
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 685452, 8 pages
http://dx.doi.org/10.1155/2013/685452

Research Article
Dynamics of a Bioreactor with a Bacteria Piecewise-Linear
Growth Model in a Methane-Producing Process

Luz A. Melo Varela,1 Simeón Casanova Trujillo,1 and Gerard Olivar Tost2
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This paper shows a study, both analytical and numerical, of a continuous-time dynamical system associated with a simple model
of a wastewater biorreactor. Nonsmooth phenomena and border-collision local bifurcations appear when the main parameters
(dilution and biomass concentration at the inflow) are varied. We apply the Filippov methods following Kuznetsov’s work.

1. Introduction

Currently, anaerobic methods are applied to reduce water
contamination problems.With thesemethods, we can reduce
the percentages of chemical oxygen demand (COD) and
biological oxygen demand (BOD), which are measurements
of water quality. Depuration through anaerobic treatments
converts organic matter in wastewater into methane (CH

4
—

biogas) and carbonic gas (CO
2
). Methane can be used as an

energetic component because it offers good calorific power,
and CO

2
can be recirculated to the bioreactor to improve the

percentages of biogas yield, thus decreasing organic loads.
Organic loads contain high concentrations of organic matter
that originates from water circulation in garbage, which
dissolves the elements present in it when running through the
waste. The result is an environmentally damaging liquid that
contaminates the soil and superficial and subterraneanwaters
in their path. For this reason, leachates, among others, are
one of the most significant contaminating agents in a landfill
as has been extensively discussed in the literature (see, e.g.,
[1–3]).

In this paper, we are mainly interested in leachates since
our experimental secondary data comes from this sort of
wastewaters. The most used systems for leachate treatment

are the so-called high-rate systems, such as the UASB reactor
(Figure 1). This bioreactor separates different phases: biolog-
ical (sludge bed), liquid (sludge blanket), and gas (upper
section). The wastewater enters the reactor through its lower
section and exits through the upper section. The reactor has
no filling to support biological growth. The sludge created
in the reactor can be divided into two regions: region one,
the sludge bed, and region two, the sludge blanket, which
is composed of granules or particles in addition to the
wastewater, as discussed in [4–6].

The upper section of the reactor contains the solid-liquid-
gas (SLG) separator, which prevents the discharge of solids
from the reactor and separates them from the produced gas
and effluent liquid. This section acts as a sludge sedimenter
and gas collector because the gases produced under anaerobic
conditions cause internal recirculation, which helps in the
creation and sustainment of bacteria. The upper piece (so-
called screen) generates a low-turbulence region, where 99%
of the sludge in the suspension settles and returns to the
reactor. The screen also serves to recover the gas that exits
through the center region, as discussed by Kjeldsen et al.
[5]. Therefore the SLG separator is fundamental in order to
maintain settled sludge, a clarified effluent (gas-free), and
properly separated gases.
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Figure 1: UASB reactor.

Anaerobic leachates depuration uses a combination of
several processes. One of the most important is the so-
called anaerobic digestion, which is a fermentation of organic
matter. This is performed by bacteria when oxygen is not
present. Fermentation subproducts are a mixture of gases
(mainly CO

2
and CH

4
, biogas) and also some biomass, which

is kept in the process. Anaerobic digestion can be applied to
leachates from cattle, forest and agroindustry, and disposal
from transformation industries, either one by one, or together
(codigestion). The method reported in the paper could be
applied not only to leachates but also to a methanisation
process that treats glucose or acetate residues.

Many mathematical models for bioreactors have been
obtained and there is a hugh literature on this topic (see e.g.,
[7–9]). Also, control of an anaerobic digester through normal
form of smooth fold bifurcation has been implemented. This
method has faster convergence rate and lower error than tra-
ditionalmethods.The idea is designing a nonlinear controller
taking advantage of the knowledge of the bifurcation scenario
[10]. Thus bifurcation diagrams and analytical results are
important for a good design and control.

In this paper we take real data from the leachates in
“Esmeralda” landfill, which is located in Manizales (Caldas),
amedium-size city in Colombia. Numerical simulations were
carried out with standard procedures in MATLAB.

The rest of the paper is organized as follows. Section 2
is devoted to an overview of Filippov and Kuznetsov theory
on nonsmooth systems and nonsmooth bifurcations. This
theory will be applied to our model. In Section 3 we describe
the model mathematically and we perform some basic alge-
braic computations following nonsmooth theory. Results are
shown in Section 4, and they are compared with analytical
computations. Also, nonsmooth bifurcations are reported.
Finally, conclusions are stated in Section 5.

2. An Overview of Filippov Systems

Nonsmooth systems (continuous piecewise-linear, continu-
ous piecewise-smooth, discontinuous piecewise-smooth, and
so on) have been studied in the literature [11–14].

Through theory mainly developed by Filippov we can
determine the solution of a system ruled by differential
equations with discontinuous terms on the right-hand side.
According to this method (Filippov method), the borders of
all state-velocity vectors within the region of a point on a
discontinuous surfacemust be complemented by aminimum
convex set, and the state-velocity vector of the sliding motion
must belong to this set, as discussed in [11].

For a dynamical system in the state-space where Filippov
method can be applied, and assuming only two regions
separated by the discontinuity, we can write

𝑧̇ = {

𝐹

(1)
(𝑧) , 𝑧 ∈ 𝑅

1
,

𝐹

(2)
(𝑧) , 𝑧 ∈ 𝑅

2
,

(1)

where

𝑅

1
= {𝑧 ∈ R

2
: 𝐻 (𝑧) < 0} ,

𝑅

2
= {𝑧 ∈ R

2
: 𝐻 (𝑧) < 0} .

(2)

The discontinuity boundary Σ separates the two regions 𝑅

1

and 𝑅

2
and is given by

Σ = {𝑧 ∈ R
2
: 𝐻 (𝑧) = 0} , (3)

where 𝐻(𝑧) is a smooth scalar function with a nonzero
gradient over Σ. The boundary Σ is a closed set, and we must
have that 𝐹(1) ̸= 𝐹

(2) over Σ.

2.1. Sliding Solutions. Following [11], for 𝑧 ∈ Σ, we define

𝜎 (𝑧) = ⟨𝐻

𝑧
(𝑧) , 𝐹

(1)
(𝑧)⟩ ⟨𝐻

𝑧
(𝑧) , 𝐹

(2)
(𝑧)⟩ , (4)

where ⟨, ⟩ denotes the standard scalar product, and 𝜎(𝑧)

defines the crossing or sliding region.The crossing set Σ
𝑐
⊂ Σ

is defined by

Σ

𝑐
= {𝑧 ∈ Σ : 𝜎 (𝑧) > 0} (5)

which corresponds to the set of all points 𝑧 ∈ Σ, where the
two vectors 𝐹

(𝑖)
(𝑧) have nontrivial normal components of

identical sign.
We also have the sliding set Σ

𝑠
, which complements Σ

𝑐
in

Σ:

Σ

𝑠
= {𝑧 ∈ Σ : 𝜎 (𝑧) ≤ 0} . (6)

The crossing set is open, whereas the sliding set is the union
of the sliding closed segments and sliding isolated points.

The Filippov method associates the following convex
combination 𝑔(𝑧) of the two fields 𝐹(𝑖)(𝑧) for each nonsingu-
lar sliding point 𝑧 ∈ Σ, where𝑔(𝑧) is the so-called the Filippov
vector field [11]:

𝑔 (𝑧) = 𝜆𝐹

(1)
(𝑧) + (1 − 𝜆) 𝐹

(2)
(𝑧) ,

(7)

where 𝜆 = ⟨𝐻

𝑧
(𝑧), 𝐹

(2)
(𝑧)⟩/⟨𝐻

𝑧
(𝑧), 𝐹

(2)
(𝑧) − 𝐹

(1)
(𝑧)⟩.
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3. Bioreactor Mathematical Model

We used the model proposed by Muñoz (2006) [15] for
anaerobic digestion in a UASB reactor, but an approxi-
mation by straight lines to the bacterial growth model is
applied (Monod kinetics). The system, originally smooth,
is converted into a nonsmooth one because it is modeled
by a system of differential equations with a discontinuous
right-hand side. For this approximation method by straight
lines, only substrate concentrations from 0 to 6000 (mg/L
COD) have been considered. This is because, in addition
to achieving a good approximation, the values only have
physical sense in this region and are consistent with the
design conditions of the UASB bioreactor.

The assumptions in the model include that the operation
temperature is 20∘C, the constants in the model are those
observed by Muñoz (2006) [15] 𝐾

𝑠
= 5522.3, (mg/L), 𝜇max

= 1.32 d−1, 𝑌 = 3.35, (mgCOD/mgVSS), and acidogenesis
and metanogenesis are considered to be the only processes
governed by Monod kinetics, which assumes that the bacte-
rial growth follows Michaelis-Menten kinetics for processes
catalyzed by enzymes. Therefore,

𝜇 (𝑆) = 𝜇max
𝑆

𝐾

𝑠
+ 𝑆

, (8)

where 𝐾

𝑠
is the substrate semisaturation constant.

According to this model, for the discussed biological
process, the rate of microbial growth will asymptotically tend
to the maximum value 𝜇max.

Accounting for the above, the proposed model is

̇

𝑆 = 𝐷 (𝑆

in
− 𝑆) − 𝑌𝜇 (𝑆)𝑋,

̇

𝑋 = 𝐷 (𝑋

in
− (1 − 𝜂)𝑋) + 𝜇 (𝑆)𝑋,

(9)

where 𝜂 is the SLG separator efficiency (and thus 𝛼 =

1 − 𝜂), 𝐷 is the dilution factor (in d−1) and represents the
influent volumetric flow per unit of reactor volume (the
inverse of the hydraulic retention time). 𝑆in is the substrate
concentration in the input flow (in mg/LCOD); 𝑆 is the
substrate concentration in the reactor (in mg/LCOD); 𝑌 is
the substrate yield coefficient (in mg COD/mgVSS); 𝜇(𝑆) is
the bacterial growthmodel;𝑋 is the biomass concentration in
the reactor (in mg/LVSS); 𝑋in is the biomass concentration
in the input flow (in mg/LVSS); and 𝜂 is the sedimentation
efficiency of the separator (SLG).

We slightly modify this model by using an approximation
to 𝜇(𝑆) by straight lines so that the originally smooth system
is converted to a nonsmooth one. We take this approach after
observing the experimental data in [15], which resembles
much more to piecewise-linear than to a classical smooth
Monod model. Zero is the minimum value for 𝑆 (physically,
negative concentrations cannot be observed) and 6000 [in
mg/LCOD] is the maximum (the maximum substrate con-
centration value at the input flow based on the operation
conditions) [15].

Figure 2 corresponds to a continuous piecewise-linear
approximation, but we will also consider discontinuous
piecewise-linear approximations, taking into account the
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Figure 2: Piecewise-linear continuous approximation of Monod
growth model. Nonsmooth points correspond to 𝑆

1
= 1800 and

𝑆

2
= 4000.

observed data in [15], as slight perturbations to the contin-
uous one.

Thus we will consider 0 < 𝑝

1
< 𝑝

2
as parameters,

defining the nonsmooth discontinuous approximation 𝜇(𝑆)

to the Monod curve.
We have

𝜇 (𝑆) =

𝜇

1

𝑆

1

𝑆, for 0 ≤ 𝑆 < 𝑝

1
,

𝜇 (𝑆) = 𝜇

1
+

𝜇

2
− 𝜇

1

𝑆

2
− 𝑆

1

(𝑆 − 𝑆

1
) , for 𝑝

1
≤ 𝑆 < 𝑝

2
,

𝜇 (𝑆) = 𝜇

2
+

𝜇

3
− 𝜇

2

𝑆

3
− 𝑆

2

(𝑆 − 𝑆

2
) , for 𝑆 ≥ 𝑝

2
,

(10)

and thus the final proposed model is the following:

̇

𝑆 = 𝐷 (𝑆

in
− 𝑆) − 𝑌𝜇 (𝑆)𝑋,

̇

𝑋 = 𝐷 (𝑋

in
− (1 − 𝜂)𝑋) + 𝜇 (𝑆)𝑋,

(11)

where 𝛼 = 1− 𝜂 corresponds to the SLG separator deficiency,
and 𝜂 is the SLG separator efficiency, 𝜇

1
= 0.32, 𝑆

1
= 1800,

𝜇

2
= 0.5544, 𝑆

2
= 4000, 𝜇

3
= 0.7, and 𝑆

3
= 6000.

Each region is ruled by a system of differential equations,
which can be discontinuous in the border of each region.
When 𝑝

1
= 𝑝

∗

1
= 1800, 𝑝

2
= 𝑝

∗

2
= 4000, and 𝑝

3
=

𝑝

∗

3
= 6000, corresponding to the continuous piecewise-

linear approximation of the Monod curve, our system of
differential equations is piecewise-continuous, and thus no
sliding regions are possible. But when parameters 𝑝

𝑖
slightly

vary from the corresponding nominal values 𝑝

∗

𝑖
, then the

differential equations have discontinuous right-hand side,
and Filippov methods can be applied.

However, only analyses of regions corresponding tomode
one (0 ≤ 𝑆 < 𝑝

1
) and mode two (𝑝

1
< 𝑆 < 𝑝

2
) were

performed since these are the regions where a physically pos-
sible dynamic was observed when representing the positive
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equilibrium points. Thus, equations to be analyzed are (11) in
modes one and two.

In our case, 𝐻(𝑧) = 𝑆 − 𝑝

1
, and when this is zero, the

sliding region will be included in 𝑆 = 𝑝

1
.

The gradient for 𝐻(𝑧) is given by ∇𝐻

𝑧
(𝑧) = (0, 1), which

is constant and different from zero for each 𝑧 ∈ Σ.
When applying the Filippov method, following [11], we

can distinguish some critical points.
Singular points are 𝑧 ∈ Σ

𝑠
such that

⟨𝐻

𝑧
(𝑧) , 𝐹

(1)
(𝑧) − 𝐹

(2)
(𝑧) = 0⟩ . (12)

Pseudoequilibriums are 𝑧 ∈ Σ

𝑠
such that

𝑔 (𝑧) = 0, 𝐹

1,2
(𝑧) ̸= 0. (13)

Boundary equilibriums are 𝑧 ∈ Σ

𝑠
such that

𝐹

(1)
(𝑧) = 0, 𝐹

(2)
(𝑧) = 0.

(14)

Tangent points are 𝑧 ∈ Σ

𝑠
such that

⟨𝐻

𝑧
(𝑧) , 𝐹

(𝑖)
(𝑧)⟩ = 0, 𝐹

1,2
(𝑧) ̸= 0.

(15)

From now on, we will be interested in the case of discontinu-
ous piecewise-linear approximations, leading to the Filippov
solutions.

3.1. Algebraic Computations. Boundary-node nonsmooth
bifurcations were observed in this model, which are obtained
when a node approaches the switching surface and collides
with a pseudoequilibrium.This is considered a local bifurca-
tion.

We consider again the two vector fields:

𝐹

(1)
= {

𝐷(𝑋

in
− 𝛼𝑋) + 𝐴𝑆𝑋

𝐷(𝑆

in
− 𝑆) − 𝑌𝐴𝑆𝑋

𝐹

(2)
= {

𝐷(𝑋

in
− 𝛼𝑋) + [𝜇

1
+ 𝐵 (𝑆 − 𝑆

1
)]𝑋

𝐷 (𝑆

in
− 𝑆) − 𝑌 [𝜇

1
+ 𝐵 (𝑆 − 𝑆

1
)]𝑋,

(16)

where 𝐴 = 𝜇

1
/𝑆

1
and 𝐵 = (𝜇

2
− 𝜇

1
)/(𝑆

2
− 𝑆

1
).

Some basic algebraic computations can be performed for
this system and obtain the Filippov vector field. Then, for
example, in order to obtain the pseudoequilibriums we have
to impose

(𝐷 (𝑆

in
− 𝑆) − 𝑌𝑋 [𝜇

1
+ 𝐵 (𝑆 − 𝑆

1
)])

× (𝐷 (𝑋

in
− 𝛼𝑋) + 𝐴𝑆𝑋) − (𝐷 (𝑆

in
− 𝑆) − 𝑌𝐴𝑆𝑋)

× (𝐷 (𝑋

in
− 𝛼𝑋) + [𝜇

1
+ 𝐵 (𝑆 − 𝑆

1
)]𝑋) = 0.

(17)

Then we have
𝑋

2
(𝑌𝑚𝐷𝛼 − 𝑌𝐴𝑆𝐷𝛼)

+ 𝑋 (𝐷𝐴𝑆𝐾 − 𝑌𝑚𝐷𝑋

in
− 𝐷𝑚𝐾 + 𝑌ASD𝑋

in
) = 0,

(18)

where 𝑚 = 𝜇

1
+ 𝐵(𝑆 − 𝑆

1
), 𝐾 = 𝑆

in
− 𝑆.

Solutions to (18) correspond to pseudoequilibriums.

4. Results

We analyse the system given by (11), when the bacterial
concentration in the input flowof the bioreactor,𝑋in, is varied
to be 0, 240, and 320 (inmg/LVSS). Note that since the source
was a leachate, the value of 𝑋in is always different from zero,
but 𝑋

in
= 0 must be considered because bioreactor wash

out can occur. The axis variables in the figures are 𝑆 (the
concentration of the substrate in the reactor) (in mg/L COD)
and 𝑋 (the concentration of the biomass in the reactor) (in
mg/L VSS).

In the following, we plot a series of figures that resulted
from the analytical calculations for the critical points, includ-
ing equilibrium points, pseudoequilibriums, tangent points,
and singular sliding points, which served as references for the
numerical analysis.

Only figures corresponding to 𝑋

in
= 240 were used (the

average value of bacterial input in the bioreactor input flow,
obtained by Muñoz (2006) [15], in its experimental part),
since a similar behavior was observed for the other values.

Parameter 𝛼 seems to be very important since a
boundary-node bifurcation occurred when 𝛼 is varied from
0.15 to 0.18 when 𝑋

in
= 0 or when 𝛼 changes from 0.19 to

0.24 for 𝑋

in
= 240 and when 𝛼 also changes from 0.24 to

0.27, for 𝑋

in
= 320. This shows that the higher the biomass

amount at the bioreactor input, the lower the sedimentation
efficiency of the SLG separator. This lower efficiency blocks a
good, previously stabilized sludge recirculation, which affects
the bacterial performance and presents sludge mixture with
the treated effluent.

When increasing the bacterial concentration at the biore-
actor input, it is also expected that there will be different
types of generated bacteria. This is due to the effluent
coming from the landfill, other reactions, or the presence
of toxic substances that avoid the proper functioning of the
bioreactor.

4.1. Bifurcations with Parameter 𝛼. Figures 3(a)–3(d) show
the analytical results obtained from the algebraic compu-
tations. An input flow biomass concentration of 240 (in
mg/LVSS) was chosen. The system evolution shows how
the equilibrium in region one was moved towards the
switching boundary, approaching a collision. This results in
a boundary-node bifurcation. However, the pseudoequilib-
rium also moved within the sliding segment between the
tangent points and finally disappears when it collides with the
left tangent point.

Figures 4(a)–4(e) show the system evolution when apply-
ing the Filippov convex method through numerical simu-
lations. A change in the phase portrait is presented when
parameter 𝛼 is varied, keeping 𝑋

in
= 240 (in mg/LVSS).

Figure 4(b) shows that when 𝛼 had a value of 0.203, the birth
of a pseudo-equilibriumwas observed in the sliding segment,
and there was a node in the upper region. When the value
of 𝛼 was close to 0.23 (Figure 4(d)), the equilibrium in the
lower region approached the switching surface and a collision
of this equilibrium subsequently occurred. This process is
similar to the one described before, generating a boundary-
node bifurcation.
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Figure 3: Algebraic computations when parameter 𝛼 is varied. Equilibriums in ∗. Pseudoequilibriums in black square. Boundary points in
red ∗. Tangent points in blue ∘. Singular points in green star.

Therefore, when increasing the value of 𝑋in, the 𝛼 value
for which the boundary-node bifurcation occurred also
increased.This result shows that the SLG separator efficiency
is inversely related to the type of water treated, since, at higher
bacterial concentrations in the effluent, the SLG sedimenter
is less efficient. This fact allows a good organic matter
conversion into methane because the suspended sludge does
not return to the reactor when a deficient sedimentation
occurs, which affects biogas production.

4.2. Bifurcations with Parameter𝐷. Bioreactor analysis when
varying parameter 𝐷 was also performed for input flow
biomass concentrations 𝑋

in with 0, 240, and 320. For 240

and 320 (in mg/L VSS), it was observed that no interesting
dynamics were present. However, richer dynamics were
obtained for 𝑋

in
= 0 (in mg/L VSS) (Figures 5(a) to

5(e)), where only one stable node exists in the lower region.
When increasing parameter 𝐷 from 2.0 to 2.45, a pseudo-
equilibrium is created in the sliding segment, and when 𝐷 is
incresed further, another node appears in the upper region.
When𝐷 approached 2.40, the equilibrium in the lower region
approached the switching surface. Subsequently, a collision of
the equilibrium point occurred within this boundary, which
led to its catastrophic disappearance.

Basins of attraction can also be computed. For example,
for 𝐷 = 2.1 and 𝑋

in
= 0 (shown in Figure 6), we observed

that the pseudo-equilibrium only attracted the initial points
that were in the switching surface, which was also recognized
as an unstable sliding segment.The equilibriums within both
regions are attractors.

A comparison between numerically and algebraically
computed pseudo-equilibriums and the corresponding bifur-
cations was performed. Error rates were less than 0.02%.

5. Conclusions

When applying the Filippov convex method to a UASB,
nonsmooth local boundary-node bifurcations with washout
conditions in the reactor were shown. These bifurcations
occur when parameter𝐷 or 𝛼 is varied. When increasing the
input biomass concentration, parameter 𝛼 tends to increase
the bioreactor inefficiency. This is due to the fact that it had
more biomass in the input flow. Predator organisms, such as
anaerobic ciliates or chemical products that generate biomass
death in the reactor, can exist. In this case the leachates
are not properly transformed into biogas. The comparison
between the analytical section (algebraically computed from
the Filippov vector field) and the numerical approximation
yields an error close to 0.02%, which validates the performed
calculations.The importance of parameter 𝛼was observed in
the operation of the UASB bioreactor because the boundary-
node bifurcation was present regardless of the biomass
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(a) Numerical computation with 𝛼 = 0.198
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(b) Numerical computation with 𝛼 = 0.203
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(c) Numerical computation with 𝛼 = 0.22
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(d) Numerical analysis with 𝛼 = 0.23
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(e) Numerical computation with 𝛼 = 0.24

Figure 4: Numerically computed phase portraits when parameter 𝛼 is varied.
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(c) Parameter𝐷 = 2.3
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(d) Parameter𝐷 = 2.4
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(e) Parameter𝐷 = 2.45

Figure 5: Numerical computations varying parameter 𝐷.
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Figure 6: Numerically computed basins of attraction for parameter
𝐷 = 2.1.

concentration at the bioreactor input. This shows that the
equilibrium can be controlled with this parameter, either
in region one or region two. The obtained results serve
as a basis for bioreactor automatic control where a higher
decontamination in the treated effluent and an improved
conversion of the organic matter to biogas are expected.
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[15] R. Muñoz, Design and implementation of a COD control system
of a prototype UASB reactor for treating leachates [M.S. thesis],
National University of Colombia, 2006, (Spanish).



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


