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The received signal in many wireless communication systems comprises of the sum of waves with random amplitudes and
random phases. In general, the composite signal consists of correlated nonidentical Gaussian quadrature components due to the
central limit theorem (CLT). However, in the presence of a small number of random waves, the CLT may not always hold and the
quadrature components may not be Gaussian distributed. In this paper, we assume that the fading environment is such that the
quadrature components follow a correlated bivariate Student-t joint distribution. Then, we derive the envelope distribution of
the received signal and obtain new expressions for the exact and high signal-to-noise (SNR) approximate average BER for binary
modulations. It also turns out that the derived envelope pdf approaches the Rayleigh and Hoyt distributions as limiting cases.
Using the derived envelope pdf, we investigate the effect of correlated nonidentical quadratures on the error rate performance of
digital communication systems.

1. Introduction

The wireless communication channel has attracted a lot of
attention over the years as the need for higher data rates and
spectral efficiency in mobile communications has increased.
Recently, a unified probability density function (pdf) based
on the generalized Laguerre polynomial that characterizes a
wide range of distributions for small-scale fading has been
derived in [1, 2] by modeling the received signal envelope as a
nonlinear function of the modulus of the sum of an arbitrary
number of multipath components. The unified envelope
pdf covers many known Laguerre polynomial-series-based
pdfs and multipath fading distributions, which include
the multiple-waves-plus-diffuse-power (MWDP) fading [3],
Nakagami-m [4], Rician (Nakagami-n), Hoyt (Nakagami-q),
Rayleigh, Weibull, κ-μ [5], and α-μ (Stacy) [6] distributions
as special cases. The existing analytical fading distributions
have been derived considering both homogeneous and
nonhomogeneous propagating environments. The MWDP
fading model consists of M specular constant-amplitude
waves and a Gaussian-distributed diffused component. The
κ-μ distribution considers a signal composed of clusters of

multipath waves, with each cluster including a dominant
component and scattered waves with identical powers.
Moreover, the α-μ fading model considers a signal composed
of multipath waves propagating in a nonhomogeneous
environment, where the resulting envelope is obtained as
a nonlinear function of the modulus of the sum of the
multipath components. Nakagami was the first to consider
the case that the received signal is the sum of sinusoids with
random amplitudes and derived the well-known Nakagami-
m fading distribution, which includes Rayleigh fading as
special case and it can also approximate well the Rician
distribution.

Following the work by Nakagami, the sum of M random
vectors has attracted considerable attention [7, 8]. Based on
the central limit theorem (CLT), we know that this sum, for
sufficiently large number of independent waves with uniform
elementary phases, results in in-phase (I) and quadrature
(Q) components that follow Gaussian distributions with
zero mean. The Rayleigh and Hoyt envelope pdfs can then
be obtained assuming, respectively, identical and noniden-
tical variances (powers) for the quadrature components.
However, the more general case of dependent (correlated)
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Gaussian quadratures with nonzero means and unequal
variances was shown to provide good fit to measured
propagation data in various wireless environments [7].
The case of correlated nonidentical I and Q Gaussian
distributed components has not received much attention in
the literature, as it does not yield an easy to handle analytical
expression for the fading envelope pdf [9, 10].

When, as in an indoor fading environment, M is not
sufficiently large for the CLT to hold, the quadrature
components may not be Gaussian distributed. Non-Gaussian
quadratures have also been considered when M is a random
variable [11, 12]. One distribution that has been used to
model the quadrature components in such environment is
the bivariate Student-t distribution [13]. In this paper we
consider a general propagation environment that results in
correlated, nonidentically distributed I and Q components
in the received signal. Assuming correlation among the
quadrature components and/or unequal variances, we derive
the envelope pdf for the case of quadratures with correlated
bivariate Student-t joint distribution. It is then shown that
this envelope pdf closely approximates the envelope pdf of
correlated Gaussian quadratures, derived in [9]. The two pdfs
yield almost identical results for small values of envelope
amplitudes. Based on this result, we are able to determine
the parameters of this general fading model that affect the

deep fade region and the corresponding bit error rate (BER)
for binary digital modulation schemes. To the best of the
authors’ knowledge this analysis is novel.

The rest of the paper is organized as follows. In Section 2,
we approximate the correlated Gaussian-distributed quadra-
tures by the corresponding correlated Student-t-distributed
quadratures and derive the resulting envelope pdf. In Sec-
tion 3, analytical exact and high SNR approximate average
BER expressions for binary modulations are derived for
this general fading model. Numerical results that depict the
effect of the statistical parameters on the BER performance
are given in Section 4, whereas conclusions are drawn in
Section 5.

2. Envelope Distribution for
Correlated Quadratures

Let (Xc,Xs) be a pair of correlated real Gaussian random vari-
ables with mean (μc,μs) and variance (σ2

c , σ2
s ), respectively,

and let ρ = E[(Xc − μc)(Xs − μs)]/σcσs and λ = σ2
c /σ

2
s be the

correlation coefficient and asymmetry power factor between
Xc and Xs, respectively. The complex Gaussian random
variable (Xc + jXs) may be represented in polar form as Rejθ ,

where R =
√
X2
c + X2

s and θ = tan−1(Xs/Xc) are the envelope
and phase, respectively. The joint pdf of the correlated
Gaussian random variables Xc and Xs is given by [9]

pXc ,Xs(xc, xs) =
1

2πσcσs
√

1− ρ2

× exp

{
−
((
xc − μc

)
/σc
)2 +

((
xs − μs

)
/σs
)2 − 2ρ

(
xc − μc

)(
xs − μs

)
/σcσs

2
(
1− ρ2

)
}

,

(1)

and the corresponding envelope pdf has been derived in
[9, equation (7)]. The envelope distribution in [9, equation
(7)], which is based on the CLT argument, does not yield
mathematically tractable receiver performances. Since in

some practical fading environments the CLT argument may
not always be valid (e.g., [13]), we replace (1) with the
correlated bivariate Student-t distribution with ν degrees of
freedom (DOF), and the joint pdf of (Xc,Xs) can then be
written as [11, 14]

pXc ,Xs(xc, xs) =
1

2πσcσs
√

1− ρ2

×
[

1 +

((
xc − μc

)
/σc
)2 +

((
xs − μs

)
/σs
)2 − 2ρ

(
xc − μc

)(
xs − μs

)
/(σcσs)

2ν
(
1− ρ2

)
]−(ν+1)

,

ν > 0, xc, xs ≥ 0.

(2)

Similar to the analysis in [9], in order to derive the pdf
of the envelope R when the quadrature components Xc and
Xs have the joint pdf in (2), we consider the following
linear transformation of the variables (which is equiv-
alent to a rotation of the axis through the angle φ
[15]):

Y1 = Xc cosφ +Xs sinφ,

Y2 = −Xc sinφ + Xs cosφ.
(3)

It can be shown that if the angle of the rotation is chosen to
be

φ = 1
2

tan−1

(
2ρσcσs
σ2
c − σ2

s

)
, (4)

then the random variables Y1 and Y2 are uncorrelated [15].
The mean values of Y1 and Y2 are given by

μ1 = E[Y1] = μc cosφ + μs sinφ,

μ2 = E[Y2] = μs cosφ− μc sinφ.
(5)
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Similarly, their variances are

σ2
1 = var[Y1] = σ2

c cos2φ + σ2
s sin2φ + ρσcσs sin 2φ,

σ2
2 = var[Y2] = σ2

c sin2φ + σ2
s cos2φ − ρσcσs sin 2φ.

(6)

Note that since Y1 and Y2 are uncorrelated, it follows that
(Y1 − μ1) and (Y2 − μ2) are orthogonal. Therefore by
expressing (2) in polar form, the envelope pdf is given by

pR(r)

=(2ν)v+1r

2πσ1σ2

∫ 2π

0

⎡
⎣2ν+

(
r cosψ−μ1

σ1

)2

+

(
r sinψ−μ2

σ2

)2
⎤
⎦
−(ν+1)

dψ

= (2ν)v+1r
2πσ1σ2

∫ 2π

0

dψ
[
c + d cos2ψ − (e cosψ + f sinψ

)](ν+1) ,

(7)

where ψ = θ − φ, c = 2ν + μ2
1/σ

2
1 + μ2

2/σ
2
2 + r2/σ2

2 , d =
r2(1/σ2

1 − 1/σ2
2 ), e = 2μ1r/σ

2
1 , f = 2μ2r/σ

2
2 . In order to make

our analysis tractable, we restrict it to the special case of zero
means for the quadrature components, that is, μc = μs = 0
(implying μ1 = μ2 = 0). It then follows that c = 2ν + r2/σ2

2 ,
e = f = 0, and (7) reduces to

pR(r) = (2ν)v+1r

2πσ1σ2

∫ 2π

0

dψ
[
c + dcos2ψ

](ν+1) . (8)

The integral in (8) can be evaluated using [16, equation
(3.682)], and after some mathematical manipulations, the
result for the envelope pdf is given as

pR(r)= r

σ1σ2
(
1 + r2/

(
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2

))ν+1 2F1
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1
2
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2
1

)
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2 /r2

)
,

(9)

where 2F1(a,b; c; x) is the Gaussian hypergeometric function
defined in [17, equation (15.1.1)].

2.1. Special Cases

(1) When v → ∞, using the relations in [17, equation
(4.2.21)] and [17, equation (13.6.3]), (9) gives
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(10)

which corresponds to the Hoyt envelope distribution
[9], as expected.

(2) For equal variances of the quadrature components
(i.e., σ2

c = σ2
s = σ2), we have σ2

1 = σ2(1 + ρ) and
σ2

2 = σ2(1− ρ), and (9) can also be expressed as

p(λ=1)
R (r) = r

σ2
√

1− ρ2
(
1 + r2/μ

)ν+1

× 2F1

(
1
2

, ν + 1; 1;
η

1 + μ/r2

)
,

(11)

where μ = 2σ2ν(1− ρ) and η = 2ρ/(1 + ρ).

(3) When the quadrature components are also uncorre-
lated, that is, ρ = 0, (11) further reduces to

p
(λ=1,ρ=0)
R (r) = r

σ2

1

(1 + r2/(2σ2ν))ν+1 . (12)

Moreover, using the fact that lim
v→∞{1/(1+x/(kν))ν+1} =

e− x/k [16], it follows that when ν → ∞ (12)
approaches the Rayleigh distribution with average
power 2σ2, as expected.

3. BER Analysis

For binary modulation schemes, the BER in AWGN con-
ditioned on the instantaneous SNR γ can be written in a
compact form as [18, equation (8.100)]

PE
(
γ
) = Γ

(
b,aγ

)

2Γ(b)
, (13)

where parameters a and b depend on the type of modu-
lation/detection scheme and take the values (a = 1, b =
1/2) for coherent BPSK, (a = 1/2, b = 1/2) for coherent
binary frequency shift keying (BFSK), (a = 1, b = 1)
for differentially coherent BPSK, and (a = 1/2, b = 1)
for noncoherent BFSK. In (13), Γ(·, ·) denotes the upper
incomplete gamma function [16, equation (8.350.2)]. Due
to the presence of fading, the instantaneous received SNR is
given by γ = (Eb/N0)R2, where R is the instantaneous fading
amplitude, Eb is the energy per bit, and N0 is the one-sided
noise power spectral density. Using the envelope pdf in (9),
the pdf of the instantaneous SNR is given by

pγ
(
γ
) = ν

κβ
(
1 + γ/β

)ν+1 2F1

(
1
2

, ν + 1; 1;
1− (1/κ2

)

1 + β/γ

)
,

(14)

where the average received SNR per bit is γ = (Eb/N0)E[R2],
with E[R2] = σ2

c + σ2
s = σ2

1 + σ2
2 being the average channel

power. In (14), κ �
√
σ2

1 /σ
2
2 is defined as the square root of

the ratio of the I and Q signal powers after the rotation with
the angle φ and β � 2νγ/(1 + κ2). Note that the effect of
both correlation and unequal variances in the quadratures is
included in the value of the asymmetry factor κ. In particular,
for uncorrelated quadratures (ρ = 0) with equal powers (λ =
1), we have κ = 1.
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In a flat-fading environment, the average BER for binary
modulations is given by averaging the BER in (13) over the
pdf of γ, as

PE =
∫∞

0
PE
(
γ
)
pγ
(
γ
)
dγ. (15)

Making the change of variables x = aγ, PE is given by

PE = ν

2κaβΓ(b)

∫∞
0
Γ(b, x)

1(
1 + x/

(
aβ
))ν+1

×2F1

(
1
2

, ν + 1; 1;
1− (1/κ2

)

1 + aβ/x

)
dx.

(16)

Expressing the complementary incomplete gamma function
in terms of Meijer’s G-function [16]

Γ(b, x) = G2,0
1,2

(
x

∣∣∣∣∣
1
b, 0

)
(17)

and using the series expansion for the hypergeometric
function, (16) becomes

PE = ν
(
aβ
)ν

2κΓ(b)

∞∑

n=0

(1/2)n(ν + 1)n
[
1− (1/κ2

)]n
(1)nn!

×
∫∞

0
xn
(
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G2,0

1,2

(
x
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1

b, 0

)
dx,

(18)

where (v)n = Γ(v + n)/Γ(v) denotes the Pochhammer
symbol [16]. The integral in (18) may be solved using [16,
equation (7.811.5)], to obtain the average BER for binary
modulations, as

PE = 1
2κΓ(b)Γ(v)

×
∞∑

n=0

(1/2)n
[
1− (1/κ2

)]n
(1)nn!

G3,1
2,3

(
aβ

∣∣∣∣∣
−n, 1

v, b, 0

)
.

(19)

Although the BER expression (19) is given as an infinite
series form, it converges rapidly and steadily, requiring few
terms for an accurate result. Therefore (19) can be easily
evaluated using standard mathematical programs such as
Mathematica. Since the summation (19) converges very fast,
no more than five terms were used for good numerical
accuracy.

3.1. Special Cases

(1) For the case of noncoherent/differentially coherent
detection (b = 1), (19) reduces to

PE,b=1 = 1
2κΓ(v)

×
∞∑

n=0

(1/2)n
[
1−(1/κ2

)]n
(1)nn!

G2,1
1,2

(
aβ
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−n
v, 0

)
,

(20)

where where we used the property [19, equation
(07.34.03.0002.01)], that is,

G3,1
2,3

(
aβ

∣∣∣∣∣
−n, 1
v, 1, 0

)
= G2,1

1,2

(
aβ

∣∣∣∣∣
−n
v, 0

)
. (21)

(2) For the uncorrelated quadratures with equal vari-
ances, that is, κ = 1, (19) reduces to

PE = 1
2κΓ(b)Γ(v)

G3,1
2,3

(
aβ

∣∣∣∣∣
0, 1

v, b, 0

)
. (22)

(3) By defining x = γ/γ, we can approximate px(x) →
ζ xt + o(xt), for x → 0+. For the SNR pdf given in
(14), by taking the limx→ 0px(x) we can easily show
that

ζ =
(
1 + κ2

)

2κ
,

t = 0.

(23)

Therefore, the average BER of binary modulations for
high SNR values is given by [20]

P
∞
E =

1
2Γ(b)

∫∞
0
Γ
(
b,aγx

)
[ζ + o(x)]dx

= ζΓ(b + 1)
2Γ(b)

(
aγ
)−1 + o

(
γ −1)

=
(
1 + κ2

)
b

4κ

(
aγ
)−1 + o

(
γ −1).

(24)

Equation (24) implies that the diversity order is Gd =
1 and the coding gain is given byGc = 4κa/((1+κ2)b).
We observe that the expression of the asymptotic BER
for this fading model is controlled only by factor κ,
which includes the effect of correlation and power
ratio of the quadratures. Note that for uncorrelated
quadratures with equal variances (κ = 1) the coding
gain is Gc = 4a/(2b), as expected [20].

4. Numerical Results

In this section we present numerical results to show the
effect of statistical parameters (v, ρ,λ) on the envelope pdf of
the received signal and on the corresponding BER of binary
digital modulations. Although not shown here due to space
limitations, we have observed that small values of ν change
somehow the shape of the envelope pdf compared to high
values (i.e., ν ≥ 10), but they do not affect the deep fade
region. This result was indicated by the absence of parameter
ν in the expression of the asymptotic result for the average
BER. For this reason we assume ν = 5 in the plots.

Figure 1 plots the envelope pdf given in (9) for σc =
1 and for different values of the correlation coefficient ρ
and asymmetry power factor λ (yielding different values of
asymmetry power factor κ). The figure shows that nonzero
correlation coefficients ρ and high values of λ (i.e., conditions
that yield high values of κ) result in higher probability values
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Figure 1: Envelope pdf of correlated bivariate Student-t and
Gaussian quadratures for σc = 1 and for several values of (ρ, λ, κ).

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

Average SNR (dB)

A
ve

ra
ge

B
E

R

Exact analysis

Rayleigh (ρ = 0, λ = 1, κ = 1)

(ρ = 0.1, λ = 20, κ = 4.5)

(ρ = 0.2, λ = 3, κ = 1.8)

(ρ = 0.8, λ = 1, κ = 3)

High SNR approx.

Figure 2: Exact and asymptotic BER for coherent BPSK with
correlated bivariate Student-t quadratures for σc = 1 and for several
values of (ρ, λ, κ).

over the deep fade region, as indicated by the shift to the left
of the corresponding pdf curve. The modeling of the deep
fade region is important since it is known to severely affect
the performance of wireless communication systems.

To illustrate the effect of this fading model, Figure 2 plots
the average BER of coherent BPSK for different statistical
parameters (ρ,λ,κ) and compares the exact and high SNR
approximate results. Note that the summation in (19)
converges very fast and no more than five terms were needed
to give accurate numerical results. Moreover, we can see that
the asymptotic BER result in (24) successfully predicts the
high SNR slope (diversity order), which is equal to 1, and

the coding gain, yielding an excellent agreement with the
exact average BER at high SNRs. From this figure, we observe
that the error performance is affected considerably by the
statistical parameter values. This is verified by the asymptotic
analysis which shows the influence of κ on the coding gain of
the asymptotic BER. Therefore, using the proposed analysis
for this fading model, we can quantify the effect of these
statistical parameters on the error rate performance of binary
digital communication systems.

5. Conclusion

In this letter, by approximating the correlated bivariate
Gaussian joint pdf by the corresponding Student-t joint
distribution, we derived the envelope pdf for the case of
quadrature components with zero means and nonidentical
variances. We showed that the deep fade region is controlled
by the amount of correlation between the quadratures as
well as their power ratio, and we derived expressions for the
exact and asymptotic BER performance for binary digital
modulations operating in this statistical fading channel
model.
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