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Formation of unique ZnO nanoarrays utilizing photodynamic polymer, surface-relief grating structures, and unique electrostatic
layer-by-layer assembly as a simple and economical methodology was demonstrated. Atomic force microscope (AFM), scanning
electron microscopy (SEM), and energy-dispersive X-ray (EDAX) analysis were employed to characterize elemental composition
and morphology of the resulting ZnO nanostructures with self-ZnO layer. Optical behavior of the final product was studied by

UV-vis-NIR absorption and photoluminescence (PL) spectra.

1. Introduction

Since the large exciton binding energy of 60 mV and quan-
tum confinement effects [1] of low-dimensional nanostruc-
tures, zinc oxide (ZnO) has become an attractive candidate
for potential electronic, optoelectronic, electrochemical, and
electromechanical devices, such as ultraviolet (UV) lasers,
[2] light-emitting diodes (LED), [3] field emission devices,
[4, 5] solar cells, [6] and piezo-nanogenerators [7, 8]. With
changes in size and shape, unique electrical, mechanical,
chemical, and optical properties may be freshly introduced,
which are extensively believed to be the result of surface
and quantum confinement effects [1]. To further improve
its physical properties, substantial efforts have been devoted
to develop various methodologies to create uniform and
continuous one- (1D) or two-dimensional (2D) ZnO nanos-
tructures. In an effort to integrate the resulting ZnO arrays
into a more ordered fashion to enhance the performance of
the nanodevices, a variety of techniques, including nano-
lithographic techniques (e.g., electron beam lithography,
proximal probe patterning, and X-ray patterning) [9] and
several chemical methods (e.g., vapor-solid, vapor-liquid-
solid, and solution-solid) [10], have been employed. All these

methods are not suitable for large fabrication process due to
their exorbitant cost and complicated procedure. In contrast,
an unconventional method used in this study may be
much easier and economically more favorable, considering
it can offer a much higher throughput in practice for solar
energy conversion, light emission, and other promising areas.
Periodic 1D and 2D ZnO nanostructures that were created
simultaneously by self-assembly of the ZnO layers were
prepared easily using the electrostatic layer-by-layer (ELbL)
method by spin-coating, surface-relief grating (SRG) on the
deposited photodynamic polymer film, and finally simple
heat treatment. The alternating depositions of aqueous zinc
acetate solution utilizing ELbL and polyanions assembly gave
a good opportunity for facile fabrication of novel 1D and 2D
ZnO nanostructures with self ZnO layer within a few hours.

2. Experimental Procedure

The indium doped tin oxide- (ITO-) coated glass and
quartz substrates were used after cleaning by ultrasonication
with isopropanol. A photodynamic polymer, poly orange
3 (PDO3), was synthesized from the diglycidyl ether of
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F1GURE 1: (a) 3D AFM views of submicrostructured 1D and 2D SRGs fabricated by exposing PDO3 to Ar" ion laser interference pattern and
(b) 3D views of three bilayers of SPS/zinc acetate assembled in depressions on 1D and 2D SRG polymeric templates.

bisphenol A and disperse orange 3 as reported previously [11,
12]. 5wt% PDO3 was dissolved in 1,4-dioxane and filtered
through a 0.45 ym membrane to obtain a film with uniform
thickness. The spin-coated PDO3 films on ITO substrates
were then dried in a vacuum oven overnight at 60°C. 1D
and 2D Surface-Relief Gratings (SRGs) were formed on the
PDO3 films using an interference pattern of an argon ion*
laser beam at 514.5nm with an intensity of 100 mW/cm?.
7wt% of Zn-(CH3COO),-2H,0 purchased from Aldrich
was stirred vigorously in 20 mL of H,O for 2 hours to
obtain the zinc acetate solution. The concentration of the
used poly (4-styrene sulfonate) (SPS) solution was 0.1 wt%
with pH 1.0 for all subsequent polyanion layers. In the
assembly process, the SRG templates were quickly modified
as sulfonlyl groups by spin-coating the pH 1.0 SPS solution.
7 wt% zinc acetate solution was subsequently spin-coated on
the SPS surface-modified SRGs. This completed one cycle.
A deposition of one-bilayer assembly of the SPS/zinc acetate
was progressed in short time without additional drying
and rising steps. Thereafter, the process was repeated by

alternating the deposition of pH 1.0 SPS solution and 7 wt%
zinc acetate solution until the desired amount of zinc acetate
was deposited in the assembly. Three bilayer assembly of
the deposited SPS/zinc acetate was heat-treated at 500°C
for 2 hours to burn off the polymeric template and to
create well-defined ZnO nanostructures with self-ZnO layer.
Scheme 1 illustrates the stepwise procedure used to prepare
the nanostructured ZnO arrays with self-layer.

The samples were characterized by atomic force
microscopy (AFM), scanning electron microscope (SEM),
and an energy-dispersive X-ray (EDAX) analysis to study
their morphologies and elemental compositions. The UV-
vis-NIR spectrum was recorded at a scan rate of 240 nm/min.
Photoluminescence (PL) spectrum was measured at the
exciting wavelength of 345 nm.

3. Results/Discussion

Figure 1(a) shows 3D views of (a) 1D and 2D SRGs formed
on the photodynamic polymer films. 1D and 2D SRGs were
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FIGURE 2: SEM views of nanostructured 1D (a) and 2D (b) ZnO arrays created on self-ZnO layer by simple electrostatic Layer-by-Layer
spin-coating technique and pyrolyzing a three-bilayer assembly of SPS/zinc acetate on the individual 1D and 2D SRG templates.

used as polymeric templates to generate well-ordered ZnO
nanostructures. The sinusoidally modulated gratings were
used to fabricate a periodic array of 1D ZnO lines, while the
egg-crate-like SRG structures were used to fabricate periodic
arrays of 2D ZnO dots as shown in Figure 1(a). AFM height
profiles of both SRG patterns showed an average modulation
amplitude of about 210 and 200nm, respectively. The
periodicities of both gratings are approximately 1 ym. AFM
images in Figure 1(b) show 3D views of an individual three-
bilayer assembly of SPS/zinc acetate on both SRGs prepared
using sequential ELbL by a spin-coating. The thickness
of SPS/zinc acetate assembly can be controlled easily by
adjusting rpm of spin-coater. Figure 1(b) indicated that the
average thickness of SPS/zinc acetates ELbL on 1D SRG for
a three-bilayer assembly was decreased by 10% to about
120nm and that for 2D arrays was also reduced nearly by
40% to about 150 nm, respectively. Each cycle of a SPS/zinc
acetate deposition by ELbL spin-coating was successively
progressed for a three-bilayer assembly without additional
washing and drying. Finally, a three-bilayer assembly of
SPS/zinc acetate was dried at room temperature for an hour.
Dried assembly was then heated for 2 hours through several
steps (room temperature — 100°C — 300°C — 500°C) to

remove the SRG polymeric template and to crystallize Zinc
oxide.

Figure 2 summarizes typical SEM images of nanostruc-
tured 1D (a) and 2D (b) ZnO arrays created on ZnO
self-layer on the ITO substrate. Well-ordered 1D and 2D
ZnO arrays were formed as results of the sintering at
500°C for 2 hours in air condition as shown in Figure 2.
The line and dot arrays created from collection of ZnO
nanoparticles on self-layer show two distinctive shapes such
as long sand ridges (a) and sand dunes (b) contrasted with
various patterns fabricated by numerous techniques [13-17].
They also exhibit good uniformity and continuity within
nanostructured patterns after sintering, although used SRG
substrate is a microstructured polymeric template. Unique
ZnO sand ridges and dunes created on self-ZnO layers may
result from the difference of isoelectrical points between SPS
polyelectrolyte and zinc acetate layer stacked alternatively. It
is quite intriguing to note that zinc acetate layer was stacked
selectively and quickly into grooves or hollows without buffer
layer, SPS. However, when the buffer layer is present on top of
hydrophobic SRG, ZnO-self layer appeared after the sintering
process possibly due to adsorption of zinc acetate on the
slope. The deposited SPS (or zinc acetate) to the SRG (or
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Figure 3: (a) The EDAX spectrum of the 2D ZnO nanostructures shown in Figure 2 for element analysis, (b) UV-vis-NIR and (c)
photoluminescence (PL) spectra of nanostructured 2D ZnO arrays with self ZnO layer created on a quartz substrate; Exciting wavelength

for PL is 345 nm.

SPS) may provide more adhesive strength for complexation
(or charge interaction) with zinc acetate (or SPS) layer.
The resulting ZnO nanostructures have innumerable porous
structures over large area, which can provide a potential
advantage for solar cell and sensor applications.

Elemental composition and crystalline structure of ZnO
nanostructures well-patterned on self-layer were deter-
mined by energy-dispersive X-ray (EDAX) analysis and X-
ray diffraction (XRD). The EDAX spectrum of the ZnO
nanopatterns with self-layer in Figure 3(a) clearly shows the
Zn Ka X-ray line at 8.65 keV and O Ka X-ray line at 0.52 keV.
A very weak C Ka (0.282 keV) line compared with that of the
non-heat-treated sample is obtained from EDAX spectrum.
The crystallinity of the ZnO nanostructures was confirmed

by X-ray diffraction (XRD). In the small sample quantity,
three XRD patterns observed at around 26 = 31.80°, 34.60°,
and 36.12° correspond well to the diffractions from the
(100), (002), and (101) planes, respectively [18, 19]. The
results from EDAX and XRD indicated that the produced
patterns are composed of crystallized ZnO nanoparticles and
that no significant traces of the SRG polymeric template
remained after the sintering process. Other peaks revealed
that the existence of Na, Mg, Si, Sn, and Al come from ITO
substrate. UV-vis-NIR spectrum in Figure 3(b) shows the
abrupt absorption band or edge characteristic of nanostruc-
tured ZnO arrays with self-ZnO layer centered at around
357 nm, which is in good corresponding with our previously
work [17].
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ScHEME 1: Schematic procedure for creating nanostructured ZnO
arrays with self-ZnO layer using electrostatic Layer-by-Layer Tech-
nique by spin-coating.

The photoluminescence (PL) spectrum of ZnO nanos-
tructures after sintering at 500° C is shown in Figure 3(c). The
three emission peaks at 398, 422, and 484 nm in wavelength
were obtained from PL spectrum when excited at wavelength
of 345nm. The emission band occurred at around 398 nm
can be assigned to the near band-edge transition, which
is, namely, the recombination of free excitons through an
exciton-exciton collision process, of wide band gap ZnO
nanoparticles composed of the nanostructured ZnO arrays
[20], while the two emission bands observed at around
422 and 484nm result from the radial recombination of
a photogenerated hole with an electron that belongs to a
singly ionized oxygen vacancy [21] and the defect-induced
emission from ZnO [22-24].

4. Conclusion

A simple, cost- and time-effective approach to create periodic
nanostructured ZnO arrays onto self-layer over large areas
has been described. The unconventional method was carried
out using periodic microstructured polymeric templates,
modified ELbL spin-coating technique, and heat-treatment.
ZnO nanoarrays with self-layer are expected to have a wide
range of applications such as sensors, energy storages, and
solar cells. For instance, various fluorescence dyes may be
incorporated in the functionalized ZnO surface, and ZnO
nanoarrays with self-layer may be also used as a laser pump-
ing due to its attractive optical property. This methodology
can be readily applicable for creating nanopatterns with self-
layer in other metal oxides, metals, or novel organic materials
using common lithographic fabrication methods.
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