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We first reviewWeinhold information geometry and Ruppeiner information geometry of 3D charged-dilaton black hole. Then, we
use the Legendre invariant to introduce a 2-dimensional thermodynamic metric in the space of equilibrium states, which becomes
singular at those points. According to the analysis of the heat capacities, these points are the places where phase transitions occur.
This result is valid for the black hole, therefore, provides a geometrothermodynamics description of black hole phase transitions in
terms of curvature singularities.

1. Introduction

Since Ferrara et al. [1] investigated the critical points of mod-
uli space by usingWeinholdmetric andRuppeinermetric; the
black hole thermodynamic in geometry framework becomes
a hot spot of theoretical physics.

It is well known that an equilibrium thermodynamic
system poses interesting geometric features. An interesting
inner product on the equilibrium thermodynamic state space
in the energy representation was provided by Weinhold as
the Hessian matrix of the internal energy 𝑈 with respect to
the extensive thermodynamic variables𝑁𝑎, namely, [2] 𝑔𝑊

𝑖𝑗
=

𝜕
𝑖
𝜕
𝑗
𝑀(𝑈,𝑁

𝑎

). However, there was no physical interpretation
associated with this metric structure. As a modification,
Ruppeiner introduced Riemannian metric into thermody-
namic system once more and defended it as the second
derivative of entropy 𝑆 (here, entropy is a function of
internal energy 𝑈 and its extensive variables 𝑁𝑎) [3] 𝑔𝑅

𝑖𝑗
=

− 𝜕
𝑖
𝜕
𝑗
𝑆(𝑈,𝑁

𝑎

). An interesting phenomenon is that these two
metrics are conformally related, that is, 𝑔𝑊

𝑖𝑗
= 𝑇𝑔
𝑅

𝑖𝑗
, and the

conformal factor is the temperature, 𝑇 = 𝜕𝑀/𝜕𝑆. It has
been applied to all kinds of thermodynamic models, for
example, the ideal gas, the van der Waals gas, and the two-
dimensional Fermi gas et al. Studies showed that Ruppeiner

geometry can overcome the covariant and self-consistent
problemof general thermodynamics. Based on theRuppeiner
and Weinhold metrics, consideration of different black hole
families under various assumptions has led to numerous
puzzling results for both metrics [4–13]. So it is then natural
to try to describe the phase transitions of black holes in
terms of curvature singularities in the space of equilibrium
states. Unfortunately, the obtained results, at least some, are
contradictory. For instance, for Reissner-Nordström black
hole, the Ruppeiner metric is flat [14], whereas the Wein-
hold metric presents a curvature singularity. Similarly, the
3D charged-dilaton black hole also showed similar result
[15]. Nevertheless, a simple change of the thermodynamic
potential [16] affects Ruppeiner’s geometry in such a way
that the resulting curvature singularity now corresponds to
a phase transition. A dimensional reduction of Ruppeiner’s
curvature seems to affect its properties too [17]. However, it is
well known that ordinary thermodynamics does not depend
on the thermodynamic potential.

Recently, Quevedo [18] proposed a formalism of geom-
etrothermodynamics (GTDs) as a geometric approach that
incorporates Legendre invariance in a natural way and allows
us to derive Legendre invariant metrics in the space of
equilibrium states. Since Weinhold and Ruppeiner metrics
are not Legendre invariant, one of the first results in the
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context of GTDwas the derivation of simple Legendre invari-
ant generalizations of these metrics and their application to
black hole thermodynamics [19–26]. These results end the
controversy regarding the application of geometric structures
in black hole thermodynamics. The phase transition struc-
ture contained in the heat capacity of black holes becomes
completely integrated in the scalar curvature of the Legendre
invariant metric so that a curvature singularity corresponds
to a phase transition.

In this paper, we first review Weinhold information ge-
ometry and Ruppeiner information geometry of 3D charged-
dilaton black hole. Then, based on our previous work,
the thermodynamics scalar curvature of the black hole is
described. We explored the geometrothermodynamics of 3D
charged-dilaton black hole.

The organization of this paper is outlined as follows. In
Section 2, we review Weinhold information geometry and
Ruppeiner information geometry of the 3D charged-dilaton
black hole. Then, in Section 3, geometrothermodynamics of
the charged black hole ise described. Finally, some discus-
sions and conclusions are given in Section 4.Throughout the
paper, the units (𝐺 = 𝑐 = ℎ = 1) are used.

2. Information Geometry Description of
3D Charged-Dilaton Black Hole

Let us first review Weinhold information geometry and
Ruppeiner information geometry of the 3D charged-dilaton
black hole.

The starting action with the dilaton field 𝜙 is given by [27]

𝑆 = ∫𝑑
3

𝑥√−𝑔 [𝑅 + 2𝑒
4𝜙

Λ + 4(∇𝜙)
2

− 𝑒
−4𝜙

𝐹
𝜇]𝐹
𝜇]
] . (1)

The cosmology constant Λ > 0 for anti-de Sitter space-time.
This action is conformably related to the low-energy string
action black hole that is given by

𝑑𝑠
2

= −𝑓 (𝑟) 𝑑𝑡
2

+
4𝑟
2

𝛾4𝑓 (𝑟)
𝑑𝑟
2

+ 𝑟
2

𝑑
2

𝜑,

𝜙 =
1

4
ln [ 𝑟

𝛾2
] ; 𝐹

𝑟𝑡
=
𝑄

𝑟2
,

(2)

where the metric function 𝑓(𝑟) = −2𝑀𝑟 + 8Λ𝑟
2

+ 8𝑄
2 and

an integration constant 𝛾 with dimension [𝐿]
1/2 is necessary

to have correct dimensions.
In our previous work, the mass and electric charge of the

3D charged-dilaton black hole have been expressed in terms
of the inner and outer horizons as [15]

𝑀 = 4Λ (𝑟
+
+ 𝑟
−
) , 𝑄

2

= Λ𝑟
+
𝑟
−
, (3)

and, the electric potential is given by

Φ = (
𝜕𝑀

𝜕𝑄
)

𝑆

=
8𝑄

𝑟
+

. (4)

According to the energy conservation law,

𝑑𝑀 = 𝑇𝑑𝑆 + Φ𝑑𝑄. (5)

The temperature is

𝑇 = (
𝜕𝑀

𝜕𝑆
)

𝑄

=
2Λ

𝑟2
+

(𝑟
+
− 𝑟
−
) . (6)

By using the area law, the entropy of the black hole is given by

𝑆 =
𝑘
𝐵

4
𝐴 = 𝑘

𝐵
𝜋𝑟
2

+
= 𝑟
2

+
, (7)

with 𝑘
𝐵
Boltzmann’s constant, and 𝑘

𝐵
= 1/𝜋. In its natural

coordinates, theWeinhold metric can be obtained as follows:

𝑑𝑠
2

𝑊
=

1

𝑟3
+

(
3𝑄
2

𝑟2
+

− Λ)𝑑𝑆
2

− 8𝑄𝑑𝑆 𝑑𝑄 + 𝑟
2

+
𝑑𝑄
2

, (8)

where the index 𝑊 denotes the Weinhold information
geometry. Here, we have made the choice that the mass 𝑀
corresponds to the thermodynamic potential; entropy 𝑆 and
charge 𝑄 correspond to the extensive variables, from which
it can be shown that the Weinhold scalar curvature in the
entropy representation becomes

R
𝑊
= −

𝑟
+

4Λ(𝑟
+
− 𝑟
−
)
2
. (9)

We see that the curvatureR
𝑊
naively diverges at the extreme

limit of the black hole, where 𝑟
+

= 𝑟
−
, which is of less

interest physically since at the extreme limit, the Hawking
temperature vanishes, and the thermodynamics description
breaks down as mentioned above. We interpret this result
as an indication of the limit of applicability of geometric
thermodynamics as a geometric model for equilibrium ther-
modynamics.

By using the coordinate transformation 𝑢 = 𝑄/𝑟
+
[14, 15],

we obtain the diagonalized Ruppeiner metric for the 3D
charged-dilaton black hole as follows:

𝑑𝑠
2

𝑅
=

1

𝑇
𝑑𝑠
2

𝑊
= −

1

2𝑆
𝑑𝑆
2

+
4𝑆

Λ − 𝑢
𝑑𝑢
2

. (10)

Let us do a new transformation as follows:

𝜏 = √2𝑆, √Λ sin( 𝜎

√2
) = 𝑢. (11)

Then, the Ruppeiner metric can be written in the above
Rindler coordinates as

𝑑𝑠
2

𝑅
= −𝑑𝜏 + 𝜏

2

𝑑𝜎
2

. (12)

Obviously, this is a flat metric; its curvature is zero. The
vanished thermodynamic curvature implies that no phase
transition points exist and no thermodynamic interactions
appear. This result implies that the Ruppeiner curvature
cannot describe the phase transitions of the black hole either.

3. Geometrothermodynamics Description of
3D Charged-Dilaton Black Hole

In this section, we turn to use the recent geometric formula-
tion of extended thermodynamic behavior of the 3D charged-
dilaton black hole.
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The formulation of GTD is based on the use of contact
geometry as a framework for thermodynamics [18]. Consider
the (2𝑛 + 1)-dimensional thermodynamic phase space I
coordinated by the thermodynamic potential Φ, extensive
variables 𝐸

𝑎, and intensive variables 𝐼
𝑎

(𝑎 = 1, . . . , 𝑛).
Consider on I a nondegenerate metric 𝐺 = 𝐺(𝑍

𝐴

), with
𝑍
𝐴

= {Φ, 𝐸
𝑎

, 𝐼
𝑎

}, and the Gibbs1-form Θ = 𝑑Φ − 𝛿
𝑎𝑏
𝐼
𝑎

𝑑𝐸
𝑏,

with 𝛿
𝑎𝑏

= diag(1, 1, . . . , 1). The set (I, Θ, 𝐺) defines a
contact Riemannian manifold if the condition Θ ∧ (𝑑Θ)

𝑛

̸= 0

is satisfied. Moreover, the metric 𝐺 is Legendre invariant
if its functional dependence on 𝑍

𝐴 does not change under
a Legendre transformation. The Gibbs 1g-form Θ is also
invariant with respect to Legendre transformations. Legendre
invariance guarantees that the geometric properties of 𝐺
do not depend on the thermodynamic potential used in its
construction.

The thermodynamic phase space I which in the case
of the 3D charged-dilaton black hole can be defined as a 4-
dimensional space with coordinates 𝑍𝐴 = {𝑀, 𝑆, 𝑇, 𝑄}, 𝐴 =

0, . . . , 4. Equation (3) represents the fundamental relationship
𝑀 = (𝑆, 𝑄) from which all the thermodynamic information
can be obtained; therefore, we would like to consider a 5-
dimensional phase space I with coordinates (𝑀, 𝑆, 𝑇, 𝑄,Φ),
a contact one-form

Θ = 𝑑𝑀 − 𝑇𝑑𝑆 − Φ𝑑𝑄, (13)
and an invariant metric

𝐺 = (𝑑𝑀 − 𝑇𝑑𝑆 − Φ𝑑𝑄)
2

+ (𝑇𝑆 + Φ𝑄) (−𝑑𝑇𝑑𝑆 + 𝑑Φ𝑑𝑄) .

(14)
The triplet (I, Θ, 𝐺) defines a contact Riemannian mani-

fold that plays an auxiliary role in GTD. It is used to properly
handle the invariance with respect to Legendre transfor-
mations. In fact, for the charged black hole, a Legendre
transformation involves in general all the thermodynamic
variables𝑀, 𝑆, 𝑄, 𝑇, andΦ so that they must be independent
from each other as they are in the phase space. We introduce
also the geometric structure of the space of equilibrium states
𝜀 in the following manner: 𝜀 is a 2-dimensional submanifold
ofI that is defined by the smooth embeddingmap𝜑 : 𝜀 → I,
satisfying the condition that the “projection” of the contact
form Θ on 𝜀 vanishes, namely, 𝜑∗(Θ) = 0, where 𝜑∗ is the
pullback of 𝜑, and that𝐺 induces a Legendre invariant metric
𝑔 on 𝜀 by means of 𝜀. In principle, any 2-dimensional subset
of the set of coordinates of I can be used to label 𝜀. For the
sake of simplicity, we will use the set of extensive variables
𝑆 and 𝑄 which in ordinary thermodynamics corresponds to
the energy representation.Then, the embedding map for this
specific choice is

𝜑 : {𝑆, 𝑄} → {𝑀(𝑆, 𝑄) , 𝑆, 𝑄,
𝜕𝑀

𝜕𝑆
,
𝜕𝑀

𝜕𝑄
} . (15)

The condition 𝜑
∗

(Θ) = 0 is equivalent to (5) (the
first law of thermodynamics) and (4), (6) (the conditions of
thermodynamic equilibrium); the inducedmetric is obtained
as follows:

𝑔 = (𝑆
𝜕𝑀

𝜕𝑆
+ 𝑄

𝜕𝑀

𝜕𝑄
)(−

𝜕
2

𝑀

𝜕𝑆2
𝑑𝑆
2

+
𝜕
2

𝑀

𝜕𝑄2
𝑑𝑄
2

) . (16)

This metric determines all the geometric properties of the
equilibrium space 𝜀. We see that in order to obtain the
explicit form of the metric, it is only necessary to specify the
thermodynamic potential 𝑀 as a function of 𝑆 and 𝑄. In
ordinary thermodynamics, this function is usually referred
to as the fundamental equation from which all the equations
of state can be derived. From (3), the fundamental equation
𝑀 = 𝑀(𝑆, 𝑄) is given by

𝑀(𝑆,𝑄) = 4Λ√𝑆(1 +
𝑄
2

Λ𝑆
) . (17)

The first-order and the second-order partial differentials can
be expressed, respectively, as

𝜕𝑀

𝜕𝑆
=

2

𝑟
+

(Λ −
𝑄
2

𝑟2
+

) ,
𝜕𝑀

𝜕𝑄
=
8𝑄

𝑟
+

,

𝜕
2

𝑀

𝜕𝑆2
= −

1

𝑟3
+

(Λ −
3𝑄
2

𝑟2
+

) ,
𝜕
2

𝑀

𝜕𝑄2
=

8

𝑟
+

.

(18)

Substituting (18) into (16), the lines of GTD for the 3D
charged-dilaton black hole are written as

𝑑𝑆
2

𝐺
=

2

𝑟6
+

(Λ𝑟
4

+
− 9𝑄
4

) 𝑑𝑆
2

+
16

𝑟2
+

(Λ𝑟
2

+
+ 3𝑄
2

) 𝑑𝑄
2

, (19)

where the index 𝐺 denotes the geometrothermodynamics.
Thus, the curvature scalar can be obtained by

R
𝐺
=

9𝑟
+
𝑟
−
(𝑟
+
− 𝑟
−
)

2Λ4(3𝑟
−
− 𝑟
+
)
2

(𝑟
+
+ 3𝑟
−
)
3
. (20)

We see in our setup that the scalar curvatureR
𝐺
vanishes

only at the extremal limit to where 𝑟
+
= 𝑟
−
. In a general case,

the scalar curvature R
𝐺
does not vanish and it goes positive

infinity when 𝑟
+

= 3𝑟
−
, which stands for a kind of phase

transition or long rang correlation of the system according
to the Ruppeiner theory [28]. It is interesting to note that the
divergence point of the scalar curvature is just the transition
point of Davies [29]. In the fact, it is easy to check this by
calculating the heat capacity with a fixed charge as follows:

𝐶
𝑄
= 𝑇(

𝜕𝑆

𝜕𝑇
)

𝑄

=
2𝑟
2

+
(𝑟
+
− 𝑟
−
)

3𝑟
−
− 𝑟
+

, (21)

which is singular at 𝑟
+
= 3𝑟
−
corresponding to𝑀2 = 266𝑄

2

/3

and indicates that the black hole has a second-order phase
transition.Moreover, we see that all thermodynamic variables
arewell behaved, except perhaps in the extremal limit 𝑟

+
= 𝑟
−
,

at this point, changes sign and the scalar curvature diverge.
Therefore, there will be a phase transitionR

𝐺
.

4. Discussion and Conclusions

In this work, we investigated the Weinhold metric and the
Ruppeiner metric as well as the geometrothermodynamics
of a 3D Charged-Dilaton Black Hole. In all these cases,
our results showed that the thermodynamic curvature is in
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general different, indicating the presence of thermodynamic
interaction. For instance, the scalar curvature R

𝑊
indicates

the presence of second-order transition points in 𝑟
+
= 𝑟
−
.

Nevertheless, the scalar curvatureR
𝑅
is zero, indicating that

no phase transitions can occur, and the scalar curvature R
𝑅

lost the information about charge 𝑄. Moreover, the scalar
curvatureR

𝐺
indicates more physical interest since the first-

order phase transition point and the second-order transition
both occur in the extremal limit at 𝑟

+
= 𝑟
−
and 𝑟
+
= 3𝑟
−
.

In addition, the thermodynamic metric proposed in this
work has been applied to the case of black hole configura-
tions in four dimensions with and without the cosmolog-
ical constant. It has been shown that this thermodynamic
metric correctly describes the thermodynamic behavior of
the corresponding black hole configurations. One additional
advantage of this thermodynamic metric is its invariance
with respect to total Legendre transformations. This means
that the results are independent of the thermodynamic
potential used to generate the thermodynamicmetric. A very
interesting result is that it can recreate the lost information
in Ruppeiner metric by using Legendre transformation.
In summary, all of the above thermodynamic geometries
leading to different results indicate that it is still unresolved to
introduce geometrical concepts into all kinds of black holes;
we also expect that this unified geometry description may
give more information about a thermodynamic system.
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