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Recursive algebraic construction of two infinite families of polynomials in n variables is proposed
as a uniform method applicable to every semisimple Lie group of rank n. Its result recognizes
Chebyshev polynomials of the first and second kind as the special case of the simple group of type
A1. The obtained not Laurent-type polynomials are equivalent to the partial cases of theMacdonald
symmetric polynomials. Recurrence relations are shown for the Lie groups of types A1, A2, A3, C2,
C3, G2, and B3 together with lowest polynomials.

1. Introduction

The majority of special functions and orthogonal polynomials introduced during the last dec-
ade are associated with Lie groups or their generalizations. In particular, special functions of
mathematical physics are in fact matrix elements of representations of Lie groups [1] and re-
cent multivariate generalizations of classical hypergeometric orthogonal polynomials are
based on root systems of simple Lie groups/algebras [2–9]. In this connection a number of el-
egant results in theory of these polynomials, such as explicit (determinantal) computation of
polynomials [10–12] and Pieri formulas [13, 14], were obtained, see also [15–17] and referen-
ces therein.

Our primary objective at this stage is to establish a constructive method for finding
orthogonal multivariate polynomials related to orbit functions of simple Lie groups of rank n,
indeed, for actually seeing them. As far as we deal with the functions invariant/skew-invari-
ant under the action of the corresponding Weyl group the obtained polynomials appear as
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building blocks in all multivariate polynomials associated with root systems. Unlike Gram-
Schmidt type orthogonalization of the monomial basis with respect to Haar measure [3, 7, 8]
or determinantal construction of polynomials [10–12]we make profit from decomposition of
products of Weyl group orbits and from basic properties of the characters of irreducible finite
dimensional representations.

Our method is purely algebraic and we propose three different ways to transform a C-
or S-orbit function into a polynomial. The first one substitutes for each multivariable ex-
ponential term in an orbit function a monomial of as many variables. In 1D this results in
Chebyshev polynomials written as Laurent polynomials with symmetrically placed positive
and negative powers of the variable; and in the case of A2 our results coincide with those
from [18].

The second transformation, the “truly trigonometric” form, is based on the fact that,
for many simple Lie algebras (see the list in (3.3) below), each C and S-orbit function consists
of pairs of exponential terms that add up to either cosine or sine. Hence such a function is a
sum of trigonometric terms (or a polynomial of one-dimensional Chebyshev polynomials).
For the Chebyshev polynomials we obtain in this way their trigonometric form. Note from
(3.3) that this method does not apply to the groups An for n > 1.

But this paper focuses on polynomials obtained by the third substitution of variables,
mimicking Weyl’s method for the construction of finite-dimensional representations from n

fundamental representations. Thus the C polynomials have n variables that are the C-orbit
functions, one for each fundamental weight ωj . This approach results in a simple recursive
construction that allows one to represent any orbit function/monomial symmetric function
in non-Laurent polynomial form.

In addition to the general approach and associated tools we present a lot of explicit
and practically useful data and discussions, namely, in Appendix A we compare the classical
Chebyshev polynomials (Dickson polynomials) and orbit functions ofA1 with their recursion
relations. Suitably normalized, the Chebyshev polynomials of the first and second kind
coincide with the C and S polynomials. A table of the polynomials of each kind is presented.
Appendices B, C, and D contain, respectively, the recursion relations for polynomials of the
Lie algebrasA2, C2, andG2. In Appendix E recursion relations forA3, B3, and C3 polynomials
of both kinds are listed together with useful tools for solving these recursion relations.

2. Preliminaries and Conventions

This section serves to fix notations and terminology, additional details can be found for ex-
ample in [19–26].

Let R
n be the Euclidean space spanned by the simple roots of a simple Lie group G.

The basis of the simple roots and the basis of fundamental weights are hereafter referred to
as the α-basis and ω-basis, respectively. Bases dual to α- and ω-bases are denoted by α̌- and
ω̌-bases. In addition we use {e1, . . . , en}, the orthonormal basis of R

n. The root lattice Q and
the weight lattice P of G are formed by all integer linear combinations of the α-basis and ω-
basis, respectively. In P we define the cone of dominant weights P+ and its subset of strictly
dominant weights P++.

HereafterW = W(G) is the Weyl group of size |Wλ|, andWλ is the orbit containing the
(dominant) point λ ∈ P+ ⊂ R

n. The fundamental region F(G) ⊂ R
n is the convex hull of the

vertices {0, (ω1/q1), . . . , (ωn/qn)}, where qj , j = 1, n are comarks of the highest root.
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Definition 2.1. The C-function Cλ(x) is defined as

Cλ(x) :=
∑

μ∈Wλ(G)

e2πi〈μ,x〉, x ∈ R
n, λ ∈ P+. (2.1)

Occasionally it is useful to scale up Cλ of nongeneric λ by the stabilizer of λ in W .

Definition 2.2. The S-function Sλ(x) is defined as

Sλ(x) :=
∑

μ∈Wλ(G)

(−1)p(μ)e2πi〈μ,x〉, x ∈ R
n, λ ∈ P++, (2.2)

where p(μ) is the number of elementary reflections necessary to obtain μ from λ.

In this paper, we always suppose that λ, μ ∈ P are given in ω-basis and x ∈ R
n is given

in α̌-basis, hence the orbit functions have the following forms:

Cλ(x) =
∑

μ∈Wλ

e2πi
∑n

j=1 μjxj =
∑

μ∈Wλ

n∏

j=1

e2πiμjxj ,

Sλ(x) =
∑

μ∈Wλ

(−1)p(μ)e2πi
∑n

j=1 μjxj =
∑

μ∈Wλ

(−1)p(μ)
n∏

j=1

e2πiμjxj .

(2.3)

There is a fundamental relation between the C- and S-orbit functions for simple Lie
group G of any type and rank, called the Weyl character formula:

χλ(x) =
Sλ+ρ(x)
Sρ(x)

=
∑

μ

mλ
μCμ(x), x ∈ R

n, λ, μ ∈ P+, ρ =
n∑

k=1

ωk. (2.4)

The positive integer mλ
μ is the Kostka number [27, 28].

The rank of the underlying semisimple Lie group/algebra is the number of variables of
the orbit functions. C and S functions are continuous and have continuous derivatives; they
are, respectively, symmetric and antisymmetric with respect to the (n−1)-dimensional bound-
ary of F [23–25]. Moreover, any pair of orbit functions from the same family is orthogonal on
the corresponding fundamental region [20], these families of functions are complete, and
Cλ(x)- and Sλ(x)-orbit functions are eigenfunctions of the n-dimensional Laplace operator.

3. Multivariate Orthogonal Polynomials Corresponding to
Orbit Functions

In this section we consider several transformations

T : R
n −→ C

n; (x1, . . . , xn) �−→ (X1, . . . , Xn), (3.1)

that represent the C(x)- and S(x)-orbit functions in polynomial form.
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It directly follows from the orthogonality of the orbit functions that such polynomials
are orthogonal on the domain F̃ with the weight function det−1(D(X)/D(x)), where F̃ is the
image of the fundamental region F under the transformation T.

(i) The first type of transformation is rather straightforward

Xj := e2πixj , xj ∈ R, j = 1, 2, . . . , n. (3.2)

Polynomial summands are products
∏n

j=1X
μj

j , where μj ∈ Z are components of the
orbit points relative to a suitable basis. Under this transformation orbit function, Cλ(x) and
Sλ(x), given by (2.3), become Laurent polynomials in n variables Xj , where j = {1, 2, . . . , n}.

The exponential substitution polynomials are complex-valued in general, admit neg-
ative powers, and have all their coefficients equal to one in C polynomials, and 1 or −1 in S

polynomials.
(ii) The W-orbits of the Lie groups

A1, Bn (n ≥ 3), Cn (n ≥ 2), D2n (n ≥ 2), E7, E8, F4, G2 (3.3)

have an additional property ±μ ∈ Wλ(L) for all μ ∈ Wλ(L), then the pair of corresponding
terms of the function of Wλ(L) can be combined so that Cλ(x) and Sλ(x) become linear com-
binations of cosines and sines:

e2πi〈μ,x〉 + e−2πi〈μ,x〉 = 2 cos
(
2π

〈
μ, x

〉) ∈ Cλ(x),

e2πi〈μ,x〉 − e−2πi〈μ,x〉 = 2i sin
(
2π

〈
μ, x

〉) ∈ Sλ(x),
(3.4)

that admits a truly trigonometric substitution of variables. Note that in the case of A1, this
is precisely the trigonometric substitution made for Chebyshev polynomials of the first and
second kind.

Remark 3.1. Chebyshev polynomials of one variable play crucial role for the orbit functions
of the above-mentioned Lie groups as far as they allow us to calculate the polynomial coeffi-
cients explicitly.

Really, as far as we suppose that λ are given in ω-basis and x is given in α̌-basis,
then, using common trigonometric identities, cosines and sines can be expressed through the
cosines and sines of 2πkxi, k ∈ N, i = 1, . . . , n. What immediately represents our orbit func-
tions as polynomials of Chebyshev polynomials of the first Tk(xi) and second Uk(xi) kind
with well-known formulas for coefficients.

(iii) The third transformation, which we propose here, works uniformly for simple
Lie algebras of all types. We choose C functions of the n fundamental weights as the n new
variables:

Xj := Xj(x) := Cωj (x), j = 1, 2, . . . , n, x ∈ R
n (3.5)
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completed by one more variable, the lowest S function,

S := Sρ(x), x ∈ R
n, ρ = (1, 1, . . . , 1) =

n∑

m=1

ωm. (3.6)

The recursive construction of C-polynomials begins by multiplying the variables Xj and C-
functions and decomposing their products into sums of C-polynomials. A judicious choice of
the sequence of products allows one to find ever higher degree C-polynomials.

First, generic recursion relations are found as the decomposition of products
XjC(a1,a2,...,an) with “sufficiently large” a1, a2, . . . , an (i.e., all C functions in the decomposition
should correspond to generic points). Then the rest of necessary recursions (“additional”) are
constructed. An efficient way to find the decompositions is to work with products of Weyl
group orbits, rather than with orbit functions. Their decomposition has been studied, and
many examples have been described in [29]. Note that these recursion relations are always
linear and the corresponding matrix is triangular. The procedure is exemplified in Appendi-
ces A–E for Simple Lie groups of ranks 1, 2, and 3.

Results of the recursive procedures can be summarized as follows (see [30] for the
proof).

Proposition 3.2. Any irreducibleC-function and any character χλ of a simple Lie groupG can be rep-
resented as a polynomial of C-functions of the fundamental weights ω1, . . . , ωn, that is, a polynomial
in the variables X1, X2, . . . , Xn.

The recursive construction of S-polynomials starts by multiplying the variables S and
Xj and decomposing their products into sums of S polynomials. However, the higher the
rank of the underlying Lie algebra, the recursive procedure for S polynomials becomes more
laborious, what caused by the presence of negative terms in S polynomials. Fortunately, there
is an alternative to the recursive procedure. Once the C polynomials have been calculated,
they can be used in Weyl character formula for finding S polynomials as sums of C polyno-
mials multiplied by the variable S. In practice, polynomials Sλ/S should be used instead of
Sλ.

Remark 3.3. There are two easy and practical checks on recursion relations applicable to all
simple Lie algebras. The first one is the equality of numbers of exponential terms in S- or C-
functions on both sides of a recursion relation (the numbers of exponential terms are calcu-
lated using the sizes of Weyl group orbits). The second check is the equality of congruence
numbers.

Remark 3.4. Polynomial forms of C and S functions introduced in this section are partial cases
of the Macdonald symmetric polynomials.

All C- and S-orthogonal polynomials (and, therefore, the Macdonald polynomials)
inherit from orbit functions important discretization properties. A uniform discretization of
these polynomials follows from their invariance with respect to the affine Weyl group of G
and from the well-established discretization of the fundamental region F(G) [20]. One more
advantage is the cubature formula introduced in [31].

For the application reason in Appendices A–E we present recurrence relations and
lowest polynomials for the simple Lie groupsA1,A2, C2, G2,A3, B3, and C3. All cases contain
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both generic and additional recursions or, instead of cumbersome additional recursions, we
present all their solutions in form of lowest polynomials. The skipped explicit formulas are
available in [30, 32].

The content of Appendices A–E is also motivated by the fact that calculation of addi-
tional recurrences is not suitable for complete computer automatization. However, as soon
as additional recurrences (or their solutions)were obtained, all other calculations concerning
polynomials and their applications become very algorithmic and can easily be done by com-
puter algebra packages for Lie theory.

4. Conclusion

There is an alternative way to our construction of the polynomials in all but in the An cases.
The crucial substitution (3.5) can be replaced by

Xk := χωk(x), k = 1, 2, . . . , n. (4.1)

In (4.1) the variables are characters of irreducible representations with highest weights given
as the fundamental weights, while in (3.5) the variables are C functions of the fundamental
weights. Only for An the two coincide, Cωk(x) = χωk(x) for all k = 1, . . . , n and for all x ∈ R

n.
Already for the rank two cases other than A2 there is a difference. Indeed, (4.1) reads as
follows:

C2: X1 = χω1(x) = Cω1(x), X2 = χω2(x) = Cω2(x) + 2,

G2: X1 = χω1(x) = Cω1(x) + Cω2(x) + 2, X2 = χω2(x) = Cω2(x) + 1.
(4.2)

Since products of characters decompose into their sum, the recursive construction can pro-
ceed, but the polynomials will be different.

For simplicity of formulation, we insisted throughout this paper that the underlying
Lie group be simple. The extension to compact semisimple Lie groups and their Lie algebras is
straightforward. Thus, orbit functions are products of orbit functions of simple constituents,
and different types of orbit functions can be mixed.

Polynomials formed from other orbit functions (E-, E−-, E+-, S+-, S−-, C+-, C−-func-
tions) by the same substitution of variables should be equally interesting once n > 1. These
functions have been studied in [20, 25, 26, 33].

Appendices

A. Orbit Functions of A1, Their Polynomial Forms,
and Chebyshev Polynomials

A number of multivariate generalizations of classical Chebyshev polynomials are available in
the literature [34–39]; the aim of this section is to show in all details how Chebyshev polyno-
mials appear as particular case of the multivariate polynomials proposed in this paper. First
we recall that well-known classical Chebyshev polynomials can be obtained independently
using only the properties of C- and S-orbit functions of the Lie group A1, see [40] for details.
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The C-polynomials generated by our approach are naturally normalized in a different way
than the classical polynomials (they coincide with the form of Dickson polynomials).

The orbit functions of A1 are of two types:

Cm(x) = e2πimx + e−2πimx = 2 cos(2πmx), x ∈ R, m ∈ Z
>0,

Sm(x) = e2πimx − e−2πimx = 2i sin(2πmx), x ∈ R, m ∈ Z
>0.

(A.1)

We introduce new variables X and S as follows:

X := C1(x) = e2πix + e−2πix = 2 cos(2πx),

S := S1(x) = e2πix − e−2πix = 2i sin(2πx).
(A.2)

Polynomials can now be constructed recursively in the degrees of X and S by calculating the
decompositions of products of appropriate orbit functions. “Generic” recursion relations are
those where one of the first degree polynomials,X or S, multiplies the generic polynomialCm

or Sm, that is, m ≥ 1. Omitting the dependence on x from the symbols, we have the generic
recursion relations

XCm = Cm+1 + Cm−1, SCm = Sm+1 − Sm−1,
XSm = Sm+1 + Sm−1, SSm = Cm+1 − Cm−1,

m � 1. (A.3)

When solving recursion relations for C polynomials, we need to start from the lowest
ones; several results are in Table 1. Hence we conclude that Cm = 2Tm, form = 0, 1, . . ..

The character χm(x) of an irreducible representation ofA1 of dimensionm+1 is known
explicitly for all m � 0. There are two ways to write the character: as the ratio of S-functions,
and as the sum of C-functions. Explicitly, that is

Sm(X) = χm(x) =
Sm+1(x)
S(x)

= Cm(x) + Cm−2(x) + · · · +
⎧
⎨

⎩
C2(x) + C0 if m even,

C3(x) + C1(x) if m odd.
(A.4)

Note that (A.4) is the Chebyshev polynomial of the second kindUm(x).

Remark A.1. The main argument in favor of our normalization of Chebyshev polynomials is
that polynomials Cm from Table 1 are Dickson polynomials (it is well known that they are
equivalent to Chebyshev polynomials over the complex numbers). It is easy to prove (see
e.g., [40]) that Weyl group of An is equivalent to Sn+1, therefore it is natural to consider
multivariate C-polynomials of An as n-dimensional generalizations of Dickson polynomials
(as permutation polynomials). Also our form of Dickson-Chebyshev polynomials makes
them the lowest special case of (2.4) without additional adjustments and it appears more
“natural” because, for example, the equality C2

2 = C4 + 2 would not hold for T2 and T4.
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Table 1: The irreducible C and S polynomials of A1 of degrees up to 8.

C polynomials S polynomials
# = 0 # = 0
C2 X2 − 2 S0 1
C4 X4 − 4X2 + 2 S2 X2 − 1
C6 X6 − 6X4 + 9X2 − 2 S4 X4 − 3X2 + 1
C8 X8 − 8X6 + 20X4 − 16X2 + 2 S6 X6 − 5X4 + 6X2 − 1
# = 1 # = 1
C1 X S1 X

C3 X3 − 3X S3 X3 − 2X
C5 X5 − 5X3 + 5X S5 X5 − 4X3 + 3X
C7 X7 − 7X5 + 14X3 − 7X S7 X7 − 6X5 + 10X3 − 4X

B. Recursion Relations for A2 Orbit Functions and Polynomials

The variables of the A2 polynomials are the C functions of the lowest dominant weights
ω1 = (1, 0) and ω2 = (0, 1):

X1 := C(1,0)(x1, x2), X2 := C(0,1)(x1, x2), S := S(1,1)(x1, x2). (B.1)

We omit writing (x1, x2) at the symbols of orbit functions for simplicity of notations.
In addition to the obvious polynomials X1, X2, X2

1, X1X2, and X2
2, we recursively find

the rest of the A2-polynomials. The degree of the polynomial C(a,b) equals a + b. The degree
of S(a,b) is also a + b provided ab /= 0, otherwise the S-polynomials are zero.

Due to the A2 outer automorphism, polynomials C(a,b) and C(b,a) are related by the
interchange of variables X1 ↔ X2 (i.e. C(a,b)(X1, X2) = C(b,a)(X2, X1)).

In general, each term in an irreducible polynomial, equivalently each weight of an
orbit, must belong to the same congruence class specified by the congruence number #. For
A2-weight (a, b), we have

#(a, b) = (a + 2b) mod 3. (B.2)

Hence, irreducible orbit functions have a well-defined value of #. For A2-orbit functions, we
have #(C(a,b)) = #(S(a,b)) = (a + 2b) mod 3. Consequently, there are three classes of polyno-
mials corresponding to # = 0, 1, 2. During multiplication, the congruence numbers add up
mod3. A product of irreducible orbits decomposes into the sum of orbits belonging to the
same congruence class. The sizes of the irreducible orbits of W(A2) are found in [30]. The
dimension d(a,b) of the representation of A2 with the highest weight (a, b) is given by d(a,b) =
(1/2)(a + 1)(b + 1)(a + b + 2).

B.1. Recursion Relations for C-Function Polynomials of A2

There are two 4-term generic recursion relations for C functions. They are obtained as the
decomposition of the products of X and Y , each being a sum of three exponential functions,
with a generic C-function which is the sum of |W(A2)| = 6 exponential terms,
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X1C(a,b) = C(a+1,b) + C(a−1,b+1) + C(a,b−1), a, b � 2,

X2C(a,b) = C(a,b+1) + C(a+1,b−1) + C(a−1,b), a, b � 2.
(B.3)

Before generic recursion relations can be used, the special recursion relations for particular
values a, b ∈ {0, 1} need to be solved recursively starting from the lowest ones:

X2
1 = C(2,0) + 2X2, X2

2 = C(0,2) + 2X1, X1X2 = C(1,1) + 3,

X1C(1,1) = C(2,1) + 2C(0,2) + 2X1, X2C(1,1) = C(1,2) + 2C(2,0) + 2X2,
(B.4)

for a � 2:

X1C(a,1) = C(a+1,1) + C(a−1,2) + 2C(a,0), X2C(a,1) = C(a,2) + 2C(a+1,0) + C(a−1,1),

X1C(a,0) = C(a+1,0) + C(a−1,1), X2C(a,0) = C(a,1) + C(a−1,0),
(B.5)

for b � 2:

X1C(1,b) = C(2,b) + 2C(0,b+1) + C(1,b−1), X2C(1,b) = C(1,b+1) + C(2,b−1) + 2C(0,b),

X1C(0,b) = C(1,b) + C(0,b−1), X2C(0,b) = C(0,b+1) + C(1,b−1).
(B.6)

Using the symmetry of orbit functions with respect to the permutation of the components of
dominant weights, we obtain analogous polynomials C(a,0) and C(a,1) for all a ∈ N. Then the
4-term special recursion relations are solved yielding C(2,b) and C(a,2) for all a, b ∈ N. After
that, the generic recursion relations should be used.

B.2. The Character of A2

In the A2 case the general formula (2.4) is specialized

S(a,b)(X1, X2) = χ(a,b)
(
x, y

)
=

S(a+1,b+1)
(
x, y

)

S(1,1)
(
x, y

) = C(a,b)
(
x, y

)
+
∑

λ

mλCλ

(
x, y

)
. (B.7)

The summation extends over the dominant weights that have positive multiplicities mλ in
the case of χ(a,b). The coefficients (dominant weight multiplicities) are tabulated in [27] for
the 50 first χ(a,b) in each congruence class of A2. The first few characters for the congruence
class # = 0 are

χ(0,0) = C(0,0) = 1,

χ(1,1) = C(1,1) + 2C(0,0),

χ(3,0) = C(3,0) + C(1,1) + C(0,0),

χ(0,3) = C(0,3) + C(1,1) + C(0,0),
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χ(2,2) = C(2,2) + C(0,3) + C(3,0) + 2C(1,1) + 3C(0,0),

χ(1,4) = C(1,4) + C(2,2) + 2C(0,3) + C(3,0) + 2C(1,1) + 2C(0,0),

χ(3,3) = C(3,3) + C(4,1) + C(1,4) + 2C(2,2) + 2C(0,3) + 2C(3,0) + 3C(1,1) + 4C(0,0),

χ(6,0) = C(6,0) + C(4,1) + C(2,2) + C(0,3) + C(3,0) + C(1,1) + C(0,0).

(B.8)

The equalities must satisfy two relatively simple conditions: (i) the dominant weights on both
sidesmust have the same congruence number (B.2), and (ii) the number of exponential terms
in a character χ(a,b) is known to be the dimension of the irreducible representation (a, b).
Therefore, the sizes of the orbit functions on the right side have to add up to the dimension.

For # = 1:

χ(1,0) = C(1,0),

χ(0,2) = C(0,2) + C(1,0),

χ(2,1) = C(2,1) + C(0,2) + 2C(1,0),

χ(1,3) = C(1,3) + C(2,1) + 2C(0,2) + 2C(1,0),

χ(4,0) = C(4,0) + C(2,1) + C(0,2) + C(1,0),

χ(0,5) = C(0,5) + C(1,3) + C(2,1) + C(0,2) + C(1,0).

(B.9)

For # = 2, it suffices to interchange the component of all dominant weights in the
equalities for # = 1. Thus no independent calculation is needed, see Table 2 for the solution.

C. Recursion Relations for C2 Orbit Functions

There are two congruence classes of C2 orbit functions/polynomials. For C2 weight (a, b)
(dominant or not), we have

#(a, b) = a mod 2. (C.1)

The dimension d(a,b) of an irreducible representation of C2 with the highest weight (a, b) is
given by

d(a,b) =
1
6
(a + 1)(b + 1)(2a + b + 3)(a + b + 2). (C.2)

In multiplying the polynomials, congruence numbers add up mod 2. Character in the
case of C2 is given by (2.4), where the C and S functions are those of C2, as are the coefficients
mλ (also tabulated in [27]).
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Table 2: The irreducible C- and S-polynomials ofA2 of degree up to 4. From any polynomial C(a,b) or S(a,b)
we obtain C(b,a) or S(b,a), respectively, by interchanging X1 and X2.

C polynomials S polynomials
# = 0 # = 0
C(1,1) X1X2 − 3 S(1,1) X1X2 − 1
C(3,0) X3

1 − 3X1X2 + 3 S(0,3) X3
2 − 2X1X2 + 1

C(2,2) X2
1X

2
2 − 2X3

1 − 2X3
2 + 4X1X2 − 3 S(2,2) X2

1X
2
2 −X3

1 −X3
2

# = 1 # = 1
C(1,0) X1 S(1,0) X1

C(0,2) X2
2 − 2X1 S(0,2) X2

2 −X1

C(2,1) X2
1X2 − 2X2

2 −X1 S(2,1) X2
1X2 −X2

2 −X1

C(1,3) X1X
3
2 − 3X2

1X2 −X2
2 + 5X1 S(1,3) X1X

3
2 − 2X2

1X2 −X2
2 + 2X2

C(4,0) X4
1 − 4X2

1X2 + 2X2
2 + 4X1 S(4,0) X4

1 − 3X2
1X2 +X2

2 +X1 +X2

We denote the variables of the C2-polynomials by

X1 := C(1,0)(x, y), X2 := C(0,1)(x, y), and S := S(1,1)(x, y), S(a,b)(X1, X2) = χ(a,b)(x, y)
(C.3)

often omitting (x, y) from the symbols. The variable S cannot be built out of X1 and X2.
Although the variables are denoted by the same symbols as in the case of A2 (and also G2

below), they are very different. Thus X1 and X2 contain 4 exponential terms and S contains 8
terms. The congruence number # of X1 and S is 1, while that of X2 is 0.

C.1. Recursion Relations for C Functions of C2

The two generic recursion relations for C-functions of C2 are

X1C(a,b) = C(a+1,b) + C(a−1,b+1) + C(a+1,b−1) + C(a−1,b), a, b � 2,

X2C(a,b) = C(a,b+1) + C(a+2,b−1) + C(a−2,b+1) + C(a,b−1), a � 3, b � 2.
(C.4)

The special recursion relations for C-functions involving low values of a and b have to be
solved first starting from the lowest ones:

X1C(a,1) = C(a+1,1) + C(a−1,2) + 2C(a+1,0) + C(a−1,1), a � 2,

X1C(a,0) = C(a+1,0) + C(a−1,1) + C(a−1,0), a � 2,

X1C(1,b) = C(2,b) + 2C(0,b+1) + C(2,b−1) + 2C(0,b), b � 2,

X1C(0,b) = C(1,b) + C(1,b−1), b � 2,

X1C(1,1) = C(2,1) + 2C(0,2) + 2C(2,0) + 2X2,

X1X2 = C(1,1) + 2X1; X2
1 = C(2,0) + 2X2 + 4,
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X2C(a,1) = C(a,2) + 2C(a+2,0) + C(a−2,2) + 2C(a,0), a � 3,

X2C(a,0) = C(a,1) + C(a−2,1), a � 3,

X2C(2,b) = C(2,b+1) + C(4,b−1) + 2C(0,b+1) + C(2,b−1), b � 2,

X2C(1,b) = C(1,b+1) + C(3,b−1) + C(1,b−1) + C(1,b), b � 2,

X2C(0,b) = C(0,b+1) + C(2,b−1) + C(0,b−1), b � 2,

X2C(2,1) = C(2,2) + 2C(4,0) + C(0,4) + 2C(0,2) + 2C(2,0),

X2C(1,1) = C(1,2) + 2C(3,0) + C(1,1) + 2X1,

X2C(2,0) = C(2,1) + 2X2; X2
2 = C(0,2) + 2C(2,0) + 4.

(C.5)

The 3- and 4-term recursion relations are solved independently, giving us C(0,b), C(a,0),
C(1,b), and C(a,1) for all a and b, for example, see Table 3.

C.2. Recursion Relations for S Functions of C2

The generic relations for S functions are readily obtained from those of C functions by
replacing C by S, and by making appropriate sign changes.

All C functions of C2 are real valued. Here are a few examples of C2 characters:

# = 0:

χ(0,0) = C(0,0) = 1,

χ(0,1) = 1 + C(0,1) = 1 +X2,

χ(2,0) = 2 +X2 + C(2,0),

χ(0,2) = 2 +X2 + C(2,0) + C(0,2),

χ(2,1) = 3 + 3X2 + 2C(2,0) + C(0,2) + C(2,1),

χ(0,3) = 2 + 2X2 + C(2,0) + C(0,2) + C(2,1) + C(0,3),

χ(4,0) = 3 + 2X2 + 2C(2,0) + C(0,2) + C(2,1) + C(4,0),

χ(2,2) = 5 + 4X2 + 4C(2,0) + 3C(0,2) + 2C(2,1) + C(0,3) + C(4,0) + C(2,2),

# = 1:

χ(1,0) = C(1,0) = X1,

χ(1,1) = 2X1 + C(1,1),
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χ(3,0) = 2X1 + C(1,1) + C(3,0),

χ(1,2) = 3X1 + 2C(1,1) + C(3,0) + C(1,2),

χ(3,1) = 4X1 + 3C(1,1) + 2C(3,0) + C(1,2) + C(3,1),

χ(1,3) = 4X1 + 3C(1,1) + 2C(3,0) + 2C(1,2) + C(3,1) + C(1,3).

(C.6)

Using these characters and Table 3, we can calculate all irreducible S polynomials of
degree up to four with respect to the variables X1 and X2, see Table 4. Note that χ(0,4) yields
the polynomial of order five.

D. Recursion Relations for G2 Orbit Functions

AllG2 weights fall into the same congruence class # = 0. Thus there are no congruence classes
to distinguish in G2. The variables are the orbit functions of the two fundamental weights:

X1 := C(1,0)(x, y), X2 := C(0,1)(x, y), S = S(1,1)(x, y), S(a,b)(X1, X2) = χ(a,b)(x, y).
(D.1)

D.1. Recursion Relations for C Functions of G2

There are two generic recursion relations for C polynomials of G2, each containing one prod-
uct term and six C polynomials.

For a � 3, b � 4:

X1C(a,b) = C(a+1,b) + C(a−1,b+3) + C(a+2,b−3) + C(a−2,b+3) + C(a+1,b−3) + C(a−1,b).

For a � 2, b � 3:

X2C(a,b) = C(a,b+1) + C(a+1,b−1) + C(a−1,b+2) + C(a+1,b−2) + C(a−1,b+1) + C(a,b−1).

(D.2)

Specializing the first of the generic relations to either a ∈ {0, 1, 2} or b ∈ {0, 1, 2, 3}, we
have

X1C(2,b) = C(3,b) + C(1,b+3) + C(4,b−3) + 2C(0,b+3) + C(3,b−3) + C(1,b),

X1C(1,b) = C(2,b) + 2C(0,b+3) + C(3,b−3) + C(2,b−3) + C(1,b) + 2C(0,b),

X1C(0,b) = C(1,b) + C(2,b−3) + C(1,b−3),

X1C(a,3) = C(a+1,3) + C(a−1,6) + 2C(a+2,0) + C(a−2,6) + 2C(a+1,0) + C(a−1,3),

X1C(a,2) = C(a+1,2) + C(a−1,5) + C(a+1,1) + C(a−2,5) + C(a,1) + C(a−1,2),

X1C(a,1) = C(a+1,1) + C(a−1,4) + C(a−2,4) + C(a−1,1) + C(a,2) + C(a−1,2),
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X1C(a,0) = C(a+1,0) + C(a−1,3) + C(a−2,3) + C(a−1,0),

X1C(2,3) = C(3,3) + C(1,6) + 2C(4,0) + 2C(0,6) + 2C(3,0) + C(1,3),

X1C(2,2) = C(3,2) + C(1,5) + C(0,5) + C(1,2) + C(2,1) + C(3,1),

X1C(2,1) = C(3,1) + C(1,4) + 2C(0,4) + C(1,1) + C(2,2) + C(1,2),

X1C(2,0) = C(3,0) + C(1,3) + 2C(0,3) +X1,

X1C(1,3) = C(2,3) + 2C(0,6) + 2C(3,0) + 2C(2,0) + C(1,3) + 2C(0,3),

X1C(1,2) = C(2,2) + 2C(0,5) + C(1,2) + 2C(0,2) + C(2,1) + C(1,1),

X1C(1,1) = C(2,1) + 2C(0,4) + C(1,2) + 2C(0,2) + C(1,1) + 2X2,

X1C(0,3) = C(1,3) + 2C(2,0) + 2X1,

X1C(0,2) = C(1,2) + C(1,1) + 2X2,

X1X1 = C(2,0) + 2C(0,3) + 2X1 + 6,

X1X2 = C(1,1) + 2C(0,2) + 2X2.

(D.3)

Specializing the second of the generic relations to either a ∈ {0, 1} or b ∈ {0, 1, 2}, we
have

X2C(1,b) = C(1,b+1) + C(2,b−1) + 2C(0,b+2) + C(2,b−2) + 2C(0,b+1) + C(1,b−1),

X2C(0,b) = C(0,b+1) + C(1,b−1) + C(1,b−2) + C(0,b−1),

X2C(a,1) = C(a,2) + 2C(a+1,0) + C(a−1,3) + C(a−1,2) + 2C(a,0) + C(a,1),

X2C(a,0) = C(a,1) + C(a−1,2) + C(a−1,1),

X2C(1,2) = C(1,3) + C(2,1) + 2C(0,4) + 2C(0,3) + C(1,1) + 2C(2,0),

X2C(1,1) = C(1,2) + 2C(2,0) + 2C(0,3) + 2C(0,2) + C(1,1) + 2X1,

X2C(0,2) = C(0,3) + C(1,1) + 2X1 +X2,

X2X2 = C(0,2) + 2X1 + 2X2 + 6.

(D.4)

Remark D.1. It can be seen from Table 5 that order of C(a,b) polynomial sometimes exceeds
a + b.
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Table 3: The irreducible C polynomials of C2 of degree up to 4.

C polynomials
# = 0
C(0,1) X2

C(2,0) X2
1 − 2X2 − 4

C(2,1) X2
1X2 − 2X2

2 − 6X2

C(4,0) 4 − 4X2
1 +X4

1 + 8X2 − 4X2
1X2 + 2X2

2

C(0,2) 4 − 2X2
1 + 4X2 +X2

2

C(0,3) 9X2 − 3X2
1X2 + 6X2

2 +X3
2

C(2,2) −8 + 10X2
1 − 2X4

1 − 20X2 + 8X2
1X2 − 12X2

2 +X2
1X

2
2 − 2X3

2

C(0,4) 4 − 8X2
1 + 2X4

1 + 16X2 − 8X2
1X2 + 20X2

2 − 4X2
1X

2
2 + 8X3

2 +X4
2

# = 1
C(1,0) X1

C(1,1) X1X2 − 2X1

C(3,0) X3
1 − 3X1X2 − 3X1

C(3,1) 2X1 − 4X1X2 +X3
1X2 − 3X1X

2
2

C(1,2) 6X1 − 2X3
1 + 3X1X2 +X1X

2
2

C(1,3) −6X1 + 2X3
1 + 6X1X2 − 3X3

1X2 + 5X1X
2
2 +X1X

3
2

Table 4: The irreducible S polynomials of C2 of degree up to 4.

S polynomials
# = 0
S(0,1) 1 +X2

S(2,0) −2 +X2
1 −X2

S(0,2) 2 −X2
1 + 3X2 +X2

2

S(2,1) −1 − 3X2 +X2
1X2 −X2

2

S(0,3) 2 −X2
1 + 7X2 − 2X2

1X2 + 5X2
2 +X3

2

S(4,0) 3 − 4X2
1 +X4

1 + 4X2 − 3X2
1X2 +X2

2

S(2,2) −3 + 4X2
1 −X4

1 − 7X2 + 3X2
1X2 − 5X2

2 +X2
1X

2
2 −X3

2

# = 1
S(1,0) X1

S(1,1) X1X2

S(3,0) −3X1 +X3
1 − 2X1X2

S(1,2) 2X1 −X3
1 + 2X1X2 +X1X

2
2

S(3,1) −4X1X2 +X3
1X2 − 2X1X

2
2

S(1,3) 5X1X2 − 2X3
1X2 + 4X1X

2
2 +X1X

3
2

D.2. Recursion Relations for S Functions of G2

Generic recursion relations for S polynomials differ very little from those for C polynomials.

For a � 3, b � 4:

X1S(a,b) = S(a+1,b) + S(a−1,b+3) + S(a+2,b−3) + S(a−2,b+3) + S(a+1,b−3) + S(a−1,b).
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For a � 2, b � 3:

X2S(a,b) = S(a,b+1) + S(a+1,b−1) + S(a−1,b+2) + S(a+1,b−2) + S(a−1,b+1) + S(a,b−1).

(D.5)

The S polynomials need not be calculated independently. They can be read off the
tables [27] as the characters of G2 representations, see Table 6.

Here are all G2-characters χ(a,b) with a + b � 3:

χ(1,0) = 1 + C(1,0) = 1 +X1,

χ(0,1) = 2 + C(1,0) + C(0,1) = 2 +X1 +X2,

χ(2,0) = 3 + 2X1 +X2 + C(2,0),

χ(1,1) = 4 + 4X1 + 2X2 + 2C(2,0) + C(1,1),

χ(3,0) = 5 + 4X1 + 3X2 + 2C(2,0) + C(3,0),

χ(0,2) = 5 + 3X1 + 3X2 + 2C(2,0) + C(1,1) + C(3,0) + C(0,2),

χ(2,1) = 9 + 8X1 + 6X2 + 5C(2,0) + 3C(1,1) + 2C(3,0) + C(0,2) + C(2,1),

χ(1,2) = 10 + 10X1 + 7X2 + 7C(2,0) + 5C(1,1) + 3C(3,0) + 3C(3,0) + 2C(0,2) + 2C(2,1) + C(4,0) + C(1,2),

χ(0,3) = 9 + 7X1 + 7X2 + 5C(2,0) + 4C(1,1) + 4C(3,0) + 3C(0,2) + 2C(1,1) + C(4,0) + C(1,2),

+ C(3,1) + C(0,3).

(D.6)

E. Recursion Relations for Lie Algebras of Rank 3

E.1. Recursion Relations for C-Functions of A3

There are 4 congruence classes of A3 defined by

#(a, b, c) = a + 2b + 3c mod 4. (E.1)

The variables of the A3 polynomials are chosen to be

X1 := C(1,0,0)(x1, x2, x3), X2 := C(0,1,0)(x1, x2, x3),

X3 := C(0,0,1)(x1, x2, x3) and S(a,b,c)(X1, X2, X3) = χ(a,b,c)
(
x, y, z

)
.

(E.2)
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Table 5: The irreducible C(a,b) polynomials of G2.

C polynomials

C(1,0) X1

C(0,1) X2

C(0,2) X2
2 − 2X1 − 2X2 − 6

C(1,1) X1X2 − 2X2
2 + 4X1 + 2X2 + 12

C(0,3) X3
2 − 3X1X2 − 6X1 − 9X2 − 12

C(2,0) X2
1 − 2X3

2 + 6X1X2 + 10X1 + 18X2 + 18

C(1,2) X1X2 − 2X2
1 − 3X1X2 + 2X2

2 − 10X1 − 4X2 − 12

C(2,1) X2
1X2 − 2X4

2 + 5X1X
2
2 + 2X2

1 + 12X1X2 + 18X2
2 + 6X1 + 20X2

C(1,3) X1X
3
2 − 3X2

1X2 − 8X2
1 + 4X3

2 − 21X1X2 − 34X1 − 36X2 − 36

C(3,0) X3
1 − 3X1X

3
2 + 9X2

1X2 + 18X2
1 − 6X3

2 + 45X1X2 + 63X1 + 54X2 + 60

C(2,2) X2
1X

2
2−2X5

2−2X3
1+10X1X

3
2−14X2

1X2+2X4
2+6X1X

2
2−30X2

1+30X
3
2−84X1X2−108X1−124X2−108

C(3,1)
X3

1X2 − 3X1X
4
2 + 8X2

1X
2
2 + 2X5

2 + 2X3
1 − 10X1X

3
2 + 31X2

1X2 − 6X4
2 + 34X1X

2
2 + 28X2

1 − 30X3
2 +

135X1X2 + 36X2
2 + 102X1 + 164X2 + 108

C(2,3)
X2

1X
3
2 − 2X6

2 − 3X3
1X2 + 12X1X

4
2 − 18X2

1X
2
2 − 6X3

1 + 21X1X
3
2 − 72X2

1X2 + 36X4
2 − 108X1X

2
2 −

64X2
1 + 38X3

2 − 303X1X2 − 162X2
2 − 196X1 − 342X2 − 180

C(3,2)
X3

1X
2
2 − 3X1X

5
2 − 2X4

1 + 15X2
1X

3
2 − 20X3

1X2 + 5X1X
4
2 + 4X2

1X
2
2 − 6X5

2 − 44X3
1 + 75X1X

3
2 −

175X2
1X2 + 10X4

2 − 13X1X
2
2 − 238X2

1 + 90X3
2 − 480X1X2 − 34X2

2 − 484X1 − 418X2 − 336

Table 6: The irreducible S(a,b) polynomials of G2 with a + b � 5.

S polynomials
S(0,1) X2 + 1
S(1,0) X1 +X2 + 2
S(0,2) X2

2 −X1 − 3
S(1,1) X1X2 + 2X1 + 2X2 + 4
S(2,0) X2

1 −X3
2 + 4X1X2 + 7X1 + 10X2 + 11

S(1,2) X1X
2
2 −X2

1 +X2
2 − 4X1 − 3

S(2,1) X2
1X2 −X4

2 + 3X1X
2
2 + 2X2

1 −X3
2 + 10X1X2 + 9X2

2 + 9X1 + 19X2 + 10
S(2,2) X2

1X
2
2 −X5

2 −X3
1 + 4X1X

3
2 − 3X2

1X2 + 6X1X
2
2 − 9X2

1 + 12X3
2 − 18X1X2 + 9X2

2 − 27X1 − 27X2 − 27

For C functions the generic recursion relations are the following ones, where we
assume a, b, c � 2:

X1C(a,b,c) = C(a+1,b,c) + C(a−1,b+1,c) + C(a,b−1,c+1) + C(a,b,c−1),

X2C(a,b,c) = C(a,b+1,c) + C(a+1,b−1,c+1) + C(a−1,b,c+1) + C(a+1,b,c−1) + C(a−1,b+1,c−1) + C(a,b−1,c),

X3C(a,b,c) = C(a,b,c+1) + C(a,b+1,c−1) + C(a+1,b−1,c) + C(a−1,b,c).

(E.3)

Note that the first and the third relations are easily obtained from each other by interchanging
the first and third component of all dominant weights. Thus X1 ↔ X3 and (a, b, c) ↔
(c, b, a).
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Table 7: The irreducible C polynomials and S polynomials of A3.

C polynomials S polynomials
# = 0 # = 0
C(1,0,1) −4 +X1X3 S(1,0,1) −1 +X1X3

C(0,2,0) 2 − 2X1X3 +X2
2 S(0,2,0) X2

2 −X1X3

C(0,1,2) 4 −X1X3 − 2X2
2 +X2X

2
3 S(0,1,2) 1 −X2

2 −X1X3 +X2X
2
3

C(2,1,0) 4 −X1X3 +X2
1X2 − 2X2

2 S(2,1,0) 1 +X2
1X2 −X2

2 −X1X3

# = 1 # = 1
C(1,0,0) X1 S(1,0,0) X1

C(0,1,1) −3X1 +X2X3 S(0,1,1) −X1 +X2X3

C(0,0,3) 3X1 − 3X2X3 +X3
3 S(0,0,3) X1 − 2X2X3 +X3

3

C(2,0,1) −X1 − 2X2X3 +X2
1X3 S(2,0,1) −X1 +X2

1X3 −X2X3

C(1,2,0) 5X1 −X2X3 − 2X2
1X3 +X1X

2
2 S(1,2,0) X1 +X1X

2
2 −X2

1X3 −X2X3

# = 2 # = 2
C(0,1,0) X2 S(0,1,0) X2

C(0,0,2) −2X2 +X2
3 S(0,0,2) −X2 +X2

3

C(2,0,0) −2X2 +X2
1 S(2,0,0) X2

1 −X2

C(1,1,1) 4X2 − 3X2
3 − 3X2

1 +X1X2X3 S(1,1,1) −X2
1 −X2

3 +X1X2X3

# = 3 # = 3
C(0,0,1) X3 S(0,0,1) X3

C(1,1,0) −3X3 +X1X2 S(1,1,0) X1X2 −X3

C(3,0,0) 3X3 − 3X1X2 +X3
1 S(3,0,0) X3

1 − 2X1X2 +X3

C(1,0,2) −X3 − 2X1X2 +X1X
2
3 S(1,0,2) −X1X2 −X3 +X1X

2
3

C(0,2,1) 5X3 −X1X2 − 2X1X
2
3 +X2

2X3 S(0,2,1) −X1X2 −X3 −X1X
2
3 +X2

2X3

The special recursion relations are obtained from the same products, where some of the
components a, b, c of the generic dominant weight take special values 1 and 0. The explicit
form of these relations is available in [30] and here we skip them in order to save the space,
instead of this we adduce all their solutions of form of Table 7.

E.2. S Polynomials of A3

Generic recursion relations are decompositions of the following products, where we assume
that a, b, c > 1:

X1S(a,b,c) = S(a+1,b,c) + S(a−1,b+1,c) + S(a,b−1,c+1) + S(a,b,c−1),

X2S(a,b,c) = S(a,b+1,c) + S(a+1,b−1,c+1) + S(a−1,b,c+1) + S(a+1,b,c−1) + S(a−1,b+1,c−1) + S(a,b−1,c),

X3S(a,b,c) = S(a,b,c+1) + S(a,b+1,c−1) + S(a+1,b−1,c) + S(a−1,b,c).

(E.4)

To calculate S polynomials explicitly (see Table 7)we use theA3 characters. The lowest
ones from the congruence classes # = 0, # = 1, # = 2 and # = 3 are listed below:

# = 0:

χ(0,0,0) = C(0,0,0) = 1,

χ(1,0,1) = 3 + C(1,0,1),
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χ(0,2,0) = 2 + C(1,0,1) + C(0,2,0),

χ(0,1,2) = 3 + 2C(1,0,1) + C(0,2,0) + C(0,1,2),

χ(2,1,0) = 3 + 2C(1,0,1) + C(0,2,0) + C(2,1,0),

# = 1:

χ(1,0,0) = C(1,0,0) = X1,

χ(0,1,1) = 2X1 + C(0,1,1),

χ(2,0,1) = 3X1 + C(0,1,1) + C(2,0,1),

χ(0,0,3) = X1 + C(0,1,1) + C(0,0,3),

χ(1,2,0) = 3X1 + 2C(0,1,1) + C(2,0,1) + C(1,2,0),

# = 2:

χ(0,1,0) = C(0,1,0) = X2,

χ(0,0,2) = X2 + C(0,0,2),

χ(2,0,0) = X2 + C(2,0,0),

χ(1,1,1) = 4X2 + 2C(0,0,2) + 2C(2,0,0) + C(1,1,1),

# = 3:

χ(0,0,1) = C(0,0,1) = X3,

χ(1,1,0) = 2X3 + C(1,1,0),

χ(1,0,2) = 3X3 + C(1,1,0) + C(1,0,2),

χ(3,0,0) = X3 + C(1,1,0) + C(3,0,0),

χ(0,2,1) = 3X3 + 2C(1,1,0) + C(1,0,2) + C(0,2,1).

E.3. Recursion Relations for C and S Polynomials of B3 and C3

The two cases differ in many important respects in spite of the isomorphism of their Weyl
groups.

We write the generic relations for the C polynomials of the Lie algebras B3 and C3

(resp., of the simple Lie group O(7) and Sp(6)). The generic relations for the S-polynomials
are obtained by replacing the C symbol by S.

The variables are denoted by the same symbols X1, X2, X3 for all algebras of rank 3,
namely, Xj := Cωj , j = 1, 2, 3. There are two congruence classes of (a1, a2, a3) for either of the
two algebras.

We have

#(B3) = a3 mod 2, #(C3) = a1 + a3 mod 2. (E.5)



20 International Journal of Mathematics and Mathematical Sciences

Table 8: C polynomials of B3 split into two congruence classes # = 0 and # = 1.

C polynomials
# = 0

C(1,0,0) X1

C(0,1,0) X2

C(2,0,0) −6 − 2X2 +X2
1

C(0,0,2) −8 − 4X1 − 2X2 +X2
3

C(1,1,0) 24 + 8X1 + 6X2 − 3X2
3 +X1X2

C(1,0,2) −8X1 − 2X2 − 4X2
1 − 2X1X2 +X1X

2
3

C(3,0,0) −24 − 15X1 − 6X2 +X2
3 − 3X1X2 +X3

1

C(0,2,0) 12 + 16X1 + 8X2 + 4X2
1 + 4X1X2 − 2X1X

2
3 +X2

2

C(0,1,2) −48 − 20X1 − 20X2 + 6X2
3 − 6X1X2 − 2X2

2 +X2X
2
3

C(2,1,0) 8X1 − 6X2 + 4X2
1 + 2X1X2 −X1X

2
3 − 2X2

2 +X2
1X2

# = 1

C(0,0,1) X3

C(1,0,1) −3X3 +X1X3

C(0,1,1) 3X3 − 2X1X3 +X2X3

C(0,0,3) −9X3 − 3X1X3 − 3X2X3 +X3
3

C(2,0,1) −3X3 −X1X3 − 2X2X3 +X2
1X3

C(1,1,1) 30X3 + 12X1X3 + 8X2X3 − 3X3
3 − 2X2

1X3 +X1X2X3

For B3, we have the generic recursion relations

X1C(a,b,c) = C(a+1,b,c) + C(a−1,b+1,c) + C(a,b−1,c+2) + C(a,b+1,c−2) + C(a+1,b−1,c)

+ C(a−1,b,c), for a, b � 2, c � 3,

X2C(a,b,c) = C(a,b+1,c) + C(a+1,b−1,c+2) + C(a−1,b,c+2) + C(a+1,b+1,c−2) + C(a−1,b+2,c−2)

+ C(a+2,b−1,c) + C(a+1,b−2,c+2) + C(a−2,b+1,c) + C(a−1,b−1,c+2) + C(a+1,b,c−2)

+ C(a−1,b+1,c−2) + C(a,b−1,c), a � 2, b, c � 3,

X3C(a,b,c) = C(a,b,c+1) + C(a,b+1,c−1) + C(a+1,b−1,c+1) + C(a−1,b,c+1) − C(a+1,b,c−1)

+ C(a−1,b+1,c−1) + C(a,b−1,c+1) + C(a,b,c−1), a, b, c � 2.

(E.6)

For C3, we have the generic recursion relations

X1C(a,b,c) = C(a+1,b,c) + C(a−1,b+1,c) + C(a,b−1,c+1) + C(a,b+1,c−1)

+ C(a+1,b−1,c) + C(a−1,b,c), a, b, c � 2,

X2C(a,b,c) = C(a,b+1,c) + C(a+1,b−1,c) + C(a−1,b,c+1) + C(a+1,b+1,c−1) + C(a−1,b+2,c−1)

+ C(a+2,b−1,c) + C(a+1,b−2,c+1) + C(a−2,b+1,c) + C(a+1,b,c−1) + C(a−1,b−1,c+1)

+ C(a−1,b+1,c−1) + C(a,b−1,c), a, b � 3, c � 2,
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Table 9: C polynomials of C3 split into two congruence classes # = 0 and # = 1.

C polynomials
# = 0
C(0,1,0) X2

C(2,0,0) −6 − 2X2 +X2
1

C(1,0,1) −2X2 +X1X3

C(0,2,0) 12 + 8X2 − 4X2
1 − 2X1X3 +X2

2

C(2,1,0) −6X2 −X1X3 − 2X2
2 +X2

1X2

C(0,0,2) −8 − 8X2 + 4X2
1 + 4X1X3 − 2X2

2 +X2
3

C(1,1,1) 12X2 − 4X1X3 + 4X2
2 − 2X2

1X2 − 3X2
3 +X1X2X3

C(0,3,0) 9X2 + 3X1X3 + 6X2
2 − 3X2

1X2 + 3X2
3 − 3X1X2X3 +X3

2

C(0,1,2) −18X2 + 3X1X3 − 12X2
2 + 6X2

1X2 + 3X2
3 + 3X1X2X3 − 2X3

2 +X2X
2
3

# = 1
C(1,0,0) X1

C(0,0,1) X3

C(1,1,0) −4X1 − 3X3 +X1X2

C(3,0,0) −3X1 + 3X3 − 3X1X2 +X3
1

C(0,1,1) 4X1 + 6X3 − 2X1X2 +X2X3

C(2,0,1) −9X3 − 2X2X3 +X2
1X3

C(1,2,0) 12X1 − 3X3 + 9X1X2 − 4X3
1 −X2X3 − 2X2

1X3 +X1X
2
2

C(1,0,2) −12X1 − 6X3 − 6X1X2 + 4X3
1 −X2X3 + 4X2

1X3 − 2X1X
2
2 +X1X

2
3

C(0,2,1) 27X3 + 12X2X3 − 6X2
1X3 − 2X1X

2
3 +X2

2X3

C(0,0,3) −27X3 − 18X2X3 + 9X2
1X3 + 6X1X

2
3 − 3X2

2X3 +X3
3

X3C(a,b,c) = C(a,b,c+1) + C(a,b+2,c−1) + C(a+2,b−2,c+1) + C(a−2,b,c+1) + C(a+2,b,c−1)

+ C(a−2,b+2,c−1) + C(a,b−2,c+1) + C(a,b,c−1), a, b � 3, c � 2.

(E.7)

Additional recursion relations for both cases are available in explicit form in [32] and here
we present only their solutions in form of Tables 8 and 9.
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