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Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive
observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a
dynamic weighting signal generator, in which each sub-observer is designed based on different peak frequency of wave spectrum
model. To improve the performance of the observer, subobserver using the measurement of position, velocity, and acceleration is
used to update the estimated velocity of ship. The observer parameters are optimized using particle swarm optimization (PSO).
Finally, the method is verified effective by the computer simulation.

1. Introduction

Dynamic positioning (DP) systems keep floating structures
in fixed position or predetermined track formarine operation
purposes exclusively by means of active thrusters [1].

Filtering and state estimation are important features of a
DP system. In most cases, measurements of the vessel veloc-
ities are not available. Hence, estimates of the velocities must
be computed fromnoisy position and headingmeasurements
through a state observer. Unfortunately, the position and
heading measurements are corrupted with colored noise due
to wind, waves, and ocean currents as well as sensor noise.
However, only the slowly varying disturbances should be
counteracted by the propulsion system, whereas the oscilla-
tory motion due to the waves (first-order wave disturbances)
should not enter the feedback loop. This is done by using
the so-called wave filtering techniques, which separate the
position and heading measurements into a low-frequency
and wave frequency position and heading estimate.

The conventional observer filters out the WF motions
from the measured position and estimates the LF position
and velocity. In the early studies, Balchen et al. [2] and
Sørensen et al. [3] used the Kalman filter to filter the WF

motion. Later, Fossen and Strand introduced the nonlinear
passive observe [4]. It should be noted that the two types of
observers are based on a priori knowledge of the sea state to
filter theWFmotions; this means peak frequency is assumed
to be known. However, over a longer time frame, the sea
state may change, and therefore peak frequency in general is
not known. So, Strand and Fossen improved the nonlinear
passive observer with recursively adaptive WF filtering [5];
however, this design has twomain drawbacks: firstly, only the
wave model parameters (not the observer gains) are adapted.
Thismeans that a priori knowledge of the sea state is required
to choose observer gains, such that a notch filtering effect is
achieved to remove 1st order wave components. Secondly, the
observer tuning can be quite difficult. Torsetnes et al. give a
gain scheduled observer [6] the gain scheduled wave filtering
is achieved by measuring the slowly varying wave model
parameters online and therefore requires a priori knowledge
of the sea state. In [6] the observer gains were parameterized
by thewave peak frequencies and spectral analysis techniques
were used to estimate the wave spectrum in surge, sway, and
yaw fromposition and headingmeasurements.This approach
is sensitive to measurement noise and may have latency
problems because it requires that the samples acquired be
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buffered to estimate the Power Density Spectrum of the
measurement time series. In [7, 8], a multiple model adaptive
Kalman filter (MMAK) was designed; a bank of Kalman
filters is designed for a finite number of parameter values,
each corresponding to a different peak frequency of the
assumed wave spectrum model. The Kalman filter is based
on a linear model, and ship motion is a nonlinear process; if
a linearization ship model is used to design wave filter, the
performance of filter will be reduced.

In this paper, inspired by previous pioneering work
on DP, a multiple model adaptive nonlinear observer is
proposed. In this MMAO, a bank of nonlinear observer
relies on measurements of the vessel’s position, velocity, and
acceleration and is designed for a finite number of parameter
values, each corresponding to a different peak frequency
of the assumed wave spectrum model. The main emphasis
of the paper is on the nonlinear observer and the use of
a multiple model scheme for adaptive observer; however,
for the sake of completeness, in the numerical simulations
an adaptive backstepping controller is used to control the
position of the vessel. All observer parameters are optimized
using particle swarm optimization. Numerical simulations
are given to demonstrate the effectiveness of the proposed
method.

Theorganization of this paper is as follows. Section 2 gives
ship model. In Section 3, the model of observer measuring
position, velocity, and acceleration is given. The multiple
model adaptive observer is showed in Section 4. Section 5
briefly explains PSO technique, in finding optimal settings for
observer. In Section 6, the numerical simulations are given
to verify the effectiveness of the proposed method. Summary
and conclusion are given in Section 7.

2. Ship Model

A useful model describing the dynamics of a surface ship
sailing in a horizontal plane having 3 degrees of freedom, is
given in [1], which is common to separate the model into a
kinematic model and dynamic model.

2.1. Kinematic Model. In dynamic positioning, the motions
and state variables of the control system are defined andmea-
sured with respect to some reference frames or coordinate
systems as shown in Figure 1.TheEarth-fixed reference frame
is denoted as the𝑂

𝐸
−𝑋
𝐸
𝑌
𝐸
𝑍
𝐸
, and the body frame is𝑂−𝑋𝑌𝑍

(see [1]).
The state vector is defined by 𝜂 = [𝑥, 𝑦, 𝜓]

𝑇, (𝑥, 𝑦) ∈ R2

is the position of the ship given in an inertial frame, and 𝜓 ∈

[0, 2𝜋) is the heading angle of the ship relative to geographic
North. k = [𝑢, V, 𝑟]𝑇 is the velocity vector in body frame 𝑂 −

𝑋𝑌𝑍.
If only surge, sway, and yaw (3-DOF) are considered, the

kinematics and the state vectors are reduced to

�̇� = R (𝜓) k; (1)
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Figure 1: Earth-fixed, reference-parallel, and body-fixed frame.

R(𝜓) is defined as follows:

R (𝜓) = [

[

cos𝜓 − sin𝜓 0

sin𝜓 cos𝜓 0

0 0 1

]

]

. (2)

2.2. Dynamic Model. In the mathematical modeling of ship
dynamics, it is common to separate the model into a
low-frequency model and wave-frequency model. The WF
motion of the ship is due to lst-order wave loads. The
nonlinear LF equation ofmotion is driven by 2nd-ordermean
and slowly varying wave, current, and wind loads as well as
thrust forces.

2.2.1. Low-Frequency Model. The equations of motion of a
large class of surface ships can be described by the following
model:

Mk̇ +Dk = 𝜏 + R𝑇 (𝜓) b; (3)

𝜏 = [𝜏
𝑥
, 𝜏
𝑦
, 𝜏
𝜓
]
𝑇 is the control vector consisting of forces

and moments produced by the thruster system; b ∈ R3×1

if environmental disturbances; M ∈ R3×3 is system inertia
matrix including added mass; D ∈ R3×3 is damping matrix.

2.2.2. Wave-Frequency Model. In the controller design syn-
thetic white-noise-driven processes consisting of uncoupled
harmonic oscillators with damping will be used to model the
WFmotions.The syntheticWFmodel can bewritten in state-
space form according to

ṗ
𝑤

= A
𝑝𝑤
p
𝑤
+ E
𝑝𝑤
w
𝑝𝑤

,

𝜂
𝑤

= C
𝑤
p
𝑤
;

(4)

𝜂
𝑤

= [𝑥
𝑤
, 𝑦
𝑤
, 𝜓
𝑤
]
𝑇 is the position and orientation measure-

ment vector and p
𝑤

∈ R6,w
𝑝𝑤

∈ R3 is a zero-mean Gaussian



Mathematical Problems in Engineering 3

white noise vector. The system matrices A
𝑝𝑤
, E
𝑝𝑤
, C
𝑤
are

given by

A
𝑝𝑤

= [

[

0
3×3

I
3×3

A21
𝑤

A22
𝑤

]

]

, E
𝑝𝑤

= [
0
3×3

Σ
] ,

C
𝑤

= [
0
3×3

I
3×3

]

𝑇

,

(5)

where

A21
𝑤

= diag [−𝑤
2

𝑜1
−𝑤
2

𝑜2
−𝑤
2

𝑜3
] ,

Σ = diag [𝑘1 𝑘
2

𝑘
3] ,

A22
𝑤

= diag [−2𝜉1𝑤𝑜1 −2𝜉
2
𝑤
𝑜2

−2𝜉
3
𝑤
𝑜3] .

(6)

The relative damping ratio 𝜉
𝑖
will typically be in the range

[0.05–0.1]; 𝑤
𝑜𝑖
is the wave frequency.

The bias model may also be modelled as follows:

ḃ = E
𝑏
w
𝑏
. (7)

3. Observer Based Measured Position,
Velocity, and Acceleration

In [9], a nonlinear observer based model was proposed. It
was based on the nonlinear passive observer developed in
[4] but extended with the option to utilize both velocity and
acceleration measurements in addition to the position and
heading measurements.

3.1. Ship Model Contains Positions, Velocities, and Accelera-
tions. The by assumption uncorrelated wave induced posi-
tions, velocities, and accelerations, respectively, are given by

ṗ
𝑤

= A
𝑝𝑤
p
𝑤
+ E
𝑝𝑤
w
𝑝𝑤

,

k̇
𝑤

= AV𝑤k𝑤 + EV𝑤wV𝑤,

ȧ
𝑤

= A
𝑎𝑤
a
𝑤
+ E
𝑎𝑤
w
𝑎𝑤

,

(8)

where p
𝑤

∈ R6, k
𝑤

∈ R6, a
𝑤

∈ R4 describe the first
order wave-induced positions, velocities, and accelerations,
respectively. A

𝑝𝑤
∈ R6×6, AV𝑤 ∈ R6×6, A

𝑎𝑤
∈ R4×4

are assumed by Hurwitz and describe the first order wave
induced motion. For position, velocity, and acceleration
measurements, 𝑗 = 𝑝, V, 𝑎, a cascade of second order linear
systems

A
𝑗𝑤

= [
0 I

−Ω
𝑗

−Λ
𝑗

] ,

C
𝑗𝑤

= [0 I] ,
(9)

with

Λ
𝑗
= diag (2𝜍

𝑗,1
𝜔
𝑗,1

, . . . , 2𝜍
𝑗,𝑛𝑦𝑖

𝜔
𝑗,𝑛𝑦𝑗

) , 𝑛
𝑦𝑝

= 𝑛
𝑦V = 3

Ω
𝑗
= diag (𝜔

2

𝑗,1
, . . . , 𝜔

2

𝑗,𝑛𝑦𝑗
) , 𝑛

𝑦𝑎
= 2,

(10)

where 𝜔
𝑗,𝑘

> 0 is the resonance frequency and 𝜁
𝑗,𝑘

> 0 is
the relative damping factor which determines thewidth of the
spectrum.

In the observer, the position and heading measurements
are always required. The number of velocity measurements
and acceleration measurements utilized are 3 and 2, respec-
tively. We get y

1
∈ R3, y

2
∈ R3, y

3
∈ R2 and define the

measurements:

y = [

[

y
1

y
2

y
3

]

]

= [

[

𝜂 + C
𝑝𝑤
p
𝑤

𝛾
2
k + CV𝑤k𝑤
𝛾
3
V̇ + C
𝑎𝑤
a
𝑤

]

]

, (11)

where 𝛾
2

= I
3×3

and 𝛾
3

= [1 0 0 ; 0 1 0]
𝑇 are the

projections extracting the measured velocities and acceler-
ations, respectively, from the actual three DOF velocity and
accelerations vectors.

Equations (10) and (11) can be rephrased in a standard
form as

ż = T𝑇
𝑝
(𝜓
𝑦
)A
𝑝
T
𝑝
(𝜓
𝑦
) z + B

𝑞
𝜏
𝑞
+ E
𝑞
w,

y = C
𝑝
z +D
𝑝
𝜏
𝑞
.

(12)

The transformation matrix T
𝑝
(𝜓
𝑦
) ∈ R25×25 is given by

T
𝑝
(𝜓
𝑦
) = diag (R𝑇 (𝜓

𝑦
) , . . . ,R𝑇 (𝜓

𝑦
) , I
13
) . (13)

The state z ∈ R25 is given by

z = [p𝑇
𝑤
𝜂
𝑇 b𝑇 k𝑇

𝑤
a𝑇
𝑤

k𝑇]
𝑇

. (14)

The system matrices A
𝑝
∈ R25×23, E

𝑞
∈ R25×12, and B

𝑞
∈

R3×25,D
𝑝
∈ R3×8, C

𝑝
∈ R8×25 are given by

B
𝑞
= [0
36

0
33

0
33

0
36

0
34

M−1]𝑇,

A
𝑝
=

[
[
[
[
[
[
[

[

A
𝑝𝑤

0
63

0
63

0
66

0
62

0
63

0
36

0
33

0
33

0
36

0
32

I
33

0
36

0
33

−T−1
𝑏

0
36

0
32

0
33

0
66

0
63

0
63

AV𝑤 0
62

0
63

0
46

0
43

0
43

0
46

A
𝑎𝑤

0
43

0
36

0
33

M−1 0
36

0
32

−M−1D

]
]
]
]
]
]
]

]

,

E
𝑞
=

[
[
[
[
[
[
[

[

E
𝑝𝑤

0
63

0
63

0
63

0
33

0
33

0
33

0
33

0
33

E
𝑏

0
33

0
33

0
63

0
63

EV𝑤 0
63

0
43

0
43

0
43

E
𝑎𝑤

0
33

0
33

0
33

0
33

]
]
]
]
]
]
]

]

,

D
𝑝
= [0
33

0
33

M−𝑇𝛾𝑇
3
]
𝑇

,

C
𝑝
= [

[

C
𝑝𝑤

I 0
33

0
36

0
34

0
33

0
36

0
33

0
33

Cvw 0
34
𝛾
2

0
26

0
23
𝛾
3
M−1R𝑇 0

26
C
𝑎𝑤

−𝛾
3
M−1D

]

]

.

(15)
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3.2. Observer Design. By duplicating the model dynamics
(14) and introducing a low-pass filter in order to achieve a
certain roll-off effect, the following model based observer is
proposed:

̇̂a
𝑓
= T−1
𝑓

(−â
𝑓
+ ỹ
3
) ,

̇̂z = T𝑇
𝑝
(𝜓
𝑦
)A
𝑝
T
𝑝
(𝜓
𝑦
) ẑ + B

𝑞
𝜏
𝑞
+ K
𝑞
(𝜓
𝑦
) ỹ + K

𝑝𝑓
â
𝑓
,

ŷ = C
𝑝
(𝜓
𝑦
) ẑ +D

𝑝
𝜏
𝑞
,

(16)

where ỹ is estimation error. To reduce the number of
interconnections, the observer gainmatrices are chosen to be

K
𝑝𝑓

= [036 0
33

0
33

0
36

0
34

K𝑇
𝑝𝑎

]
𝑇

,

K
𝑞
(𝜓
𝑦
) =

[
[
[
[
[
[
[

[

K
11

0
63

0
62

K
21

0
33

0
32

K
31

0
33

0
32

0
63

K
42

0
32

0
43

0
43

K
53

K
61
R𝑇 (𝜓

𝑦
) K
62

0
32

]
]
]
]
]
]
]

]

,

(17)

where K
11

∈ R6×3, K
42

∈ R6×3, K
53

∈ R4×2, K
31

∈ R3×3,
K
62

∈ R3×3, K
21

∈ R3×3, K
61

∈ R3×3are the observer gain
matrices. a

𝑓
∈ R2×2 is low-pass filter; K

𝑝𝑎
∈ R3×2, Τ

𝑓
∈ R2×2

are the filter constants. K
11
, K
42
, K
53
, and K

31
are given the

following structure:

K
11

= [
diag {𝑘

11
, 𝑘
12
, 𝑘
13
}

diag {𝑘
14
, 𝑘
15
, 𝑘
16
}
] ,

K
42

= [
diag {𝑘

41
, 𝑘
42
, 𝑘
43
}

diag {𝑘
44
, 𝑘
45
, 𝑘
46
}
] ,

K
53

= diag{
𝑘
51
, 𝑘
52

𝑘
54
, 𝑘
55

} ,

K
31

= diag {𝑘
37
, 𝑘
38
, 𝑘
39
} .

(18)

In order to ensure passivity and to relate the observer
gains of (18) to the dominating wave response frequencies,
it is proposed that

𝑘
𝑖
= −2 (𝜁

𝑛𝑖
− 𝜁
𝑖
)
𝜔
𝑐𝑖

𝜔
𝑖

𝑖 = 11, 12, 13, 41, 42, 43, 51, 52,

𝑘
𝑖
= 2𝜔
𝑖
(𝜁
𝑛𝑖

− 𝜁
𝑖
)
𝜔
𝑐𝑖

𝜔
𝑖

𝑖 = 14, 15, 16, 44, 45, 46, 54, 55,

𝑘
𝑖
= 𝜔
𝑐𝑖

𝑖 = 37, 38, 39,

(19)

where 𝜔
𝑐𝑖

> 𝜔
𝑖
is the filter cut-off frequency and 𝜔

𝑖
= 𝜔
𝑝

is peak frequency. 𝜁
𝑛𝑖

> 𝜁
𝑖
is a tuning parameter to be set

between 0.1 and 1.0. K
21
, K
62
, and K

61
should be sufficiently

high to ensure proper bias estimation.

4. Multiple Model Adaptive Observer For DP

The sea state may undergo large variations; therefore, the
observer in charge of reconstructing the LF motion should
adapt to the sea state itself. In this paper, a multiple
model adaptive observer (MMAO) is proposed for dynamic
positioning ship under varying seas. Figure 2 shows the
architecture of a MMAO system. For some early references
on Multiple-Model Adaptive Estimator see [7, 8, 10, 11].

The structure of MMAO, in Figure 2, consists of: (i)
the dynamic weighting signal generator (DWSG) and (ii) a
bank of observer (22), where each local observer is designed
based on one of the representative parameters. The state
estimate is generated by a probabilistically weighted sum of
the local state-estimates produced by the bank of observer.
It is assumed that a linear time-invariant plant 𝐺 is driven
by white noise and a known deterministic input signal
and that it generates measurements that are corrupted by
white measurement noise. If the plant has an uncertain real-
parameter vector, say 𝜔

𝑝
, one can imagine that it is “close”

to one of the elements of a finite discrete representative
parameter set, Ω := {𝜔

1

𝑝
, 𝜔
2

𝑝
, . . . , 𝜔

𝑁

𝑝
}. One can then design

a bank of standard observer, where each observer uses one
of the discrete parameters 𝜔𝑖

𝑝
, in its implementation, and 𝑖 ∈

{1, . . . , 𝑁}. It turns out that if indeed the true plant parameter
is one of the discrete values, then the conditional probability
density of the state is the sum of Gaussian densities.

Consider a finite set of candidate peak frequency values
Ω := {𝜔

1

𝑝
, 𝜔
2

𝑝
, . . . , 𝜔

𝑁

𝑝
} indexed by 𝑖 ∈ {1, . . . , 𝑁}. The state

estimate of the MMAO is given by

ẑ (𝑡) :=

𝑁

∑

𝑖=1

𝑝
𝑖 (𝑡) ẑ𝑖 (𝑡) , (20)

where ẑ(𝑡) is the estimate of the state z(𝑡) (at time 𝑡) and
𝑝
𝑖
(𝑡) is the conditional probability that 𝜔

𝑝
= 𝜔
𝑖

𝑝
, given

the measurements record. In (20), each ẑ
𝑖
(𝑡) corresponds

to a “local” state estimate generated by the 𝑖th steady state
observer (16).

In the proposed MMAO, the dynamic weights 𝑝
𝑖
(𝑡) ∈ R,

𝑖 ∈ {1, . . . , 𝑁} satisfy

�̇�
𝑖 (𝑡) = −𝜆(1 −

𝛽
𝑖 (𝑡) 𝑒
−𝑚𝑖(𝑡)

∑
𝑁

𝑗=1
𝑝
𝑗 (𝑡) 𝛽𝑗 (𝑡) 𝑒

−𝑚𝑗(𝑡)
)𝑝
𝑖 (𝑡) , (21)

where 𝜆 is a positive constant, 𝛽
𝑖
(𝑡) is a signal assumed to

satisfy the condition 𝑐
1

≤ 𝛽
𝑖
(𝑡) ≤ 𝑐

2
for some positive

constants 𝑐
1
, 𝑐
2
, and 𝑚

𝑖
(⋅) is a continuous function called an

error measuring function that maps the measurable signals
of the plant and the states of the 𝑖th local observer to a
nonnegative real value. The 𝛽

𝑖
(𝑡) and𝑚

𝑖
(⋅) are given by

𝛽
𝑖 (𝑡) :=

1

√det 𝑆
𝑖

,

𝑚
𝑖 (𝑡) :=

1

2

y (𝑡) − ŷ
𝑖 (𝑡)



2

𝑆
−1

𝑖

,

(22)

where 𝑆
𝑖
is a uniformly bounded positive definite weighted

matrix and ‖z‖
𝑆

= (z𝑇𝑆z)1/2. The matrices 𝑆
𝑖
are important
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to scale the energy of estimation error signals y(𝑡) − ŷ
𝑖
(𝑡) in

order to make them comparable. In what follows, we refer to
(21) as the dynamic weighting signal generator (DWSG).

We impose the constraint that the initial conditions 𝑝
𝑖
(0)

be chosen such that 𝑝
𝑖
(0) ∈ (0, 1) and ∑

𝑁

𝑖=1
𝑝
𝑖
(0) = 1.

The parameters 𝑄, 𝑅 and the functions 𝛽
𝑖
, 𝑚
𝑖
are tuning

parameters/functions of the MMAO chosen by the designer
based on the system being modeled.

5. Optimizing the Observer

The tuning of the parameters is a necessary part of design
observer, and the appropriate observer can guarantee the
system obtaining fast dynamic response and robust. In this
section, the matrices K

31
, K
61
, K
62
, K
𝑎
, and T

𝑓
of observer

are optimised by particle swarm optimization (PSO).

5.1. Overview of the PSO. The particle swarm optimization
(PSO) is an evolutionary computation technique developed
by Kennedy and Eberhart in 1995, (see [12–15]). Similar to the
genetic algorithm (GA), the PSOalgorithm is an optimization
tool based on population, and the system is initialized with a
population of random solutions and can search for optima by
the updating of generations. It can be described as follows.
At each iteration, each particle can adjust its velocity vector,
based on its momentum and the influence of its best position
as well as the best position of its neighbors, and then compute
a new position that the “particle” is to fly to. Supposing the
dimension for a searching space is 𝐽, the total number of
particles is 𝑁, and the position of the 𝑖th particle can be
expressed as vector1 l𝑖 = (𝑙

𝑖

1
, 𝑙
𝑖

2
, . . . , 𝑙

𝑖

𝐽
)
𝑇; the best position

of the 𝑖th particle being searched until now is denoted as
l𝑖
𝑙best = (𝑙

𝑖

1
𝑙
𝑖

2
⋅ ⋅ ⋅ 𝑙
𝑖

𝐽
)
𝑇

, and the best position of the total
particle swarm being searched until now is denoted as vector
l𝑔
𝑔best = (𝑙

𝑔

1
𝑙
𝑔

2
⋅ ⋅ ⋅ 𝑙
𝑔

𝐽
)
𝑇

; the velocity of the 𝑖th particle is

represented as vector u𝑖 = (𝑢
𝑖

1
𝑢
𝑖

2
⋅ ⋅ ⋅ 𝑢
𝑖

𝐽
)
𝑇

. So, the velocity
and position of the 𝑖th particle can be updated as follows:

u𝑖 (𝑡 + 1) = 𝑊u𝑖 (𝑡) + ℎ
1
𝑟
1
(l𝑖
𝑙best (𝑡) − l𝑖 (𝑡))

+ ℎ
2
𝑟
2
(l
𝑔best − l𝑖 (𝑡)) ,

l𝑖 (𝑡 + 1) = l𝑖 (𝑡) + u𝑖 (𝑡 + 1) ,

(23)

where 𝑟
1
and 𝑟
2
are a randomnumber between 0 and 1; ℎ

1
and

ℎ
2
are the acceleration constants with positive values;𝑊 is the

weight function. The following weighting function is usually
used in (23):

𝑊 = 𝑊start −
𝑊start − 𝑊end

𝑡max
× 𝑡, (24)

where 𝑊start is the initial weight, 𝑊end is the final weight,
𝑡max is the maximum iteration number, and 𝑡 is the current
iteration number.

5.2. Fitness Function. Adopting the absolute error (ITAE) as
the minimum, we can gain fitness function as follows:

𝐽 = ∫

∞

0

𝛽
ỹ𝑖 (𝑡)

 𝑑𝑡, (25)

with 𝛽 being positive constant and ỹ
𝑖
(𝑡) being estimation

error of the 𝑖th local observer.

5.3. Optimization Procedure. The PSO algorithm comprises
the following steps.

Step 1. Set 𝑡 = 0 (𝑡 is the iterative number). Initialization
particles swarm is generated randomly as follows: l𝑖(0) =

(𝑙
𝑖

1
(0), 𝑙
𝑖

2
(0), . . . , 𝑙

𝑖

𝐽
(0))
𝑇

= (𝑘
31
, 𝑘
32
, 𝑘
33
, 𝑘
41
, 𝑘
42
, 𝑘
43
)
𝑇; the

swarm has 6-dimension particles which can guarantee K
31
,

K
61
, K
62
, K
𝑎
, and T

𝑓
to be positive matrices. K

31
, K
61
, K
62
,

K
𝑎
, and T

𝑓
are used in the observer mentioned in Section 3.

The particle velocities are generated randomly in the range
0∼1 as follows: u𝑖 = (𝑢

𝑖

1
(0) 𝑢

𝑖

2
(0) ⋅ ⋅ ⋅ 𝑢

𝑖

𝐽
(0))
𝑇

.

Step 2. Define objective function values of the particles are
evaluated given by (25). To each particle in the particles
swarm, set its best position l𝑗

𝑙best(0) (the fitness function is
the least). Finding the least fitness function values in the
initializing particles swarm, the best position is l

𝑔best(0).

Step 3. The position and the velocity of each particle are
updated using (23). The fitness function values are calculated
for the updated positions of the particles.

If 𝐽(l𝑗(𝑡)) ≤ 𝐽(l𝑗(𝑡 − 1)), 𝑗 = 1, 2, . . . , 𝐽, then l𝑗
𝑙best = l𝑗(𝑡),

else l𝑗
𝑙best = l𝑗(𝑡 − 1).
Setting the least fitness function values in the current

particles swarm is the 𝑔th particle.
If 𝐽(l𝑔(𝑡)) ≤ 𝐽(l

𝑔best(𝑡 − 1)), 𝑔 = 1, 2, . . . , 𝐽, then l
𝑔best =

l𝑔(𝑡), else l
𝑔best = l

𝑔best(𝑡 − 1).

Step 4. If the maximum iteration is attained, exit; otherwise,
go to iterate.

6. Simulation Research

In this section, numerical results are used to demonstrate
the proposed MMAO. The simulations are performed using
the Marine Systems Simulator (MSS) developed by the
Norwegian University of Science and Technology. The MSS
incorporates high fidelity models, denoted as process plant
model or simulation model in [16], at all levels (plants
and actuators). It captures hydrodynamic effects, generalized
coriolis and centripetal forces, nonlinear damping and cur-
rent forces, and generalized restoring forces. It is composed
of different modules such as environmental module, vessel
dynamics module, thruster and shaft module, and vessel
control module. A supply ship named as S-175 is used as case
study (Table 1).

In these simulations, the different environment condi-
tions from calm to high seas are simulated using the spectrum
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Figure 2: The MMAO architecture.
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Figure 3: The estimated position of ship by observer using GA and PSO.
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Figure 4: The real position of ship using GA and PSO.
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Figure 5: The estimated position of ship using single observer.

of the Joint North Sea Wave Project (JONSWAP) [2]. The
ship is maintained in the desired position and heading 𝜂

𝑑
=

[0 0 0
∘
]
𝑇.

For each candidate value, a nonlinear observer is devel-
oped based on themodel described with (22) and aMMAO is
derived with the dynamic weights given by (28). A nonlinear
adaptive backstepping controller is designed that uses �̂� and
k̂ provided by MMAO to control the position of the ship, see
[17]. Because the emphasis of this paper is not on control, but
rather on filtering, we eschew the details of controller design.
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Figure 6: Evolution of dynamic weights of MMAO.
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Figure 7: The estimated position of ship using MMAO.

Table 1: Supply vessel main particulars.

Over length 175.00m
Breadth 25.40m
Design draught 9.50m
M 107 × [2.64 0 0; 0 3.34 1.49; 0 1.49 652.09]
D 105 × [0.22 0 0; 0 2.22 −17.75; 0 −17.75 715.06]

Three sets of computational simulations were conducted
to test the performance of the proposed MMAO. The first
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Table 2: Gains of observer using GA and PSO.

Matrix GA PSO
K
31

0.1 × (45
4
) × diag(1.265, 1.543, 1.881) 0.1 × (45

4
) × diag(1.221, 1.531, 1.486)

K
61

(45
4
) × diag(1.278, 1.197, 1.472) (45

4
) × diag(1.577, 1.493, 1.216)

K
62

diag(1.631, 1.727, 1.735) diag(1.973, 1.425, 1.834)
K
𝑝𝑎

diag(1.498, 1.864, 1.399) × 𝛾
3

diag(1.288, 1.606, 1.339) × 𝛾
3

K
𝑓

diag(1.887, 1.635) diag(1.425, 1.715)

0 1000 2000 3000 4000 5000 6000

0 1000 2000 3000 4000 5000 6000

0 1000 2000 3000 4000 5000 6000

The real velocity using MMAO
The estimated velocity using MMAO

u
(m

/s
)

0.5

0

−0.5

�
(m

/s
)

1

0

−1

r
(r

ad
/s

)

1

0

−1

t (s)

t (s)

t (s)
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Figure 9: Comparison of the real position of ship using single
observer and MMAO.
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Figure 10: Evolution of dynamic weights of MMAK.
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Figure 11: Comparison of the real position of ship usingMMAKand
MMAO.
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set compares PSO algorithm with the GA algorithm (GA) of
[18]. The first set compares the PSO and GA. The second set
compares MMAO with the single observer.

6.1. Verify the PSO. In order to demonstrate the efficiency
of the proposed PSO, optimization observer by PSO is
comparedwith an observer usingGA.The vessel was exposed
to the JONSWAP distributed waves with significant wave
height 3.0m and peak frequency 𝜔

𝑖
= 0.65 rad/s, 𝜍

1
= 𝜍
2
=

𝜍
3

= 0.1. The population size of PSO is 50, the maximum
velocity is set as 1, the iteration is 200, and the weight𝑊start =
0.9, 𝑊end = 0.4. The parameters are shown in Table 2; the
simulation curve is shown in Figures 3 and 4.

From Figure 3, it can be seen that the observer using GA
and PSO can estimate the low-frequency position of ship
effectively. From Figure 4, we can see that the proposed PSO
optimization observer can give better results, with a small
position and heading bias.

6.2. Comparison of the MMAO and Single Observer. In
order to demonstrate the good performance of the proposed
MMAO, the simulation results are compared with the single
observer. The JONSWAP wave spectrum with significant
wave height is set between at 0 and 6m. A set of four
candidate values of the peak frequency were selected as
{0.6, 0.68, 0.79, 0.93} rad/s. The simulation curves are shown
in Figures 5–9.

Figure 6 shows the dynamic weights in the MMAO and
the dynamic weights adaptively track the changes in the
sea state. In this simulation, in the first 1500 seconds, the
dominant wave frequency is 0.93 (rad/s). During this interval
of time, 𝑝

2
, 𝑝
3
, 𝑝
4
go to zero; in the next 1500 seconds the

dominant wave frequency is 0.79 (rad/s). In the next 1500
seconds, the dominant wave frequency is 0.68 (rad/s) and in
the last 1500 seconds, the dominant wave frequency is 0.60
(rad/s). Figures 7 and 8 show the time evolution of the low
frequency estimation of the position and velocity of the ship.
Figure 9 demonstrates that the ship using MMAO has better
disturbance rejection property than single observer.

6.3. Comparison of MMAK and MMAO. In this subsection
the proposed MMAO is compared with MMAK designed by
[6]. The simulation results are shown in Figures 10 and 11.

Figure 10 shows that the dynamic weights of the MMAK
adaptively track the changes in the sea state. From Figure 5,
we can draw the conclusion that the MMAK can switch to
the best subobserver according to the varying seas. From
Figure 10, it can be seen that the vessel using MMAO has a
small position bias, and we can see that the MMAO has a
better performance than MMAK.

7. Conclusion

In order to improve the performance of observer under
varying seas, a multiple model adaptive nonlinear observer is
proposed for dynamic positioning ship.TheMMAO consists
a bank of nonlinear observer that relies on measurements
of the vessel’s position, velocity, and acceleration. PSO is

proposed to tune the gains of the observer. The computer
simulation in this paper illustrates that theMMAOcan switch
to the best observer according to the sea state, and theMMAO
has a better performance than single observer. The PSO
can improve the performance of observer and the control
efficiency of the DP.
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