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We prove the strong law of large numbers for weighted sums ∑𝑛
𝑖=1
𝑎
𝑛𝑖
𝑋
𝑖
, which generalizes and improves the corresponding one

for independent and identically distributed random variables and 𝜑-mixing random variables. In addition, we present some results
on complete convergence for weighted sums of 𝜌∗-mixing random variables under some suitable conditions, which generalize the
corresponding ones for independent random variables.

1. Introduction

Throughout the paper, we let 𝐼(𝐴) be the indicator function
of the set 𝐴. We assume that 𝜙(𝑥) is a positive increasing
function on (0,∞) satisfying 𝜙(𝑥) ↑ ∞ as 𝑥 → ∞ and 𝜓(𝑥)
is the inverse function of 𝜙(𝑥). Since 𝜙(𝑥) ↑ ∞, it follows that
𝜓(𝑥) ↑ ∞. For easy notation, we let 𝜙(0) = 0 and let𝜓(0) = 0.
𝑎
𝑛
= 𝑂(𝑏

𝑛
) denotes that there exists a positive constant𝐶 such

that |𝑎
𝑛
/𝑏
𝑛
| ≤ 𝐶. 𝐶 denotes a positive constant.

Let {𝑋
𝑖
, 𝑖 ≥ 1} be a sequence of independent observations

from a population distribution. A common expression for
these linear statistics is 𝑇

𝑛
≐ ∑
𝑛

𝑖=1
𝑎
𝑛𝑖
𝑋
𝑖
, where the weights 𝑎

𝑛𝑖

are either real constants or random variables independent of
𝑋
𝑖
. Many authors have studied the strong convergence prop-

erties for linear statistics 𝑇
𝑛
and obtained some interesting

results. For the details, one can refer to Bai and Cheng [1],
Sung [2], Cai [3], Jing and Liang [4], Zhou et al. [5], Wang
et al. [6–8] and Wu and Chen [9], Tang [10], and so forth.

Recently, Cai [11] proved the following strong law of large
numbers for weighted sums of independent and identically
distributed random variables.

Theorem A. Let {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of independent

and identically distributed random variables with 𝐸𝑋 = 0,
𝐸𝑋2 < ∞, and 𝐸[𝜙(|𝑋|)] < ∞. Assume that the inverse
function 𝜓(𝑥) of 𝜙(𝑥) satisfies

𝜓 (𝑛)
𝑛

∑
𝑖=1

1

𝜓 (𝑖)
= 𝑂 (𝑛) . (1)

Let {𝑎
𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be a triangular array of constants

such that

(i) max
1≤𝑖≤𝑛

|𝑎
𝑛𝑖
| = 𝑂(1/(𝜓(𝑛)));

(ii) ∑𝑛
𝑖=1
𝑎2
𝑛𝑖
= 𝑂(log−1−𝛼𝑛) for some 𝛼 > 0.

Then for any 𝜀 > 0,

∞

∑
𝑛=1

𝑛−1𝑃(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



> 𝜀) < ∞. (2)

Wang et al. [12] generalized the result of Theorem A for
independent sequences to the case of 𝜑-mixing sequences
under conditions of (1), (𝑖), and (𝑖𝑖). Conditions (1) and
(𝑖) in Theorem A look ugly, since the conclusion (2) does
not contain any information on 𝜓(𝑛). The main purpose of
the paper is to show (2) for 𝜌∗-mixing random variables
without conditions of (1) and (𝑖). So our result generalizes and
improves the corresponding one of Cai [11] and Wang et al.
[12]. In addition, we will present some results on complete
convergence for weighted sums of 𝜌∗-mixing random vari-
ables under some suitable conditions, which generalize the
corresponding ones for independent random variables.

Firstly, let us recall the concept of 𝜌∗-mixing random
variables.
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Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random variables defined

on a fixed probability space (Ω,F, 𝑃). WriteFS = 𝜎(𝑋𝑖, 𝑖 ∈
𝑆 ⊂ N). Given 𝜎-algebrasB,R inF, let

𝜌 (B,R) = sup
𝑋∈𝐿
2(B),𝑌∈𝐿2(R)

|𝐸𝑋𝑌 − 𝐸𝑋𝐸𝑌|

(Var𝑋 Var𝑌)1/2
. (3)

Define the 𝜌∗-mixing coefficients by

𝜌∗ (𝑘) = sup {𝜌 (F
𝑆
,F
𝑇
) : finite subsets 𝑆, 𝑇 ⊂ N,

such that dist (𝑆, 𝑇) ≥ 𝑘} , 𝑘 ≥ 0.
(4)

Obviously, 0 ≤ 𝜌∗(𝑘 + 1) ≤ 𝜌∗(𝑘) ≤ 1, and 𝜌∗(0) = 1.

Definition 1. A sequence {𝑋
𝑛
, 𝑛 ≥ 1} of random variables is

said to be 𝜌∗-mixing if there exists 𝑘 ∈ N such that 𝜌∗(𝑘) < 1.
It is easily seen that 𝜌∗-mixing (i.e., 𝜌-mixing) sequence

contains independent sequence as a special case. 𝜌∗-mixing
random variables were introduced by Bradley [13] and
many applications have been found. 𝜌-mixing is similar
to 𝜌-mixing, but both are quite different. Many authors
have studied this concept providing interesting results and
applications. See, for example, Bradley [13] for the central
limit theorem, Bryc and Smoleński [14], Peligrad and Gut
[15], and Utev and Peligrad [16] for moment inequalities,
Gan [17], Kuczmaszewska [18], Wu and Jiang [19] and Wang
et al. [20, 21] for almost sure convergence, Peligrad and
Gut [15], Cai [22], Kuczmaszewska [23], Zhu [24], An and
Yuan [25], Wang et al. [26], and Sung [27] for complete
convergence, Peligrad [28] for invariance principle, Wu and
Jiang [29] for strong limit theorems for weighted product
sums of 𝜌∗-mixing sequences of random variables, Wu and
Jiang [30] for Chover-type laws of the 𝑘-iterated logarithm,
Wu [31] for strong consistency of estimator in linear model,
Wang et al. [32] for complete consistency of the estimator of
nonparametric regressionmodels,Wu et al. [33] andGuo and
Zhu [34] for complete moment convergence, and so forth.
When these are compared with the corresponding results of
independent random variable sequences, there still remains
much to be desired. So studying the limit behavior of 𝜌∗-
mixing random variables is of interest.

The following concepts of slowly varying function and
stochastic domination will be used in this work.

Definition 2. A real-valued function 𝑙(𝑥), positive and mea-
surable on (0,∞), is said to be slowly varying if

lim
𝑥→∞

𝑙 (𝑥𝜆)

𝑙 (𝑥)
= 1 (5)

for each 𝜆 > 0.

Definition 3. A sequence {𝑋
𝑛
, 𝑛 ≥ 1} of random variables is

said to be stochastically dominated by a random variable𝑋 if
there exists a positive constant 𝐶 such that

𝑃 (
𝑋𝑛
 > 𝑥) ≤ 𝐶𝑃 (|𝑋| > 𝑥) (6)

for all 𝑥 ≥ 0 and 𝑛 ≥ 1.

This work is organized as follows. Some important lem-
mas are presented in Section 2. Main results and their proofs
are provided in Section 3.

2. Preliminaries

In this section, wewill present some important lemmaswhich
will be used to prove the main results of the paper. The first
one is the Rosenthal type maximal inequality for 𝜌∗-mixing
random variables, which was obtained by Utev and Peligrad
[16].

Lemma 4 (cf. Utev and Peligrad [16]). For a positive integer
𝑁 ≥ 1 and positive real numbers 𝑞 ≥ 2 and 0 ≤ 𝑟 < 1, there
exists a positive constant 𝐷 = 𝐷(𝑞,𝑁, 𝑟) such that if {𝑋

𝑛
, 𝑛 ≥

1} is a sequence of random variables with 𝜌∗(𝑁) < 𝑟, 𝐸𝑋
𝑖
= 0,

and 𝐸|𝑋
𝑖
|𝑞 < ∞ for every 𝑖 ≥ 1, then for all 𝑛 ≥ 1,

𝐸(max
1≤𝑖≤𝑛



𝑖

∑
𝑗=1

𝑋
𝑗



𝑞

) ≤ 𝐷
{
{
{

𝑛

∑
𝑖=1

𝐸
𝑋𝑖

𝑞

+ (
𝑛

∑
𝑖=1

𝐸𝑋2
𝑖
)

𝑞/2

}
}
}

. (7)

The next one is a basic property for stochastic domina-
tion. For the details of the proof, one can refer to Wu [35] or
Tang [36].

Lemma 5. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random variables

which is stochastically dominated by a random variable𝑋. For
any 𝛼 > 0 and 𝑏 > 0, the following two statements hold:

𝐸
𝑋𝑛

𝛼

𝐼 (
𝑋𝑛
 ≤ 𝑏) ≤ 𝐶1 [𝐸|𝑋|

𝛼𝐼 (|𝑋| ≤ 𝑏)

+𝑏𝛼𝑃 (|𝑋| > 𝑏)] ,

𝐸
𝑋𝑛

𝛼

𝐼 (
𝑋𝑛
 > 𝑏) ≤ 𝐶2𝐸|𝑋|

𝛼𝐼 (|𝑋| > 𝑏) ,

(8)

where 𝐶
1

and 𝐶
2

are positive constants. Consequently,
𝐸|𝑋
𝑛
|𝛼 ≤ 𝐶𝐸|𝑋|𝛼, where 𝐶 is a positive constant.

The last one is the basic properties for slowly varying
function, which was obtained by Bai and Su [37].

Lemma 6 (cf. Bai and Su [37]). If 𝑙(𝑥) > 0 is a slowly varying
function as 𝑥 → ∞, then

(i) lim
𝑥→∞

(𝑙(𝑥𝑢)/𝑙(𝑥)) = 1 for each 𝑢 > 0;
(ii) lim

𝑘→∞
sup
2
𝑘
≤𝑥<2
𝑘+1(𝑙(𝑥)/𝑙(2𝑘)) = 1;

(iii) lim
𝑥→∞

𝑥𝛿𝑙(𝑥) = ∞, lim
𝑥→∞

𝑥−𝛿𝑙(𝑥) = 0 for each
𝛿 > 0;

(iv) 𝑐
1
2𝑘𝑟𝑙(𝜀2𝑘) ≤ ∑

𝑘

𝑗=1
2𝑗𝑟𝑙(𝜀2𝑗) ≤ 𝑐

2
2𝑘𝑟𝑙(𝜀2𝑘) for every 𝑟 >

0, 𝜀 > 0, positive integer 𝑘 and some 𝑐
1
> 0, 𝑐
2
> 0;

(v) 𝑐
3
2𝑘𝑟𝑙(𝜀2𝑘) ≤ ∑

∞

𝑗=𝑘
2𝑗𝑟𝑙(𝜀2𝑗) ≤ 𝑐

4
2𝑘𝑟𝑙(𝜀2𝑘) for every 𝑟 <

0, 𝜀 > 0, positive integer 𝑘 and some 𝑐
3
> 0, 𝑐
4
> 0.

3. Main Results and Their Proofs

In this section, we will generalize and improve the result
of Theorem A for independent and identically distributed
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random variables to the case of 𝜌∗-mixing random variables.
In addition, we will present some results on complete conver-
gence for weighted sums of 𝜌∗-mixing random variables.

Our main results are as follows.

Theorem 7. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of 𝜌∗-mixing

random variables, which is stochastically dominated by a
random variable𝑋 with 𝐸𝑋

𝑛
= 0, and 𝐸𝑋2 < ∞. Let {𝑎

𝑛𝑖
, 1 ≤

𝑖 ≤ 𝑛, 𝑛 ≥ 1} be a triangular array of constants such that
𝑛

∑
𝑖=1

𝑎2
𝑛𝑖
= 𝑂 (log−1−𝛼𝑛) for some 𝛼 > 0. (9)

Then for any 𝜀 > 0,

∞

∑
𝑛=1

𝑛−1𝑃(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



> 𝜀) < ∞. (10)

Proof. By Markov’s inequality, Lemmas 4 and 5, 𝐸𝑋2 < ∞
and condition (9), we have

∞

∑
𝑛=1

𝑛−1𝑃(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



> 𝜀)

≤ 𝐶
∞

∑
𝑛=1

𝑛−1𝐸(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



2

)

≤ 𝐶
∞

∑
𝑛=1

𝑛−1
𝑛

∑
𝑖=1

𝑎2
𝑛𝑖
𝐸𝑋2
𝑖

≤ 𝐶
∞

∑
𝑛=1

𝑛−1
𝑛

∑
𝑖=1

𝑎2
𝑛𝑖
𝐸𝑋2

≤ 𝐶
∞

∑
𝑛=1

𝑛−1log−1−𝛼𝑛 < ∞,

(11)

which implies (10). This completes the proof of the theorem.

Remark 8. The key to the proof of Theorem 7 is the Rosen-
thal type maximal inequality for 𝜌∗-mixing sequences (i.e.,
Lemma 4). Similar to the proof of Theorem 7, we have the
following result.

Theorem 9. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random

variables, which is stochastically dominated by a random
variable 𝑋 with 𝐸𝑋

𝑛
= 0 and 𝐸𝑋2 < ∞. Let {𝑎

𝑛𝑖
, 1 ≤

𝑖 ≤ 𝑛, 𝑛 ≥ 1} be a triangular array of constants such that
∑
𝑛

𝑖=1
𝑎2
𝑛𝑖
= 𝑂(log−1−𝛼𝑛) for some 𝛼 > 0. Suppose that there

exists a positive constant 𝐶 such that

𝐸(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



2

) ≤ 𝐶
𝑛

∑
𝑖=1

𝑎2
𝑛𝑖
𝐸𝑋2
𝑖
. (12)

Then (10) holds for any 𝜀 > 0.

If the array of constants {𝑎
𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} is replaced

by the sequence of constants {𝑎
𝑛
, 𝑛 ≥ 1}, then we can get

the following strong law of large numbers for weighted sums
∑
𝑛

𝑖=1
𝑎
𝑖
𝑋
𝑖
. The proof is standard, so we omit the details.

Theorem 10. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random

variables, which is stochastically dominated by a random
variable 𝑋 with 𝐸𝑋

𝑛
= 0 and 𝐸𝑋2 < ∞. Let {𝑎

𝑛
, 𝑛 ≥ 1}

be a sequence of constants such that∑𝑛
𝑖=1
𝑎2
𝑖
= 𝑂(log−1−𝛼𝑛) for

some 𝛼 > 0. Suppose that there exists a positive constant𝐶 such
that

𝐸(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑖
𝑋
𝑖



2

) ≤ 𝐶
𝑛

∑
𝑖=1

𝑎2
𝑖
𝐸𝑋2
𝑖
. (13)

Then for any 𝜀 > 0,

∞

∑
𝑛=1

𝑛−1𝑃(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑖
𝑋
𝑖



> 𝜀) < ∞, (14)

and in consequence, ∑𝑛
𝑖=1
𝑎
𝑖
𝑋
𝑖
→ 0 𝑎.𝑠.

Remark 11. There are many sequences of random vari-
ables satisfying (12), such as negatively associated (NA, in
short) sequence (see Shao [38]), negatively superadditive-
dependent (NSD, in short) sequence (see Wang et al. [39]),
asymptotically almost negatively associated (AANA, in short)
sequence (see Yuan and An [40]), 𝜑-mixing sequence (see
Wang et al. [12]), and 𝜌∗-mixing sequence (see Utev and
Peligrad [16]). Comparing Theorems 7 and 9 with Theorem
A, conditions (1) and (𝑖) in Theorem A can be removed. In
addition, the condition “identical distribution” in Theorem
A can be weakened by “stochastic domination.” Hence, the
results of Theorem 7 and Theorem 9 generalize and improve
the corresponding one of Theorem A.

In the following, wewill present some results on complete
convergence for weighted sums of 𝜌∗-mixing random vari-
ables. The main ideas are inspired by Kuczmaszewska [41].
The first one is a very general result of complete convergence
for weighted sums of 𝜌∗-mixing random variables, which can
be applied to obtain other result’s of complete convergence,
such as Baum-Katz type complete convergence and Hsu-
Robbins type complete convergence.

Theorem 12. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of 𝜌∗-mixing

random variables and let {𝑎
𝑛𝑖
, 𝑛 ≥ 1, 𝑖 ≥ 1} be an array of

real numbers. Let {𝑏
𝑛
, 𝑛 ≥ 1} be an increasing sequence of

positive integers and let {𝑐
𝑛
, 𝑛 ≥ 1} be a sequence of positive

real numbers. If for some 𝑞 ≥ 2, 0 < 𝑡 < 2 and for any 𝜀 > 0,
the following conditions are satisfied:

∞

∑
𝑛=1

𝑐
𝑛

𝑏
𝑛

∑
𝑖=1

𝑃 (
𝑎𝑛𝑖𝑋𝑖

 ≥ 𝜀𝑏
1/𝑡

𝑛
) < ∞, (15)

∞

∑
𝑛=1

𝑐
𝑛
𝑏−(𝑞/𝑡)
𝑛

𝑏
𝑛

∑
𝑖=1

 𝑎𝑛𝑖

𝑞

𝐸|𝑋
𝑖


𝑞

𝐼 (
𝑎𝑛𝑖𝑋𝑖

 < 𝜀𝑏
1/𝑡

𝑛
) < ∞, (16)

∞

∑
𝑛=1

𝑐
𝑛
𝑏−(𝑞/2)
𝑛

[
𝑏
𝑛

∑
𝑖=1

𝑎2
𝑛𝑖
𝐸𝑋2
𝑖
𝐼 (|𝑎
𝑛𝑖
𝑋
𝑖
| < 𝜀𝑏1/𝑡
𝑛
)]

𝑞/2

< ∞, (17)
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then

∞

∑
𝑛=1

𝑐
𝑛
𝑃
{
{
{

max
1≤𝑖≤𝑏

𝑛



𝑖

∑
𝑗=1

[

[

𝑎
𝑛𝑗
𝑋
𝑗

−𝑎
𝑛𝑗
𝐸𝑋
𝑗
𝐼 (
𝑎𝑛𝑗𝑋𝑗

 < 𝜀𝑏
1/𝑡

𝑛
)]

]



≥ 𝜀𝑏1/𝑡
𝑛

}
}
}

< ∞.

(18)

Proof. Let

𝑌(𝑛)
𝑖
= 𝑎
𝑛𝑖
𝑋
𝑖
𝐼 (
𝑎𝑛𝑖𝑋𝑖

 < 𝜀𝑏
1/𝑡

𝑛
) , 𝑆

𝑛𝑖
=
𝑖

∑
𝑗=1

𝑌(𝑛)
𝑗
,

𝑛 ≥ 1, 𝑖 ≥ 1,

𝐴 =
𝑏
𝑛

⋂
𝑖=1

{𝑌(𝑛)
𝑖
= 𝑎
𝑛𝑖
𝑋
𝑖
} ,

𝐵 = 𝐴 =
𝑏
𝑛

⋃
𝑖=1

{𝑌(𝑛)
𝑖

̸= 𝑎
𝑛𝑖
𝑋
𝑖
} =
𝑏
𝑛

⋃
𝑖=1

(
𝑎𝑛𝑖𝑋𝑖

 ≥ 𝜀𝑏
1/𝑡

𝑛
) ,

𝐸
𝑛
=
{
{
{

max
1≤𝑖≤𝑏

𝑛



𝑖

∑
𝑗=1

[

[

𝑎
𝑛𝑗
𝑋
𝑗

−𝑎
𝑛𝑗
𝐸𝑋
𝑗
𝐼 (
𝑎𝑛𝑗𝑋𝑗

 < 𝜀𝑏
1/𝑡

𝑛
)]

]



≥ 𝜀𝑏1/𝑡
𝑛

}
}
}

.

(19)

Therefore

𝑃 =
{
{
{

max
1≤𝑖≤𝑏

𝑛



𝑖

∑
𝑗=1

[

[

𝑎
𝑛𝑗
𝑋
𝑛𝑗

−𝑎
𝑛𝑗
𝐸𝑋
𝑗
𝐼 (
𝑎𝑛𝑗𝑋𝑗

 < 𝜀𝑏
1/𝑡

𝑛
)]

]



≥ 𝜀𝑏1/𝑡
𝑛

}
}
}

= 𝑃 (𝐸
𝑛
) = 𝑃 (𝐸

𝑛
𝐴) + 𝑃 (𝐸

𝑛
𝐵)

≤ 𝑃 (𝐸
𝑛
𝐴) + 𝑃 (𝐵)

≤
𝑏
𝑛

∑
𝑖=1

𝑃 (
𝑎𝑛𝑖𝑋𝑖

 ≥ 𝜀𝑏
1/𝑡

𝑛
)

+ 𝜀−𝑞𝑏−(𝑞/𝑡)
𝑛

𝐸(max
1≤𝑖≤𝑏

𝑛

𝑆


𝑛𝑖
− 𝐸𝑆
𝑛𝑖

)
𝑞

.

(20)

Using the 𝐶
𝑟
-inequality and Jensen’s inequality, we can

estimate 𝐸|𝑌(𝑛)
𝑖
− 𝐸𝑌(𝑛)
𝑖
|
𝑞

in the following way:

𝐸
𝑌
(𝑛)

𝑖
− 𝐸𝑌(𝑛)
𝑖


𝑞

≤ 𝐶
𝑎𝑛𝑖

𝑞

𝐸
𝑋𝑖

𝑞

𝐼 (
𝑎𝑛𝑖𝑋𝑖

 < 𝜀𝑏
1/𝑡

𝑛
) . (21)

The desired result (18) follows from (15), (16), (17), (20), (21),
and Lemma 4 immediately. The proof is completed.

In what follows, we will give some applications for
Theorem 12.

Corollary 13. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of 𝜌∗-mixing

random variables and let {𝑎
𝑛𝑖
, 𝑛 ≥ 1, 𝑖 ≥ 1} be an array of real

numbers. Let 𝑙(𝑥) > 0 be a slowly varying function as 𝑥 → ∞,
𝛼 > (1/2), and 𝛼𝑟 > 1. If for some 𝑞 ≥ 2 and 0 < 𝑡 < 2, the
following conditions are satisfied for any 𝜀 > 0:

∞

∑
𝑛=1

𝑛𝛼𝑟−2𝑙 (𝑛)
𝑛

∑
𝑖=1

𝑃 (
𝑎𝑛𝑖𝑋𝑖

 ≥ 𝜀𝑛
1/𝑡) < ∞, (22)

∞

∑
𝑛=1

𝑛(𝛼𝑟−2)−(𝑞/𝑡)𝑙 (𝑛)
𝑛

∑
𝑖=1

 𝑎𝑛𝑖

𝑞

𝐸|𝑋
𝑖


𝑞

𝐼 (
𝑎𝑛𝑖𝑋𝑖

 < 𝜀𝑛
1/𝑡) < ∞,

(23)
∞

∑
𝑛=1

𝑛(𝛼𝑟−2)−(𝑞/𝑡)𝑙 (𝑛) [
𝑛

∑
𝑖=1

𝑎2
𝑛𝑖
𝐸𝑋2
𝑖
𝐼 (
𝑎𝑛𝑖𝑋𝑖

 < 𝜀𝑛
1/𝑡)]

𝑞/2

< ∞,

(24)

then

∞

∑
𝑛=1

𝑛𝛼𝑟−2𝑙 (𝑛) 𝑃
{
{
{

max
1≤𝑖≤𝑛



𝑖

∑
𝑗=1

[

[

𝑎
𝑛𝑗
𝑋
𝑗

−𝑎
𝑛𝑗
𝐸𝑋
𝑗
𝐼 (
𝑎𝑛𝑗𝑋𝑗

 < 𝜀𝑛
1/𝑡)]

]



≥ 𝜀𝑛1/𝑡
}
}
}

< ∞.

(25)

Proof. Let 𝑐
𝑛
= 𝑛𝛼𝑟−2𝑙(𝑛) and let 𝑏

𝑛
= 𝑛. The desired

result (25) follows from conditions (22)–(24) andTheorem 12
immediately. The proof is completed.

If 𝑎
𝑛𝑖
≡ 1 for 𝑛 ≥ 1 and 𝑖 ≥ 1 in Corollary 13, then we can

get the following result for 𝜌∗-mixing random variables.

Corollary 14. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of mean zero 𝜌∗-

mixing random variables, which is stochastically dominated by
a random variable 𝑋 and, let 𝑙(𝑥) > 0 be a slowly varying
function as 𝑥 → ∞. If for some 𝛼 > (1/2), 𝛼𝑟 > 1 and
0 < 𝑡 < 2,

𝐸|𝑋|
𝛼𝑟𝑡𝑙 (|𝑋|

𝑡) < ∞, (26)

then for any 𝜀 > 0,

∞

∑
𝑛=1

𝑛𝛼𝑟−2𝑙 (𝑛) 𝑃(max
1≤𝑖≤𝑛



𝑖

∑
𝑗=1

𝑋
𝑗



≥ 𝜀𝑛1/𝑡) < ∞. (27)

Proof. The proof is similar to that of Corollary 2.8 in Kucz-
maszewska [41]. Take 𝑎

𝑛𝑖
= 1, 𝑛 ≥ 1, 𝑖 ≥ 1, and 𝑞 >

max(2, (2𝑡(𝛼𝑟 − 1))/2 − 𝑡). In order to prove (27), it is enough
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to prove that under, the conditions of Corollary 14, conditions
(22) and (24) hold.

In fact, by Lemma 6 and similar to the proof of
Corollary 2.8 in Kuczmaszewska [41], we can obtain

∞

∑
𝑛=1

𝑛𝛼𝑟−2𝑙 (𝑛)
𝑛

∑
𝑖=1

𝑃 (
𝑋𝑖
 ≥ 𝜀𝑛

1/𝑡)

≤ 𝐶
∞

∑
𝑛=1

𝑛𝛼𝑟−1𝑙 (𝑛) 𝑃 (|𝑋| ≥ 𝜀𝑛
1/𝑡)

≤ 𝐶
∞

∑
𝑘=1

2
𝑘+1

∑
𝑛=2
𝑘

𝑛𝛼𝑟−1𝑙 (𝑛) 𝑃 (|𝑋| ≥ 𝜀𝑛
1/𝑡)

≤ 𝐶
∞

∑
𝑘=1

(2𝑘)
𝛼𝑟

𝑙 (2𝑘) 𝑃 [|𝑋| ≥ 𝜀(2
𝑘)
1/𝑡

]

≤ 𝐶𝐸|𝑋|
𝛼𝑟𝑡𝑙 (|𝑋|

𝑡) < ∞,

(28)

which implies that (22) holds.
Let 𝐹(𝑥) be the distribution function of 𝑋. It follows, by

Lemmas 5 and 6 and the inequality above, that

∞

∑
𝑛=1

𝑛(𝛼𝑟−2)−(𝑞/𝑡)𝑙 (𝑛)
𝑛

∑
𝑖=1

𝐸
𝑋𝑖

𝑞

𝐼 (
𝑋𝑖
 < 𝜀𝑛

1/𝑡)

≤ 𝐶
∞

∑
𝑛=1

𝑛𝛼𝑟−1𝑙 (𝑛) 𝑃 (|𝑋| ≥ 𝜀𝑛
1/𝑡)

+ 𝐶
∞

∑
𝑛=1

𝑛(𝛼𝑟−1)−(𝑞/𝑡)𝑙 (𝑛) 𝐸|𝑋|
𝑞𝐼 (|𝑋| < 𝜀𝑛

1/𝑡)

≤ 𝐶
∞

∑
𝑘=1

2
𝑘

∑
𝑛=2
𝑘−1

𝑛(𝛼𝑟−1)−(𝑞/𝑡)𝑙 (𝑛) 𝐸|𝑋|
𝑞𝐼 (|𝑋| < 𝜀𝑛

1/𝑡)

≤ 𝐶
∞

∑
𝑘=1

(2𝑘)
𝛼𝑟−(𝑞/𝑡)

𝑙 (2𝑘)∫
(2
𝑘
)

1/𝑡

0

|𝑥|
𝑞𝑑𝐹 (𝑥)

≤ 𝐶𝐸|𝑋|
𝛼𝑟𝑡𝑙 (|𝑋|

𝑡) < ∞,

(29)

where the fourth inequality above is followed by the proof
of Corollary 2.8 in Kuczmaszewska [41].This shows that (23)
holds.

By Lemma 5, 𝐶
𝑟
-inequality, and Markov’s inequality, we

can see that

∞

∑
𝑛=1

𝑛(𝛼𝑟−2)−(𝑞/𝑡)𝑙 (𝑛) [
𝑛

∑
𝑖=1

𝐸𝑋2
𝑖
𝐼 (
𝑋𝑖
 < 𝜀𝑛

1/𝑡)]

𝑞/2

≤ 𝐶
∞

∑
𝑛=1

𝑛(𝛼𝑟−2)−(𝑞/𝑡)+(𝑞/2)𝑙 (𝑛)

× [𝜀2𝑛2/𝑡𝑃 (|𝑋| ≥ 𝜀𝑛
1/𝑡) + 𝐸𝑋2𝐼 (|𝑋| < 𝜀𝑛

1/𝑡)]
𝑞/2

≤ 𝐶
∞

∑
𝑛=1

𝑛(𝛼𝑟−2)+(𝑞/2)𝑙 (𝑛) [𝑃 (|𝑋| ≥ 𝜀𝑛
1/𝑡)]
𝑞/2

+ 𝐶
∞

∑
𝑛=1

𝑛(𝛼𝑟−2)−(𝑞/𝑡)+(𝑞/2)𝑙 (𝑛) [𝐸𝑋
2𝐼 (|𝑋| < 𝜀𝑛

1/𝑡)]
𝑞/2

≤ 𝐶
∞

∑
𝑛=1

𝑛(𝛼𝑟−1)(1−(𝑞/2))−1𝑙 (𝑛) [𝐸|𝑋|
𝛼𝑟𝑡]
𝑞/2

+ 𝐶
∞

∑
𝑛=1

𝑛(𝛼𝑟−2)−(𝑞/𝑡)+(𝑞/2)𝑙 (𝑛) [𝐸𝑋
2𝐼 (|𝑋| < 𝜀𝑛

1/𝑡)]
𝑞/2

≤ 𝐶 + 𝐶
∞

∑
𝑛=1

𝑛(𝛼𝑟−2)−(𝑞/𝑡)+(𝑞/2)𝑙 (𝑛)

× [𝐸𝑋2𝐼 (|𝑋| < 𝜀𝑛
1/𝑡)]
𝑞/2

< ∞,

(30)

where the last inequality is followed by the proof of
Corollary 2.8 in Kuczmaszewska [41]. Hence, condition (24)
is satisfied.

The proof will be completed if we show that

𝑛−(1/𝑡)max
1≤𝑖≤𝑛



𝑖

∑
𝑗=1

𝐸𝑋
𝑗
𝐼 (
𝑋𝑗
 < 𝜀𝑛

1/𝑡)



→ 0, as 𝑛 → ∞.

(31)

If 𝛼𝑟𝑡 < 1, then we have by Lemma 5 that

𝑛−(1/𝑡)max
1≤𝑖≤𝑛



𝑖

∑
𝑗=1

𝐸𝑋
𝑗
𝐼 (
𝑋𝑗
 < 𝜀𝑛

1/𝑡)



≤ 𝑛−(1/𝑡)
𝑛

∑
𝑗=1

𝐸
𝑋𝑗
 𝐼 (
𝑋𝑗
 < 𝜀𝑛

1/𝑡)

≤ 𝐶𝑛𝑃 (|𝑋| ≥ 𝜀𝑛
1/𝑡) + 𝐶𝑛1−(1/𝑡)𝐸 |𝑋| 𝐼 (|𝑋| < 𝜀𝑛

1/𝑡)

≤ 𝐶𝑛𝑃(
|𝑋|𝛼𝑟𝑡

𝜀𝛼𝑟𝑡
≥ 𝑛)

+ 𝐶𝑛1−𝛼𝑟𝐸|𝑋|
𝛼𝑟𝑡 → 0, as 𝑛 → ∞.

(32)

If 𝛼𝑟𝑡 ≥ 1, then it follows, by 𝐸𝑋
𝑗
= 0 and Lemma 5, that

𝑛−(1/𝑡)max
1≤𝑖≤𝑛



𝑖

∑
𝑗=1

𝐸𝑋
𝑗
𝐼 (
𝑋𝑗
 < 𝜀𝑛

1/𝑡)



≤ 𝑛−(1/𝑡)
𝑛

∑
𝑗=1

𝐸𝑋𝑗𝐼 (
𝑋𝑗
 < 𝜀𝑛

1/𝑡)


≤ 𝑛−(1/𝑡)
𝑛

∑
𝑗=1

𝐸
𝑋𝑗
 𝐼 (
𝑋𝑗
 ≥ 𝜀𝑛

1/𝑡)

≤ 𝐶𝑛1−(1/𝑡)𝐸 |𝑋| 𝐼 (|𝑋| ≥ 𝜀𝑛
1/𝑡)

≤ 𝐶𝑛1−𝛼𝑟𝐸|𝑋|
𝛼𝑟𝑡 → 0, as 𝑛 → ∞.

(33)

This completes the proof of the theorem.

Remark 15. Noting that, for typical slowly varying functions
𝑙(𝑥) = 1 and 𝑙(𝑥) = log𝑥, we can get the simpler formulas in
the above theorems.

Corollary 16. Let 1 ≤ 𝑝 ≤ 2 and let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence

of 𝜌∗-mixing random variables with𝐸𝑋
𝑛
= 0 and𝐸|𝑋

𝑛
|𝑝 < ∞
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for 𝑛 ≥ 1. Let {𝑎
𝑛𝑖
, 𝑛 ≥ 1, 𝑖 ≥ 1} be an array of real numbers

satisfying the condition

𝑛

∑
𝑖=1

 𝑎𝑛𝑖

𝑝

𝐸
 𝑋𝑖


𝑝

= 𝑂 (𝑛𝛿) , as 𝑛 → ∞ (34)

for some 0 < 𝛿 ≤ (2/𝑞) and 𝑞 > 2. Then for any 𝜀 > 0 and
𝛼𝑝 ≥ 1,

∞

∑
𝑛=1

𝑛𝛼𝑝−2𝑃(max
1≤𝑖≤𝑛



𝑖

∑
𝑗=1

𝑎
𝑛𝑗
𝑋
𝑗



≥ 𝜀𝑛𝛼) < ∞. (35)

Proof. Take 𝑐
𝑛
= 𝑛𝛼𝑝−2, 𝑏

𝑛
= 𝑛, and (1/𝑡) = 𝛼 in Theorem 12.

Similar to the proof of Corollary 2.2 in Kuczmaszewska
[41], we can see that conditions (15)–(17) in Theorem 12 are
satisfied by (34).

Noting that 𝛿 < 1 and 𝛼𝑝 ≥ 1, it follows, by 𝐸𝑋
𝑛
= 0 for

𝑛 ≥ 1 and (34), that

1

𝑛𝛼
max
1≤𝑖≤𝑛



𝑖

∑
𝑗=1

𝑎
𝑛𝑗
𝐸𝑋
𝑗
𝐼 (
𝑎𝑛𝑗𝑋𝑗

 < 𝜀𝑛
𝛼)



≤
1

𝑛𝛼

𝑛

∑
𝑗=1

𝑎𝑛𝑗𝐸𝑋𝑗𝐼 (
𝑎𝑛𝑗𝑋𝑗

 < 𝜀𝑛
𝛼)


=
1

𝑛𝛼

𝑛

∑
𝑗=1

𝑎𝑛𝑗𝐸𝑋𝑗𝐼 (
𝑎𝑛𝑗𝑋𝑗

 ≥ 𝜀𝑛
𝛼)


≤
1

𝑛𝛼𝑝

𝑛

∑
𝑗=1

𝑎𝑛𝑗

𝑝

𝐸
𝑋𝑗

𝑝

≤ 𝐶𝑛𝛿−𝛼𝑝 → 0, as 𝑛 → ∞.

(36)

The desired result (35) follows from the statements above and
Theorem 12 immediately. The proof is completed.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The author is most grateful to the Editor Ciprian A. Tudor
and anonymous referee for careful reading of the paper
and valuable suggestions which helped in improving an
earlier version of this paper. This work was supported by
the National Natural Science Foundation of China (11201001,
11171001), the Natural Science Foundation of Anhui Province
(1308085QA03, 11040606M12, and 1208085QA03), the 211
Project of Anhui University, the Youth Science Research
Fund of Anhui University, Applied Teaching Model Cur-
riculum of Anhui University (XJYYXKC04), the Students
Science Research Training Program of Anhui University
(kyxl2013003 and KYXL2012007), and the Students Innova-
tive Training Project of Anhui University (201310357004).

References

[1] Z. D. Bai and P. E. Cheng, “Marcinkiewicz strong laws for linear
statistics,” Statistics & Probability Letters, vol. 46, no. 2, pp. 105–
112, 2000.

[2] S. H. Sung, “On the strong convergence for weighted sums of
random variables,” Statistical Papers, vol. 52, no. 2, pp. 447–454,
2011.

[3] G.-H. Cai, “Strong laws for weighted sums of NA random var-
iables,”Metrika, vol. 68, no. 3, pp. 323–331, 2008.

[4] B.-Y. Jing and H.-Y. Liang, “Strong limit theorems for weighted
sums of negatively associated random variables,” Journal of
Theoretical Probability, vol. 21, no. 4, pp. 890–909, 2008.

[5] X.-C. Zhou, C.-C. Tan, and J.-G. Lin, “On the strong laws for
weighted sums of 𝜌∗-mixing random variables,” Journal of
Inequalities and Applications, vol. 2011, Article ID 157816, 8
pages, 2011.

[6] X. J. Wang, S. H. Hu, and A. I. Volodin, “Strong limit theorems
for weighted sums of NOD sequence and exponential inequali-
ties,” Bulletin of the Korean Mathematical Society, vol. 48, no. 5,
pp. 923–938, 2011.

[7] X. J. Wang, S. H. Hu, and W. Z. Yang, “Complete convergence
for arrays of rowwise negatively orthant dependent random
variables,” Revista de la Real Academia de Ciencias Exactas,
Fı́sicas y Naturales A, vol. 106, no. 2, pp. 235–245, 2012.

[8] X. J. Wang, S. H. Hu, W. Z. Yang, and X. H. Wang, “On com-
plete convergence of weighted sums for arrays of rowwise
asymptotically almost negatively associated random variables,”
Abstract and Applied Analysis, vol. 2012, Article ID 315138, 15
pages, 2012.

[9] Q. Y.Wu andP. Y. Chen, “An improved result in almost sure cen-
tral limit theorem for self-normalized products of partial sums,”
Journal of Inequalities and Applications, vol. 2013, p. 129, 2013.

[10] X. F. Tang, “Strong convergence results for arrays of rowwise
pairwise NQD random variables,” Journal of Inequalities and
Applications, vol. 2013, p. 102, 2013.

[11] G.-H. Cai, “Strong laws for weighted sums of i.i.d. random
variables,” Communications of the Korean Mathematical Societ,
vol. 21, no. 4, pp. 771–778, 2006.

[12] X. J.Wang, S.H.Hu,W.Z. Yang, andY. Shen, “On complete con-
vergence for weighed sums of 𝜑-mixing random variables,”
Journal of Inequalities and Applications, vol. 2010, Article ID
372390, 13 pages, 2010.

[13] R. C. Bradley, “On the spectral density and asymptotic normal-
ity of weakly dependent random fields,” Journal of Theoretical
Probability, vol. 5, no. 2, pp. 355–373, 1992.
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