2007
are selected as the testing data set. The corresponding time
periods for data 1 to data 3 are listed in Table 1.

According to [29], we can derive training patterns (xt, yt)
based on the original daily stock closing prices P = {p1,
. . . , pt . . .} for SKSVR and �p-norm MK-SVR. Let EMAn(t) =
EMAn(t−1)+α×(pt−EMAn(t−1)) be the n-day exponential
moving average of the tth day, where pt is the tth day daily
stock closing prices and α = 2/(n + 1), then the output
variable yt can be defined as

yt = RDP+5(t) = EMA3t − EMA3(t − 5)
EMA3(t − 5)

× 100. (11)

Let xt = (xt,1, xt,2, xt,3, xt,4, xt,5) be the input vector and let
RDP−n(t) = (100 × (pt − pt−n))/pt−n be the lagged relative
difference in percentage of price (RDP). Moreover, We can
obtain a transformed closing price E˜WAn(t) by subtracting a
n-day EMA from the closing price, that is,

E˜WAn(t) = pt − EWAn(t). (12)
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Figure 2: Forecasting performance of SKSVR with different hyper-
parameters.

Table 2: The comparison of RMSE values between SKSVR and �p-
norm MK-SVR.

Methods Data1 Data2 Data3

SKSVR 0.179 0.183 0.197

�p norm (p = 1.05) 0.161 0.177 0.186

�p norm (p = 1.001) 0.163 0.174 0.189

�p norm (p = 1.15) 0.166 0.179 0.183

Based on in the previously mentioned, the input variables
can be defined as xt,1 = E˜WA15(t − 5), xt,2 = R˜DP−5(t − 5),
xt,3 = R˜DP−10(t − 5), xt,4 = R˜DP−15(t − 5), and xt,3 =
R˜DP−20(t − 5). We adopt the root mean squared error
(RMSE) for performance comparison, that is,

RMSE =

√

√

√

√

√

1
T

T
∑

t=1

(

yt − ŷt
)2, (13)

where yt and ŷt are desired output and predicted output,
respectively.

There are three parameters that should be determined in
advance for SKSVR, that is, C, ε, and γ for using RBF kernel.
The forecasting performance of SKSVR is examined with
C = 1 and ε = 0.005. Because the forecasting performance
obtained by SKSVR is effected by the parameter γ, we try
with different settings of it from 0.01 to 3 with a stepping
factor of 0.05. Figure 2 shows the RMSE for performance on
the three data sets by SKSVR. The figure shows that SKSVR
requires different γ settings for different data sets to obtain
the best performance. For example, the best performance for
data 1 occurs when 0.35 ≤ γ ≤ 0.45. The best RMSE values
obtained by SKSVR are listed in Table 2.

For �p-norm MK-SVR training model, we adopt RBF
kernel K(x, xk) = exp{−‖xi − x j‖2

2/σ
2}. A kernel combining

60 different RBF kernels is considered, that is, 0.01 ≤ 1/σ2 ≤
3 with step 0.05. Hence, the kernel matrix is combined with
a weighted sum of 60 kernel matrices, that is, ˜K = d1K1 +
d2K2 + · · · + d60K60 where d1 denotes the kernel weight for
the first kernel matrix with 1/σ2 = 0.01 and d2 denotes the
kernel weight for the second kernel matrix with 1/σ2 = 0.06,
and so on. For the three data sets, the RMSE values obtained
by �p-norm MK-SVR are listed in Table 2, too. Obviously

Table 3: The data sets for the second experiment.

Dataset Training Validating Testing

D-I 2008/1–2010/12 2011/1–2011/3 2011/4–2011/6

D-II 2008/4–2011/3 2011/4–2011/6 2011/7–2011/9

D-III 2008/7–2011/6 2011/7–2011/9 2011/10–2011/12

Table 4: The comparison of RMSE values between �1-norm MK-
SVR and �p-norm MK-SVR.

Methods D-I D-II D-III

�1 norm 0.182 0.189 0.178

�p norm (p = 6/5) 0.175 0.183 0.179

�p norm (p = 4/3) 0.185 0.181 0.180

�p norm (p = 8/7) 0.190 0.191 0.171

when p = 1.05, 1.001, and 1.15, �p-norm MK-SVR model
performs better than SKSVR one for data1 data set, data2
data set, and data3 data set, respectively.

3.2. Experiment II. Secondly, we compare the performance
of �p-norm MK-SVR with that of �1-norm MK-SVR. In this
experiment, the daily stock closing prices of Shanghai Stock
Index in China for the period of January 2008 to December
2011 are used, and the training/validating/testing data set is
generated by a one-season moving-window testing approach.
Following the way done in Tay and Cao [29], three data sets,
D-I to D-III, are formed. The corresponding time periods for
D-I to D-III are listed in Table 3.

We also adopt RMSE (13) for performance comparison.
For �1-norm MK-SVR and �p-norm MK-SVR training
model, a kernel combining 40 different RBF kernels is con-
sidered, that is, 1/σ2 ∈ {0.01, 0.02, . . . , 0.09, 0.1, 0.2, . . . , 0.9,
1, 2, . . . , 9, 10, 20, . . . , 100, 200, 300, 400}. Hence, the kernel
matrix is combined with a weighted sum of 40 kernel
matrices, that is, ˜K = d1K1 + d2K2 + · · · + d40K40 where
d1 denotes the kernel weight for the first kernel matrix with
1/σ2 = 0.01 and d2 denotes the kernel weight for the second
kernel matrix with 1/σ2 = 0.02, and so on. For the three
data sets, the RMSE values obtained by �1-norm MK-SVR
and �p-norm MK-SVR are listed in Table 4. Obviously when
p = 6/5, 4/3, and 8/7, �p-norm MK-SVR model performs
better than �1-norm MK-SVR one for D-I data set, D-II
data set, and D-III data set, respectively. Figure 3 shows the
forecasting results for D-I and D-II by the two regression
models.

Furthermore, we can use a statistical test proposed by
Diebold and Mariano [30] to assess the statistical significance
of the forecasts by �p-norm MK-SVR model. The loss-
differential series of �1-norm MK-SVR and �p-norm MK-
SVR are shown in Figures 4 and 5. According to [30], we

adopt the asymptotic test S1 = d/
√

(2π ̂fd(0))/T as the
test statistic, where di = r2

1i − r2
2i is the loss-differential

series of �1-norm MK-SVR and �p-norm MK-SVR models,

r1 and r2 denote the forecasting errors; 2π ̂fd(0) is the
weighted sum of the available sample autocovariances:
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Figure 3: Forecasting results by �1-norm MK-SVR and �p-norm MK-SVR.

2π ̂fd(0) = ∑T−1
τ=−(T−1) 1 ∗ (τ/S(T))γ̂d(T), where T is the

sample size, γ̂d(T) = (1/T)
∑T

t=|τ|+1(dt − d)(dt−|�τ| − d), and
1∗ (τ/S(T)) is the lag window, defined as

1∗
(

τ

S(T)

)

=
⎧

⎪

⎨

⎪

⎩

1, if
∣

∣

∣

∣

τ

S(T)

∣

∣

∣

∣
≤ 1,

0, otherwise,
(14)

where S(T) = k−1; k reports the number of forecasting steps
ahead.

We denote U1 as the forecasting accuracy of �1-norm
MK-SVR and Up as the forecasting accuracy of �p-norm
MK-SVR. Under the null hypothesis: U1 = Up, the test was
performed at the 0.05 and 0.10 significant levels [12]. The
test results are shown in the following Table 5. For the three

Table 5: Asymptotic test.

Stock closing prices α = 0.05 α = 0.10

D-I
S1 = 1.756, S1 = 1.756,

P value = 0.0359 P value = 0.0359

D-II
S1 = 1.832, S1 = 1.832,

P value = 0.0416 P value = 0.0416

D-III
S1 = 1.579, S1 = 1.579,

P value = 0.0258 P value = 0.0258

data sets, all asymptotic tests reject H0 : U1 = Up. The test
result shows that �p-norm MK-SVR model indeed improves
the forecasting accuracy in comparison with �1-norm MK-
SVR model.
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Figure 4: Loss differential (�1-MKSVR to �p-MKSVR) of D-I.
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Figure 5: Loss differential (�1-MKSVR to �p-MKSVR) of D-II.

We briefly mention that the superior performance of �p-
norm MK-SVR model (p > 1) is not surprising. When
we use the sparsity-inducing norm (p = 1), some of
the kernel weights are forced to become zero, and the
corresponding kernel will be eliminated leading to some
information loss. The daily stock closing prices do not carry
large parts of overlapping information, and the information
is discriminative. So a nonsparse kernel mixture can access
more information and perform more robustly.

4. Summary and Prospect

In this paper, an �p-norm MK-SVR model for stock market
price forecasting is proposed. The model conceives an opti-
mization scheme of unprecedented efficiency and provides a
really efficient implementation. In an empirical evaluation,
we show that �p-norm MK-SVR can improve predictive
accuracies on relevant real-world data sets. Although we
focus on volatility forecasting of stock markets in this paper,
our �p-norm MK-SVR model could be applied to more
general financial forecasting problems. Therefore in the
future we will apply our �p-norm MK-SVR model for other
financial markets, such as exchange markets.

Appendix

�p-Norm MK-SVR Dual Formulation

In this appendix, we detail the dual formulation of �p-
norm MK-SVR. We again consider �p-norm MK-SVR with

a general convex loss,

min
w,b

1
2

∑

k

‖wk‖2
2

dk
+ C

l
∑

i=1

(

ξi + ̂ξi
)

s.t. (〈w,K(xi)〉 + b)− yi ≤ ε + ξi,

yi − (〈w,K(xi)〉 + b) ≤ ε + ̂ξi,

‖d‖2
p ≤ 1,

d1,d2, . . . ,dM ≥ 0,

ξ, ̂ξi ≥ 0, i = 1, 2, . . . ,N.

(A.1)

In the following, we build the Lagrangian of (A.1). By
introducing Lagrangian multipliers α = (α1,α2, . . . ,αN )T ∈
RN , α̂ = (α̂1, α̂2, . . . , α̂N )T ∈ RN , β ∈ R+, and γ = (γ1, γ2,
. . . , γM)T ∈ RM , the Lagrangian saddle point problem is
given by

sup
α,α̂,η1,η2

β≥0,γ≥0

inf
w,b

⎧

⎨

⎩

1
2

∑

k

‖wk‖2
2

dk
+ C

l
∑

i=1

(

ξi + ̂ξi
)

+
N
∑

i=1

αi
(〈w,K(xi)〉 + b − yi − ε − ξi

)

+
N
∑

i=1

α̂i
(

yi − 〈w,K(xi)〉 − b − ε − ̂ξi
)

−γTd− η1ξ − η2
̂ξ + β

(

1
2
‖d‖2

p −
1
2

)

⎫

⎬

⎭

.

(A.2)

Set the Lagrangian’s first partial derivatives with respect to

w, b, ξi, and ̂ξi, and let them be 0 to reveal the optimality
conditions

wk = dk
∑

i=1

N(α̂i − αi)Kk(xi), k = 1, 2, . . . ,M,

1T(α̂i − αi) = 0, 1 = (1, 1, . . . , 1)T ,

C = η1i + αi,

C = η2i + α̂i, i = 1, 2, . . . ,N.

(A.3)

Resubstituting the previous equations to the Lagrangian
yields the following

sup
α,α̂,β≥0,γ≥0,
1T (α̂i−αi)=0

inf
ε,d

⎧

⎨

⎩

N
∑

i=1

yi(α̂i − αi)− ε
N
∑

i=1

(α̂i + αi)− 1
2

M
∑

k=1

dk

·
N
∑

i=1

N
∑

j=1

(α̂i − αi)
(

α̂ j − αj

)

Kk

(

xi, x j

)

+β
(

1
2
‖d‖2

p −
1
2

)

− γTd

⎫

⎬

⎭

(A.4)
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which can also be written as

sup
α,α̂,β≥0,γ≥0,
1T (α̂i−αi)=0

⎧

⎨

⎩

sup
ε

⎧

⎨

⎩

ε
N
∑

i=1

(α̂i + αi)−
N
∑

i=1

yi(α̂i − αi)

⎫

⎬

⎭

− βsup
d

⎧

⎨

⎩

1
β

M
∑

k=1

⎛

⎝

1
2
dk

N
∑

i=1

N
∑

j=1

(α̂i−αi)
(

α̂ j−αj

)

Kk

(

xi, x j

)

+γk

⎞

⎠− 1
2
‖d‖2

p

⎫

⎬

⎭

− 1
2
β

⎫

⎬

⎭

.

(A.5)

For standard support vector regression formulations,
the hinge loss function can be defined as f (w; (x, y)) =
max{0, |〈w, x〉 − y| − ε}. This loss is also convex with a sub-
gradient bounded by ‖x‖. As is known to all, the Fenchel-
Legendre conjugate of a function f is defined as f ∗(x) =
supux

Tu− f (u), and the dual form is denoted by ‖ · ‖∗ (the
norm defined via the identity (1/2)‖ · ‖2∗ = ((1/2)‖ · ‖2)∗.
According to (A.3), (A.5), and Fenchel-Legendre conjugate
of the hinge loss function, we can obtain the following dual:

max
α̂,α,β≥0,γ≥0

(

yT(α̂− α)− ε(α̂ + α)
)

− 1
β

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

1
2
dk

N
∑

i=1

N
∑

j=1

(α̂i−αi)
(

α̂ j−αj

)

Kk

(

xi, x j

)

+γk

⎞

⎠

M

k=1

∥

∥

∥

∥

∥

∥

∥

2

p∗

− 1
2
β,

(A.6)

where y = (y1, y2, . . . , yN )T , ε = (1, 1, . . . , 1)T , 1T(α̂−α) = 0,
0 ≤ α̂,α ≤ C1, and p∗ = p/(p − 1).

In the following, we find ̂β at optimality. Let us solve
∂L/∂β = 0 for the unbounded β; then we can obtain the
optimal β as

̂β =
∥

∥

∥

∥

∥

∥

∥

⎛

⎝

1
2
dk

N
∑

i=1

N
∑

j=1

(α̂i − αi)
(

α̂ j − αj

)

Kk

(

xi, x j

)

+ γk

⎞

⎠

M

k=1

∥

∥

∥

∥

∥

∥

∥

p∗

.

(A.7)

Obviously, ̂β ≥ 0, so we can ignore the corresponding con-
straint from the optimization problem and plug (A.7) into
(A.6). Then the following dual optimization problem for �p-
norm MK-SVR is written as

max
α̂,α,

(

yT(α̂− α)− ε(α̂ + α)
)

−
∥

∥

∥

∥

∥

∥

∥

⎛

⎝

1
2
dk

N
∑

i=1

N
∑

j=1

(α̂i − αi)
(

α̂ j − αj

)

Kk

(

xi, x j

)

+ γk

⎞

⎠

M

k=1

∥

∥

∥

∥

∥

∥

∥

p∗

s.t. 1T(α̂− α) = 0,

0 ≤ α̂,α ≤ C1,

d1,d2, . . . ,dM ≥ 0.

(A.8)

For the choice of �p norm, γ = 0 holds in the optimal
point so that the γ-term can be discarded [23]. Therefore the
previous equations reduce to an optimization problem that
depends on α̂ and α as

max
α̂,α,γ≥0

(

yT(α̂− α)− ε(α̂ + α)
)

−
∥

∥

∥

∥

∥

∥

∥

⎛

⎝

1
2
dk

N
∑

i=1

N
∑

j=1

(α̂i − αi)
(

α̂ j − αj

)

Kk

(

xi, x j

)

⎞

⎠

M

k=1

∥

∥

∥

∥

∥

∥

∥

p∗

s.t. 1T(α̂− α) = 0,

0 ≤ α̂,α ≤ C1,

d1,d2, . . . ,dM ≥ 0.
(A.9)

Now, �p-norm MK-SVR model has been constructed.
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