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This paper considers a group consensus problem with a dynamic leader for multiagent systems in a sampled-data setting. With the
leader’s state available to only a fraction of the followers, a distributed linear protocol based on sampled-data control is proposed
for group consensus under fixed directed topology. On basis of 𝑀-matrix theory, we derive a sufficient condition on the sampling
period and the control parameter for ultimate boundedness of the tracking errors. Furthermore, simulation examples are provided
to demonstrate the effectiveness of the theoretical results.

1. Introduction

Over the past few decades, cooperative control and dis-
tributed coordination of multiagent systems have attracted
increasing attention from many different disciplines, such
as mathematics, physics, biology, sociology, and engineering
science [1–9]. As a type of critical problems for cooperative
control of multiple agents, consensus problem has been an
active area of research. In [2], Jadbabaie et al. investigated the
consensus of the linearized Vicsek model; they demonstrated
that a simple neighbor rule makes all agents eventually move
in the same direction under a joint connection condition.
Olfati-Saber andMurray [3] established a systematical frame-
work of a consensus problem in continuous-time multiagent
systems with fixed and switching topology and commu-
nication time-delays. Following this line, numerous results
have been reported on consensus of multiagent systems. For
details, please refer to [10–13] and the references therein.

A particularly interesting topic is the leader-following
consensus problem, whose objective is that the followers
track a leader with local interaction. The leader-following
consensus problem has been studied from different per-
spectives (see, e.g., [14–21]). In [14], the authors considered
tracking control for first-order consensus with an active
leader and gave a local controller together with a neighbor-
based state-estimation rule.They further extended the results

to the case of second-order consensus in [15]. In addition,
Ren explored the consensus problem of multiagent systems
with respect to a time-varying leader in [16]. In [17], Ren
further studied leader-following consensus problem with,
respectively, bounded control effort and directed switching
interaction topologies. For multiagent systems with multiple
leaders, Shi et al. investigated distributed tracking of a
convex set specified by multiple leaders with unmeasurable
velocities in [18]. It is worth pointing out that the information
transmission among all the agents is continuous in [14–21].

In reality, it might be quite difficult or expensive to ensure
the continuity of information exchange between agents due
to the unreliability of information channels, the finite capa-
bility of transmission bandwidth of networks, the limited
sensing ability, and the constraints of cost. Thus, sampled-
data control for multiagent systems is more coincident with
applications. For example, the authors proposed a propor-
tional and derivative like (PD-like) protocol for multiagent
systems with a time-varying reference state in [22]. Also,
they studied convergence of two distributed sampled-data
coordination protocols for double-integrator dynamics under
fixed topology in [23]. Furthermore, convergence analyses of
two distributed sampled-data coordination algorithms under
directed switching topology were addressed in [24]. More
results on sampled-data control for multiagent systems can
be found in [25, 26].
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In contrast to the consensus problems studied in the
aforementioned results, group consensus [27, 28] or cluster
consensus [29] concerns amultiagent systemwhich is divided
into multiple groups, and information exchange exists not
only two agents in a group but also in different groups. It
aims to design appropriate protocols or algorithms such that
agents in a multiagent system reachmore than one consistent
state, that is, to find some appropriate control inputs such
that consensus can be achieved in each group. In fact, group
consensus or cluster consensus is a more general concept
in comparison with traditional consensus. Moreover, it is
suitable for some practical applications because of the com-
plexities of lots of applicablemultiagents systems.The authors
solved a group average-consensus problem for networks
with fixed topologies in [27] and further addressed group
consensus in distributed multiagent systems with switching
topologies and communication delays in [28]. Moreover, suf-
ficient conditions for group consensus in directed networks
were obtained in [29].

Note that the group consensus or cluster consensus prob-
lems investigated in [27–29] were all for continuous-time
multiagent systems, and they were also leaderless consensus
problems. Although group consensus without a leader is
useful in many cases, there are many other applications that
require a dynamic leader. A common example is formation
control, where the followers regulate their states according
to their state deviations and attain the expected formation.
Inspired by the analysis above, we investigate the group
consensus problem with a dynamic leader via sampled-data
control. According to specific requirements, the agents in
the system are divided into the desired groups, and each
group converges to a state which has an expected deviation
from that of the leader. By utilizing 𝑀-matrix theory, we
consider the case where the state of leader is available to only
a subset of followers. We first give a protocol for continuous-
time multiagent systems; then for more realistic applications,
we propose a group consensus protocol based on sampled-
data control and analyze the convergence of the protocol.
Consequently, we obtain the condition on the sampling
period and the control parameter to ensure that the tracking
errors are ultimately bounded.

2. Preliminaries

2.1. Graph and 𝑀-Matrix Theory. For a given matrix 𝐴 ∈

R𝑛×𝑛, det(𝐴) denotes its determinant, ‖𝐴‖
∞

represents its
maximum row sum norm, 𝜎(𝐴) is the set of all eigenvalues
of 𝐴, and 𝜌(𝐴) denotes its spectral radius. A matrix 𝐴 is
said to be positive stable if all of its eigenvalues have positive
real parts, and it is Hurwitz stable (in the continuous-time
sense) if all of its eigenvalues have negative real parts, while
it is Schur stable (in the discrete-time sense) if all of its
eigenvalues have magnitude less than 1. 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

is called
a nonnegative matrix if 𝑎

𝑖𝑗
≥ 0, 𝑖, 𝑗 = 1, . . . , 𝑛. 𝐼

𝑛
∈ R𝑛×𝑛 is an

𝑛 × 𝑛 identity matrix and 0
𝑛×𝑛

∈ R𝑛×𝑛 is an 𝑛 × 𝑛 zero matrix,
1
𝑛
= [1, . . . 1]

𝑇

∈ R𝑛 and 0
𝑛
= [0, . . . 0]

𝑇

∈ R𝑛. ‖𝑥‖
∞
denotes

the max norm of a vector 𝑥 ∈ R𝑛. 𝑖 is the imaginary unit.

Given a complex number 𝜇 ∈ C, Re(𝜇), Im(𝜇), and |𝜇| are its
real part, imaginary part, and modulus, respectively.

A directed graph G = (V,E) consists of a vertex set
V = {1, 2, . . . , 𝑛}, an edge set E ⊆ V × V. An edge (𝑖, 𝑗) in
a weighted directed graph G denotes that agent 𝑖 can access
the state information of agent 𝑗 but not necessarily vice versa.
The index set of neighbors of node 𝑖 is denoted by 𝑁

𝑖
=

{𝑗 ∈ V : (𝑖, 𝑗) ∈ E}. The weighted adjacency matrix of
graph G is denoted by 𝐴 = [𝑎

𝑖𝑗
] ∈ R𝑛×𝑛, where 𝑎

𝑖𝑗
> 0 if

(𝑖, 𝑗) ∈ E and 𝑎
𝑖𝑗

= 0 otherwise. Moreover, we assume 𝑎
𝑖𝑖
= 0

for all 𝑖 ∈ V. Let the Laplacian matrix 𝐿 = [𝑙
𝑖𝑗
] ∈ R𝑛×𝑛

associated with𝐴 be defined as 𝑙
𝑖𝑖
= ∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
and 𝑙
𝑖𝑗

= −𝑎
𝑖𝑗
.

It is straightforward to verify that 𝐿 has at least one zero
eigenvalue with a corresponding eigenvector 1

𝑛
. A directed

path is a sequence of edges in a directed graph of the form
(𝑖
1
, 𝑖
2
), (𝑖
2
, 𝑖
3
), . . ., where 𝑖

𝑗
∈ V. If there exists a path from

node 𝑖 to node 𝑗, we say that 𝑗 is reachable from 𝑖.
If each agent is regarded as a vertex, then the interaction

topology associated with the agents is conveniently described
by a directed graphG. In fact,G includes 𝑛 followers (related
to graphG) and one leader (labeled as vertex 0) with directed
edges from some vertices to vertex 0. The leader adjacency
matrix associated with graph G is defined as a matrix 𝐵 =

diag{𝑏
1
, . . . , 𝑏

𝑛
}, where 𝑏

𝑖
> 0 if vertex 0 is a neighbor of the

vertex 𝑖 and 𝑏
𝑖

= 0 otherwise. For G, if there is a path in
G from every vertex 𝑖 in G to vertex 0, we say that vertex 0
is globally reachable in G. For convenience, we define 𝑃 =

(𝑝
𝑖𝑗
)
𝑛×𝑛

= 𝐿+𝐵with𝑝
𝑖𝑖
= (∑
𝑗∈𝑁𝑖

𝑎
𝑖𝑗
+𝑏
𝑖
) being the 𝑖th diagonal

element of the matrix 𝑃, and 𝐷 = diag{𝑝
11
, 𝑝
22
, . . . , 𝑝

𝑛𝑛
} ∈

R𝑛×𝑛.
𝑀-matrix is an important and special class of matrix,

which arises in many areas of application. Some definitions
and lemmas concerning𝑀-matrix are recalled in the follow-
ing.

Definition 1 (see [30]). Let 𝑍
𝑛

= {𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

∈ 𝑀
𝑛
(R) :

𝑎
𝑖𝑗

≤ 0 if 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . 𝑛}, where 𝑀
𝑛
(R) denotes the

set of all 𝑛 × 𝑛 matrices with entries from R. Then a matrix
𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

is called an𝑀-matrix if𝐴 ∈ 𝑍
𝑛
and𝐴 is positive

stable.

Lemma 2 (see [31]). If 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

∈ 𝑍
𝑛
, the following

statements are equivalent:

(i) 𝐴 is positive stable; that is, 𝐴 is an 𝑀-matrix;

(ii) 𝐴 is nonsingular and 𝐴
−1 is a nonnegative matrix;

(iii) The diagonal entries of 𝐴 are positive, and 𝜌(𝐵) < 1,
where 𝐵 = 𝐼

𝑛
− 𝑋
−1

𝐴, 𝑋 = diag{𝑎
11
, 𝑎
22
, . . . , 𝑎

𝑛𝑛
}.

Lemma 3 (see [26]). 𝑃 = 𝐿 + 𝐵 is an 𝑀-matrix if and only if
the vertex 0 is globally reachable inG.

The following lemmas will be useful in the analysis of the
convergence of the sampled-data protocol.

Lemma 4 (see [30]). If 𝜌(𝐴) < 1, 𝐴 ∈ 𝑀
𝑛
(R), then the series

𝐼 + 𝐴 + 𝐴
2

+ ⋅ ⋅ ⋅ converges to the sum (𝐼
𝑛
− 𝐴)
−1.
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Lemma 5 (Schur’s formula [32]). Let 𝐴, 𝐵, 𝐶,𝐷 ∈ R𝑛×𝑛 and
𝑀 = (

𝐴 𝐵

𝐶 𝐷
). Then det(𝑀) = det(𝐴𝐷 − 𝐵𝐶), if 𝐴, 𝐵, 𝐶 and 𝐷

commute pairwise.

Lemma 6 (see [33]). Given a complex-coefficient polynomial

𝑓 (𝑠) = 𝑠
2

+ (𝑎 + 𝑖𝑏) 𝑠 + 𝑐 + 𝑖𝑑, (1)

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, 𝑓(𝑠) is Hurwitz stable if and only if 𝑎 > 0

and 𝑎𝑏𝑑 + 𝑎
2

𝑐 − 𝑑
2

> 0.

2.2. Model Description. Consider a system consisting of 𝑛

followers and one leader, where the 𝑛 followers are separated
into 𝑚 (𝑚 ≤ 𝑛) groups. Let 𝐸

𝑞
, 𝑞 = 1, 2, . . . , 𝑚 be the set of

all the followers in the 𝑞th group. Our objective is to design
suitable protocol or algorithm to realize group consensus, in
the presence of information exchanges between followers of
different groups.

All the followers move with the first-order dynamics,
described by

�̇�
𝑖
(𝑡) = 𝑢

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛, (2)

where 𝑥
𝑖
(𝑡) ∈ R𝑘 represents the state of the follower 𝑖 and

𝑢
𝑖
(𝑡) ∈ R𝑘 is the control input, called protocol or algorithm,

to be designed based on the local information received by
follower 𝑖 from its neighbors.

The motion of the leader is independent, expressed as

�̇�
0
(𝑡) = 𝑓 (𝑡) , (3)

where 𝑓(𝑡) is bounded, piecewise continuous in 𝑡. Here we
assume that all agents are in a one-dimensional space (𝑘 =

1) for the simplicity of presentation. However, all results
hereafter are still valid for the 𝑘-dimensional (𝑘 > 1) case
by introduction of the Kronecker product.

Definition 7. Group consensus with a leader is said to be
achieved asymptotically if the states of followers satisfy
lim
𝑡→∞

‖𝑥
𝑖
(𝑡) − 𝑥

0
(𝑡) − 𝜔

𝑞
(𝑡)‖ = 0, where 𝑥

0
(𝑡) is the

state of the leader and 𝜔
𝑞
(𝑡) denotes the desired deviation

between the leader and the followers in the 𝑞th group for
𝑞 = 1, 2, . . . , 𝑚.

Different from [27–29], we introduce a leader in the group
consensus problem of this paper, and the followers in the
network can be divided into several groups upon specific
request. Furthermore, the followers in a group converge to a
state which has an expected relative deviation from the state
of the leader.

3. Sampled-Data Group Consensus with
a Dynamic Leader

3.1. Sampled-Data Group Consensus Protocol. Denote the
desired deviation between the leader and the followers in

the 𝑞th group as 𝜔
𝑞
(𝑡); we then propose the following

continuous-time protocol:

𝑢
𝑖
(𝑡) = �̇�

𝑞
(𝑡)

+
1

𝑝
𝑖𝑖

𝑚

∑

𝑠=1

∑

𝑗∈𝐸𝑠

𝑎
𝑖𝑗
[�̇�
𝑗
(𝑡) − �̇�

𝑠
(𝑡)

− 𝛼 ((𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

− (𝜔
𝑞
(𝑡) − 𝜔

𝑠
(𝑡)))]

+
𝑏
𝑖

𝑝
𝑖𝑖

[�̇�
0
(𝑡) − 𝛼 (𝑥

𝑖
(𝑡) − 𝜔

𝑞
(𝑡) − 𝑥

0
(𝑡))]

𝑖 ∈ 𝐸
𝑞
, 𝑞 = 1, 2, . . . , 𝑚,

(4)

where 𝑎
𝑖𝑗
is the (𝑖, 𝑗)th entry of the adjacency matrix 𝐴, 𝑏

𝑖
is

the 𝑖th diagonal element of the leader adjacencymatrix𝐵, 𝛼 >

0 is the control parameter, and 𝑝
𝑖𝑖
= (∑
𝑗∈𝑁𝑖

𝑎
𝑖𝑗
+ 𝑏
𝑖
) is the 𝑖th

diagonal element of the matrix 𝑃 = 𝐿 + 𝐵.

Lemma 8. Protocol (4) solves a group consensus problem
asymptotically if and only if the vertex 0 is globally reachable
inG.

Proof. Noticing that 𝑃 is an 𝑀-matrix, it follows from part
(iii) of Lemma 2 that 𝑝

𝑖𝑖
> 0, which implies that protocol

(4) is well defined. Let 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇, where

𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

0
(𝑡) − 𝜔

𝑞
(𝑡), 𝑖 ∈ 𝐸

𝑞
, 𝑞 = 1, 2, . . . , 𝑚. Then

using the fact that �̇�
𝑗
(𝑡) = 𝑢

𝑗
(𝑡), protocol (4) can be written

as

𝑝
𝑖𝑖
�̇�
𝑖
(𝑡) −

𝑚

∑

𝑠=1

∑

𝑗∈𝐸𝑠

𝑎
𝑖𝑗
�̇�
𝑗
(𝑡)

= −𝛼[

[

𝑚

∑

𝑠=1

∑

𝑗∈𝐸𝑠

𝑎
𝑖𝑗
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) + 𝑏

𝑖
𝑥
𝑖
(𝑡)]

]

,

(5)

which can be expressed in matrix form as

𝑃�̇� (𝑡) = −𝛼𝑃𝑥 (𝑡) . (6)

Note that 𝑃 is invertible since 𝑃 is an 𝑀-matrix; it is clear
that there exists a unique solution for 𝑥

𝑖
(𝑡)(𝑖 = 1, 2, . . . , 𝑛).

In fact, the solution for (6) is 𝑥(𝑡) = 𝑒
−𝛼𝑡

𝑥(0). Therefore, 𝑥(𝑡)
converges to 0

𝑛
asymptotically; that is, 𝑥

𝑖
(𝑡) → 𝑥

0
(𝑡) + 𝜔

𝑞
(𝑡)

as 𝑡 → ∞, 𝑖 ∈ 𝐸
𝑞
, 𝑞 = 1, 2, . . . , 𝑚.

Remark 9. Note that 𝑢
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, in (4) depends not

only on the information states of its neighbors but also on
their derivatives. In the special case that 𝜔

𝑞
(𝑡) ≡ 0, for 𝑞 =

1, 2, . . . , 𝑚, protocol (4) is equivalent to protocol (3.4) in [10].

Note that each agent’s information control input in proto-
col (4) requires the instantaneous measurements of its neigh-
bors’ states and their derivatives. However, it may be difficult
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to implement the requirement in practice; we are hence
motivated to consider a sampled-data setting, where each
agent can only communicate with its neighbours at discrete
sampling instants. With the sampling period 𝑇, the control
input 𝑢

𝑖
(𝑡) holds as

𝑢
𝑖
(𝑡) = 𝑢

𝑖
[𝑘] , 𝑘𝑇 ≤ 𝑡 ≤ (𝑘 + 1) 𝑇, (7)

where 𝑘 is the discrete-time index and 𝑢
𝑖
[𝑘] denotes the

control input at 𝑡 = 𝑘𝑇. Discretizing (2) with zero-order hold,
one obtains the dynamics of each follower as follows:

𝑥
𝑖
[𝑘 + 1] = 𝑥

𝑖
[𝑘] + 𝑇𝑢

𝑖
[𝑘] , 𝑖 = 1, . . . , 𝑛, (8)

where 𝑥
𝑖
[𝑘 + 1] and 𝑥

𝑖
[𝑘] denote, respectively, the position

of follower 𝑖 at 𝑡 = (𝑘 + 1)𝑇 and 𝑡 = 𝑘𝑇. The sampled-data
protocol on basis of protocol (4) is then presented as follows:

𝑢
𝑖
[𝑘]

=

𝜔
𝑞
[𝑘] − 𝜔

𝑞
[𝑘 − 1]

𝑇

+
1

𝑝
𝑖𝑖

𝑚

∑

𝑠=1

∑

𝑗∈𝐸𝑠

𝑎
𝑖𝑗
[

𝑥
𝑗
[𝑘] − 𝑥

𝑗
[𝑘 − 1]

𝑇

−
𝜔
𝑠
[𝑘] − 𝜔

𝑠
[𝑘 − 1]

𝑇

− 𝛼 ((𝑥
𝑖
[𝑘] − 𝑥

𝑗
[𝑘])

− (𝜔
𝑞
[𝑘] − 𝜔

𝑠
[𝑘])) ]

+
𝑏
𝑖

𝑝
𝑖𝑖

[
𝑥
0
[𝑘] − 𝑥

0
[𝑘 − 1]

𝑇

−𝛼 (𝑥
𝑖
[𝑘] − 𝑥

0
[𝑘] − 𝜔

𝑞
[𝑘]) ] ,

𝑖 ∈ 𝐸
𝑞
, 𝑞 = 1, 2, . . . , 𝑚,

(9)

where �̇�
𝑞
(𝑡) and �̇�

𝑗
(𝑡) in (4) at 𝑡 = 𝑘𝑇 are approximated by

(𝜔
𝑞
[𝑘] − 𝜔

𝑞
[𝑘 − 1])/𝑇 and (𝑥

𝑗
[𝑘] − 𝑥

𝑗
[𝑘 − 1])/𝑇, respectively,

𝑎
𝑖𝑗
is the (𝑖, 𝑗)th entry of the adjacency matrix 𝐴, 𝑏

𝑖
is the 𝑖th

diagonal element of the leader adjacency matrix 𝐵, and 𝑝
𝑖𝑖
is

the 𝑖th diagonal element of the matrix 𝑃.

3.2. Convergence Analysis of the Sampled-Data Protocol. In
this subsection, we focus on the convergence analysis of the
sampled-data group consensus protocol with the availability
of the leader’s state to some followers. Define the tracking

error for follower 𝑖 as 𝜀
𝑖
[𝑘] = 𝑥

𝑖
[𝑘] − 𝑥

0
[𝑘] − 𝜔

𝑞
[𝑘], 𝑔
𝑖
[𝑘] =

2(𝑥
0
[𝑘]+𝜔

𝑞
[𝑘])−𝑥

0
[𝑘−1]−𝜔

𝑞
[𝑘−1]−𝑥

0
[𝑘+1]−𝜔

𝑞
[𝑘+1],

𝑖 ∈ 𝐸
𝑞
, 𝑞 = 1, 2, . . . , 𝑚, then (8) using (9) can be written as

𝜀
𝑖
[𝑘 + 1] = 𝜀

𝑖
[𝑘]

+
1

𝑝
𝑖𝑖

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝜀
𝑗
[𝑘] − 𝜀

𝑗
[𝑘 − 1]

−𝛼𝑇 (𝜀
𝑖
[𝑘] − 𝜀

𝑗
[𝑘]))

−
𝛼𝑇𝑏
𝑖

𝑝
𝑖𝑖

𝜀
𝑖
[𝑘] + 𝑔

𝑖
[𝑘] ,

(10)

which can be equally written as

𝜀 [𝑘 + 1] = [(1 − 𝛼𝑇) 𝐼
𝑛
+ (1 + 𝛼𝑇)𝐷

−1

𝐴] 𝜀 [𝑘]

− 𝐷
−1

𝐴𝜀 [𝑘 − 1] + 𝑔 [𝑘] ,

(11)

where 𝜀[𝑘] = (𝜀
1
[𝑘], . . . , 𝜀

𝑛
[𝑘])
𝑇, 𝑔[𝑘] = (𝑔

1
[𝑘], . . . , 𝑔

𝑛
[𝑘])
𝑇,

𝐷 = diag{𝑝
11
, 𝑝
22
, . . . , 𝑝

𝑛𝑛
} ∈ R𝑛×𝑛 is the degree matrix of G

and 𝐴 is the adjacency matrix associated with graphG. Note
that

𝐴 = 𝐷 − 𝐿 − 𝐵 = 𝐷 − 𝑃; (12)

thus
𝐷
−1

𝐴 = 𝐼
𝑛
− 𝐷
−1

𝑃,

(1 − 𝛼𝑇) 𝐼
𝑛
+ (1 + 𝛼𝑇)𝐷

−1

𝐴 = 2𝐼
𝑛
− (1 + 𝛼𝑇)𝐷

−1

𝑃.

(13)

As a result, (11) can be written in matrix form as
𝑍 [𝑘 + 1] = 𝐻𝑍 [𝑘] + 𝐹𝑔 [𝑘] , (14)

where 𝑍[𝑘 + 1] = (𝜀[𝑘 + 1], 𝜀[𝑘])
𝑇, 𝐹 = (𝐼

𝑛
, 0
𝑛×𝑛

)
𝑇, and

𝐻 = (
2𝐼
𝑛
− (1 + 𝛼𝑇)𝐷

−1

𝑃 − (𝐼
𝑛
− 𝐷
−1

𝑃)

𝐼
𝑛

0
𝑛×𝑛

) . (15)

It follows that the solution of (14) is

𝑍 [𝑘 + 1] = 𝐻
𝑘

𝑍 [0] +

𝑘−1

∑

𝑗=0

𝐻
𝑘−(𝑗+1)

𝐹𝑔 [𝑗] . (16)

It can be noted from (16) that the eigenvalues of 𝐻 play an
important role in the convergence analysis. As a result, we
study the eigenvalues of matrix 𝐻 before giving our main
results.

Lemma 10. Suppose that vertex 0 is globally reachable inG;
(i) then 𝜌(𝐼

𝑛
−𝐷
−1

𝑃) < 1, where𝑃 = 𝐿+𝐵, 𝐿 and𝐵 are the
Laplacian matrix and the leader adjacency matrix of
graphG, respectively, and 𝐷 = diag{𝑝

11
, 𝑝
22
, . . . , 𝑝

𝑛𝑛
};

(ii) let 𝜇
𝑗
= 𝜉
𝑗
+ 𝑖𝜂
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, be the 𝑗𝑡ℎ eigenvalue

of 𝐷−1𝑃, where 𝜉
𝑗
= Re(𝜇

𝑗
), 𝜂
𝑗
= Im(𝜇

𝑗
); then

𝜆
𝑗
=

(4𝜉
𝑗
− 2𝜉
2

𝑗
− 2𝜂
2

𝑗
) (𝜉
2

𝑗
+ 𝜂
2

𝑗
)

4𝜂
2

𝑗
+ (𝜉
2

𝑗
+ 𝜂
2

𝑗
)
2

> 0 (17)

holds;
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(iii) 𝜌(𝐻) < 1 if and only if the control parameter 𝛼 and
sampling period 𝑇 satisfy

𝛼𝑇 < min
𝑗=1,...,𝑛

𝜆
𝑗
. (18)

Proof. When vertex 0 is globally reachable in G, it follows,
from Lemma 3, that the matrix 𝑃 = 𝐿 + 𝐵 is an 𝑀-matrix.
Then according to Lemma 2, 𝜌(𝐼

𝑛
− 𝐷
−1

𝑃) < 1 holds.
To show part (ii), note that 𝐷−1𝑃 ∈ 𝑍

𝑛
and (𝐷

−1

𝑃)
−1

=

𝑃
−1

𝐷 is nonnegative. Thus, by Lemma 2, 𝐷
−1

𝑃 is an 𝑀-
matrix, which implies that 𝐷

−1

𝑃 is positive stable; that is,
𝜉
𝑗
> 0. Consequently, 4𝜂2

𝑗
+ (𝜉
2

𝑗
+𝜂
2

𝑗
)
2

> 0 and 𝜉
2

𝑗
+𝜂
2

𝑗
> 0. On

the other hand, it follows from part (i) that 𝜌(𝐼
𝑛
−𝐷
−1

𝑃) < 1.
Equally, |1 − 𝜇

𝑗
| < 1 for ∀𝜇

𝑗
∈ 𝜎(𝐷

−1

𝑃). Then, by some
manipulation, we can obtain that (2𝜉

𝑗
− 𝜉
2

𝑗
− 𝜂
2

𝑗
) > 0. As a

result, 𝜆
𝑗
> 0 holds.

For the part (iii), let 𝑦 be an eigenvalue of 𝐻; then the
characteristic polynomial of 𝐻 is given by

det (𝑦𝐼
2𝑛

− 𝐻)

= det([
𝑦𝐼
𝑛
− [2𝐼
𝑛
− (1 + 𝛼𝑇)𝐷

−1

𝑃] 𝐼
𝑛
− 𝐷
−1

𝑃

−𝐼
𝑛

𝑦𝐼
𝑛

])

= det (𝑦2𝐼
𝑛
− [2𝐼
𝑛
− (1 + 𝛼𝑇)𝐷

−1

𝑃] 𝑦𝐼
𝑛
+ 𝐼
𝑛
− 𝐷
−1

𝑃)

=

𝑛

∏

𝑗=1

{𝑦
2

− [2 − (1 + 𝛼𝑇) 𝜇
𝑗
] 𝑦 + 1 − 𝜇

𝑗
} ,

(19)

where we have used Schur’s formula. Therefore, the eigenval-
ues of 𝐻 satisfy

𝑦
2

− (2 − (1 + 𝛼𝑇) 𝜇
𝑗
) 𝑦 + 1 − 𝜇

𝑗
= 0. (20)

Itmay be complicated to determine directly whether the roots
of (20) arewithin the unit circle. Instead, we apply the bilinear
transformation 𝑦 = (𝑠 + 1)/(𝑠 − 1) to (20) to yield

𝛼𝑇𝜇
𝑗
𝑠
2

+ 2𝜇
𝑗
𝑠 + (2 + 𝛼𝑇) (1 − 𝜇

𝑗
) + 2 − 𝛼𝑇 = 0; (21)

that is,

𝛼𝑇𝜇
𝑗
[𝑠
2

+
2

𝛼𝑇
𝑠 +

4 − (2 + 𝛼𝑇) 𝜇
𝑗

𝛼𝑇𝜇
𝑗

] = 0. (22)

Note that the bilinear transformation maps the interior of
the unit circle one-to-one onto the open left half plane.
Consequently, the roots of (20) are within the unit circle if
and only if

𝑠
2

+
2

𝛼𝑇
𝑠 +

4 − (2 + 𝛼𝑇) 𝜇
𝑗

𝛼𝑇𝜇
𝑗

(23)

is Hurwitz stable. Then, for ∀𝜇
𝑗
∈ 𝜎(𝐷

−1

𝑃), set

𝑎 =
2

𝛼𝑇
, 𝑏 = 0,

𝑐 =

(4 − 2𝜉
𝑗
− 𝛼𝑇𝜉

𝑗
) 𝜉
𝑗
− (2𝜂
𝑗
+ 𝛼𝑇𝜂

𝑗
) 𝜂
𝑗

𝛼𝑇 (𝜉
2

𝑗
+ 𝜂
2

𝑗
)

,

𝑑 =

−4𝜂
𝑗

𝛼𝑇 (𝜉
2

𝑗
+ 𝜂
2

𝑗
)

.

(24)

According to Lemma 6, (23) is Hurwitz stable if and only if

2

𝛼𝑇
> 0,

(4 − 2𝜉
𝑗
− 2𝛼𝑇𝜉

𝑗
) 𝜉
𝑗
− (2𝜂
𝑗
+ 𝛼𝑇𝜂

𝑗
) 𝜂
𝑗

𝛼𝑇
>

4𝜂
2

𝑗

𝜉
2

𝑗
+ 𝜂
2

𝑗

,

(25)

which leads to

𝛼𝑇 <

(4𝜉
𝑗
− 2𝜉
2

𝑗
− 2𝜂
2

𝑗
) (𝜉
2

𝑗
+ 𝜂
2

𝑗
)

4𝜂
2

𝑗
+ (𝜉
2

𝑗
+ 𝜂
2

𝑗
)
2

. (26)

Therefore, all eigenvalues of𝐻 are within the unit circle if and
only if the control parameter 𝛼 and sampling period 𝑇 satisfy
(18).

Remark 11. In [11], Ren has proved that 𝜌(𝐷−1𝐴) < 1 if the
leader has directed paths to all followers in G (Lemma 8.1 in
[11]). Note that 𝐷−1𝐴 = 𝐷

−1

(𝐷 − 𝑃) = 𝐼
𝑛
− 𝐷
−1

𝑃. Therefore,
part (i) of Lemma 10 can be regarded as a simple proof of it
using 𝑀-matrix theory.

Based on Lemma 10, we now present the main result.

Theorem 12. Suppose that vertex 0 is globally reachable in G
and there exist positive constants 𝑙

1
, 𝑙
2
such that |𝑥

0
[𝑘]−𝑥

0
[𝑘−

1]| ≤ 𝑙
1
𝑇 and |𝜔

𝑞
[𝑘] − 𝜔

𝑞
[𝑘 − 1]| ≤ 𝑙

2
𝑇, 𝑞 = 1, 2, . . . , 𝑚,

If control parameter 𝛼 and the sampling period 𝑇 satisfy (26);
then with the sampled-data protocol (9), group consensus can
be achieved. In addition,

lim
𝑘→∞

‖𝑍 [𝑘]‖
∞

≤ 2 (𝑙
1
+ 𝑙
2
) 𝑇


(𝐼
2𝑛

− 𝐻)
−1∞

. (27)

Proof. Since |𝑥
0
[𝑘]−𝑥

0
[𝑘−1]| ≤ 𝑙

1
𝑇 and |𝜔

𝑞
[𝑘]−𝜔

𝑞
[𝑘−1]| ≤

𝑙
2
𝑇 for all 𝑘, we have that |𝑔

𝑖
[𝑗]| = |2(𝑥

0
[𝑗] + 𝜔

𝑞
[𝑗]) − 𝑥

0
[𝑗 −

1] −𝜔
𝑞
[𝑗 − 1] − 𝑥

0
[𝑗 + 1] −𝜔

𝑞
[𝑗 + 1]| ≤ 2(𝑙

1
+ 𝑙
2
)𝑇, 𝑖 ∈ 𝐸

𝑞
, 𝑞 =

1, 2, . . . , 𝑚. Therefore, ‖𝑔[𝑗]‖
∞

= ‖(𝑔
1
[𝑗], . . . , 𝑔

𝑛
[𝑘])
𝑇

‖
∞

≤

2(𝑙
1
+ 𝑙
2
)𝑇. It then follows from (16) that

‖𝑍 [𝑘]‖
∞

≤

𝐻
𝑘

𝑍 [0]
∞

+



𝑘−1

∑

𝑗=0

𝐻
𝑘−(𝑗+1)

𝐹𝑔 [𝑗]

∞

≤

𝐻
𝑘
∞

‖𝑍 [0]‖
∞

+ 2 (𝑙
1
+ 𝑙
2
) 𝑇

×



𝑘−1

∑

𝑗=0

𝐻
𝑘−(𝑗+1)

∞

‖𝐹‖
∞

.

(28)
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Figure 1: Interaction topologiesG
1
andG

2
.

By Lemma 10, we have 𝜌(𝐻) < 1 and lim
𝑘→∞

𝐻
𝑘

= 0.
It follows from Lemma 4 that lim

𝑘→∞
∑
𝑘−1

𝑗=0
𝐻
𝑘−(𝑗+1)

=

(𝐼
𝑛
− 𝐻)
−1. We finally obtain that the tracking errors 𝑥

𝑖
[𝑘] −

𝑥
0
[𝑘] − 𝜔

𝑞
[𝑘] (𝑖 ∈ 𝐸

𝑞
, 𝑞 = 1, . . . , 𝑚) are ultimately bounded

by 2(𝑙
1
+𝑙
2
)𝑇‖(𝐼
𝑛
− 𝐻)
−1

‖
∞
. Furthermore, the tracking errors

will converge to 0 as 𝑇 → 0.

4. Numerical Simulations

In this section, several examples are provided to show the
effectiveness of our theoretical result. Consider the interac-
tion topologies shown in Figure 1; note that Figure 1(a) and
Figure 1(b) have the same topologies where the five followers
in Figure 1(a) are separated into two groups: 𝐸

1
= {1, 2, 3}

and 𝐸
2

= {4, 5}, while the five followers in Figure 1(b)
are separated into three groups: 𝐸

1
= {1, 2}, 𝐸

2
= {3, 5},

and 𝐸
3

= {4}. Obviously, vertex 0 is globally reachable in
Figure 1. For convenience, theweights of interaction topology
G are supposed to be 1. Then the matrixes 𝑃 and 𝐷 are given
by

𝑃 = (

2 0 −1 0 0

−1 2 0 0 0

0 0 2 −1 −1

0 −1 0 3 −1

0 −1 0 0 1

),

𝐷 = (

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 1

),

(29)

where 𝐿 and 𝐵 are the Laplacian matrix and the leader
adjacency matrix, respectively. The eigenvalues of 𝐷−1𝑃 are
𝜇
1

= 0.3097, 𝜇
2

= 0.9424 + 0.6520𝑖, 𝜇
3

= 0.9424 − 0.6520𝑖,
𝜇
4
= 1.5489, and 𝜇

5
= 1.2567.

For the sampled-data protocol (9), we let the position of
the leader, the relative state deviation between 𝐸

1
and the

leader, and the relative state deviation between 𝐸
2
and the

leader be 𝑥
0
[𝑘] = 𝑘𝑇, 𝜔

1
[𝑘] = sin[𝑘𝑇], and 𝜔

2
[𝑘] = cos[𝑘𝑇],

respectively. In addition, the relative state deviation between
𝐸
3
and the leader in Figure 1(b) is chosen as 𝜔

3
[𝑘] =

tanh[𝑘𝑇]. Furthermore, we assume that the initial positions
of the followers are 𝑥

𝑖
[−1] = (0, 0, 0, 0, 0)

𝑇

, 𝑖 = 1, . . . , 5 and
𝑥
𝑖
[0] = (2, −1, 1, −2, 1)

𝑇

, 𝑖 = 1, . . . , 5. Calculate

min
𝑗=1,...,𝑛

(4𝜉
𝑗
− 2𝜉
2

𝑗
− 2𝜂
2

𝑗
) (𝜉
2

𝑗
+ 𝜂
2

𝑗
)

4𝜂
2

𝑗
+ (𝜉
2

𝑗
+ 𝜂
2

𝑗
)
2

= 0.4383. (30)

Then, according to Theorem 12, the multiagent system can
achieve group consensus if 𝛼𝑇 < 0.4383. Figure 2(a) and
Figure 3(a) show that the tracking errors are bounded with
𝛼 = 8.6, 𝑇 = 0.05, and 𝛼 = 1.4, 𝑇 = 0.3, respectively. It
can be seen that the tracking errors in Figure 3(a) are larger
than those in Figure 2(a), which coincide with Theorem 12
since the tracking errors are proportional to the sampling
period 𝑇. Finally, Figure 2(b) shows that the tracking errors
become unbounded when 𝛼 = 0.9, 𝑇 = 0.5, the same as when
𝛼 = 2.2, 𝑇 = 0.2 illustrated by Figure 3(b).

For the continuous-time protocol (4), assume that all
the agents move on a plane, namely, 𝑘 = 2. Consider the
interaction topology depicted in Figure 4; note that G

1
, G
2
,

and G
3
have indeed the same interaction topologies but

different groups. The five followers in Figure 4 are divided
into five groups; that is, 𝑚 = 5 and 𝐸

𝑞
= {𝑞}, 𝑞 =

1, 2, . . . , 5. Taking 𝑥
0
(𝑡) = (𝑡, 0)

𝑇 and 𝜔
𝑞
(𝑡) = (cos(𝜋𝑡/30 +

2𝑞𝜋/5), sin(𝜋𝑡/30 + 2𝑞𝜋/5))
𝑇, 𝑞 = 1, 2, . . . , 5, Figure 5 shows

the trajectories of agents, where the initial positions of agents
are randomly generated in a given bounded region. It can



Discrete Dynamics in Nature and Society 7

0 10 20 30 40
Time (s)

Follower 1
Follower 2
Follower 3

Follower 4
Follower 5

−3

−2

−1

0

1

2
x
i(
t)
−
x
0
(t
)
−
w
q
(t
)

(a) Tracking errors (𝛼 = 8.6, 𝑇 = 0.05)

0 50 100 150 200
Time (s)

−100

−50

0

50

100

x
i(
t)
−
x
0
(t
)
−
w
q
(t
)

Follower 1
Follower 2
Follower 3

Follower 4
Follower 5

(b) Tracking errors (𝛼 = 0.9, 𝑇 = 0.5)

Figure 2: Tracking errors using the sampled-data protocol (9).
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Figure 3: Tracking errors using the sampled-data protocol (9).

be seen that the five followers converge to different states;
specially, the lines connecting them form a pentagon.

5. Conclusion

In this paper, the group consensus problem with a dynamic
leader for multiagent systems in a sampled-data setting is
investigated. We propose a distributed coordination protocol
based on sampled-data control, in which only a subset of

the followers has access to the state of leader. Then, by uti-
lizing 𝑀-matrix theory, we present the convergence analysis
of the protocol. The condition on the sampling period and
the control parameter is presented to ensure convergence, and
quantitative bounds of the tracking errors are given. Finally,
numerical simulations are performed to validate the theoret-
ical results. Our future work will focus on investigating group
consensus problem with a leader under a directed switching
communication graph.
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