
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 486738, 12 pages
http://dx.doi.org/10.1155/2013/486738

Research Article
Study of Railway Track Irregularity Standard Deviation Time
Series Based on Data Mining and Linear Model

Jia Chaolong,1 Xu Weixiang,2 Wei Lili,3 and Wang Hanning1

1 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
2 School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
3 Chongqing Public Security Bureau, Chongqing 401147, China

Correspondence should be addressed to Xu Weixiang; wxxu@bjtu.edu.cn

Received 13 July 2013; Revised 1 September 2013; Accepted 2 September 2013

Academic Editor: Wuhong Wang

Copyright © 2013 Jia Chaolong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Good track geometry state ensures the safe operation of the railway passenger service and freight service. Railway transportation
plays an important role in the Chinese economic and social development. This paper studies track irregularity standard deviation
time series data and focuses on the characteristics and trend changes of track state by applying clustering analysis. Linear recursive
model and linear-ARMA model based on wavelet decomposition reconstruction are proposed, and all they offer supports for the
safe management of railway transportation.

1. Introduction

Temporal data and temporal data mining which reflect the
dynamic nature of data are one of the focuses of academic
community in recent years. Time series is an important tem-
poral data. Time series similarity has been widely used in
speech recognition. Euclidean distance and dynamic time
warping are two classic methods. Euclidean distance is most
frequently used in the time series, but Euclidean distance is
a very brittle distance measure [1]. There is an obvious defect
of Euclidean distance: sometimes when the sequence is very
similar but the distance is great. Then DTW is proposed.
DTW is an algorithm for measuring the similarity between
two sequences which may vary in time or speed. A well-
known application has been automatic speech recognition
[2–4], to cope with different speaking speeds. Since Agrawal
et al. first proposed overall matching algorithm of time series
similarity search in 1993 [5], more and more scholars began
to focus on temporal data mining study.

In the past four decades, scholars have proposed a variety
of classic time series forecast methods, including Autore-
gressive Model (AR) [6], Moving Average Model (MA) [7],
Autoregressive Moving Average Model (ARMA) [8–10], and
Autoregressive Integrated Moving Average (ARIMA) [11].

There are a variety of methods and models in the fore-
cast area, such as determining function method, statistical
regression analysis, time series analysis, Markov model [12],
state-space model [13], Bayesian forecasting model [14],
as well as a variety of methods combined with theories,
techniques, and methods, such as the hybrid of fuzzy theory
and linear regression [15], the hybrid ARIMA and support
vector machinesmodel [16], the hybrid of time series forecast
using neural networks, fuzzy logic, fractal theory [17], and the
hybrid Markov model and neural networks [18]. At the same
time, the number of subjects is divided into univariate and
multivariate. In time series analysis and forecasting methods,
the most commonly used method is based on the time
domain and frequency domain. Linear and stochastic linear
models and nonlinear models are two main types of study
models. Random process cannot be expressed by definite
function. Typically, there are mainly two types of methods
to analyze random process: one is a probabilistic method,
and the other is the analysis method, and the two methods
are often used simultaneously in practical study. Each of
AR model, MA model, ARMA model, the Markov Forecast
[19], and Kalman filter model [20, 21], can be used to study
the stochastic process. The characteristics of the first three
models are linear forecast model and are relatively simple in
terms of elements taken into consideration.
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In the recent 20 years, fuzzy system is one of the most fre-
quently used methods [22–25]. Fuzzy system has been used
for a variety of optimization algorithms. In many studies, the
design of fuzzy system forecast has been proposed.

In the study of time series forecast, the forecast accuracy
is considered as top priority in the selection of forecast meth-
ods.The neural network is themost representative time series
forecasting method, which has drawn more and more atten-
tion. In the past ten years, the neural network model is used
in the study of time series forecast. The discovery of the
neural network is considered to be a competitor to a variety
of traditional time series models [26–28]. Because of flexible
computing framework and general approximation, artificial
neural network [29] is widely used in the field of predictive
analytics and has higher precision.

However, an important and difficult task is faced by deci-
sion makers in many areas to improve the accuracy of the
time series forecast. Using a hybrid model by combining sev-
eral models has become a common practice to improve fore-
cast accuracy.This study field has been significantly expanded
[30–34].

The study has shown that forecasts of certain hybrid
models are often better than those obtained from a single
model forecast. Hybrid model forecast is considered to be a
more accurate forecast. Its main problem can be described
as follows: suppose there are 𝑛 kinds of forecasts, such
as 𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡). The general form of this hybrid

forecasting model can be defined as weighted sums of 𝑦
𝑖
(𝑡),

and the sum of all weights stack up is 1. The biggest difficulty
is to determine the weights of every single forecast.

According to the principles recognized by the scientific
community, simple theories are more reliable than complex
ones under the same circumstances.The best scientific theory
should be the simplest. railway transportation is different
from automobile traffic. In automobile traffic, the driver is
themajor safety factor [35, 36], but in Railway transportation,
track irregularity state is the decisive factor. This paper tries
to look for a simple, reliable model to analyze the track
irregularity change trend and to explore knowledge.

The paper is organized as follows. Section 2 introduces
forecast models of time series. Data mining of track irregu-
larity time series is described in Section 3. Section 4 presents
analysis and forecast of track irregularity time series based
on linear recursive forecast model. Section 5 proposes linear-
ARMA model based on wavelet decomposition reconstruc-
tion. Finally, Section 6 concludes the paper with a summary.

2. Methods and Processes of Time Series
Data Study

2.1. Forecast Methods of Time Series Data. Typically, there are
two methods to forecast time series data: qualitative fore-
cast and quantitative forecast. Qualitative forecast method
focuses on the forecast of the nature of the development,
trends, direction, and major turning points in the road of
development and mainly depends on human experience and
analytical ability. Quantitative forecast focuses on the analysis
of quantitative aspects of development, attaches importance
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Figure 1: Main forecast methods of time series.

to the quantitative description of the degree of development
and changes, is based more on historical statistics, and is
less affected by subjective factors. Qualitative forecast and
quantitative forecast are not mutually exclusive but can be
complementary to each other and should be combined cor-
rectly in the actual forecast process.

Two types of time series forecasting methods and their
methods are shown in Figure 1.

2.2. Study Processes of Time Series Data. The study processes
of time series data include three steps: data acquisition,
correlation analysis, and model identification. Specific study
processes are shown in Figure 2.

3. Data Mining of Track Irregularity
Time Series

3.1. Theoretical Analysis of Data Mining. Data mining is the
process of mining interested information from databases,
data warehouses, or other data repositories. It is an iterative
process, whose study steps are shown in Figure 3.

The main method, purpose, and contents of time series
data mining include: time series segmentation studying
underlying mechanisms change of time series and repre-
sentation at high level; similarity search looking for similar
sequences; clustering analysis on similarity measure, clus-
tering algorithms and results, and gathering similar time
sequence variation into one class; classification and sequence
analysis on time series and the time points in the entire
time series; anomaly detection which finds the abnormality
of sequence, points, andmode; analysis on the law and trends
of time series changing over time, forecast of the future
data and trends based on the historical and current data;
using graphics technology, virtual reality technology, and
data mining technology to display complex time series in
a way which is easy, intuitive, and graphical for people to
understand so that we can realize visualized and practical
study of time series data.

3.2. Time Series Similarity. Time series similarity is the basis
of time series analysis and time series data mining. The simi-
larity is achieved by calculating the distance between the time
series.
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Figure 2: Classification of time series analysis.
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Figure 3: Steps of data mining process.

The definition of distance needs to meet the following
four properties:

(1) 𝑑
𝑖𝑗
= 0 ⇔ 𝑥

𝑖
= 𝑥
𝑗
,

(2) ∀𝑥
𝑖
, 𝑥
𝑗
, 𝑑
𝑖𝑗
≥ 0,

(3) ∀𝑥
𝑖
, 𝑥
𝑗
, 𝑑
𝑖𝑗
= 𝑑
𝑗𝑖
,

(4) ∀𝑥
𝑖
, 𝑥
𝑗
, 𝑥
𝑘
, 𝑑
𝑖𝑗
≤ 𝑑
𝑖𝑘
+ 𝑑
𝑘𝑗
.

𝑑
𝑖𝑗
is the distance between 𝑥

𝑖
and 𝑥

𝑗
in a group of objects𝐷 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} in𝑚-dimensional space.

Minkowski distance is the common formula to calculate
distance, and the expression is

𝑑
𝑖𝑗
=

𝑚

∑

𝑘=1

(






𝑥
𝑖𝑘
− 𝑦
𝑗𝑘







𝑝

)

1/𝑝

, (𝑝 > 0) . (1)

Many distances are formed by changing the parameters
of theMinkowski distance. Distance formula commonly used
includes Manhattan distance, Euclidean distance, Chebyshev
distance, custom distance, Mahalanobis distance, Minkowski
distance, variance weighted distance, Canberra Distance,
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Figure 4: Visual cluster tree.
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Figure 5: Clustering results.

dynamic time warping distance, the cross-correlation dis-
tance, KL distance, and so forth.

3.3. Clustering Analysis of Track Irregularity. Standard devia-
tion between the data is used to reflect the degree of variation.
When the two sets of data are under circumstances of the
same units and similar means, the greater the standard devi-
ation is, the greater the degree of variation between the data
will be. When the data around the mean of the distribution is
more discrete, representation of the mean is weaker. On the
contrary, the smaller the standard deviation is, the little the
variance between the data is indicated, and the distribution of
data around the mean is more intensive, and representation
of the mean is better. Therefore, standard deviation of
track irregularity data is selected in the study of discrete
distribution of track irregularity data over time to evaluate the
development trends of track irregularity. In this study, track
irregularity data is provided by State Key Laboratory of Rail
Traffic Control and Safety, Beijing Jiaotong University.

We take K449-K450 km section, Beijing-Kowloon line,
with 44th cross-level inspection data as study data. The sec-
tion is divided into 40 units, and the standard deviation of
each units is calculated; then we get 40 cross-level standard
deviation time-series data.This standard deviation data is the
object of cluster analysis. In this paper, 𝑘-mean algorithm
is used in clustering algorithm, cross correlation distance
is used in the distance between objects in the matrix, and
the minimum variance algorithm is used in the connection
between the variables. Clustering results are shown in Figures
4 and 5.

The above track irregularity standard deviation time
series which have similar clustering methods, changing
trends, and characteristics are clustered into one category.

4. Linear Recursive Model

4.1. Core Ideas. Because of the inertia characteristics of the
track state changes, track state has a memory effect.The latest
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track state and the nearest previous state shares similarity, and
the inspection state of the adjacent time points has a similar
trend. From the macroperspective, the track state presents
nonlinear changes throughout thewhole life cycle of the track
[37, 38], but from the microperspective, in a short time, track
state changes at adjacent time will be close to linear features.

Based on the above assumptions, this paper proposes
linear model of track state changes as follows:

𝑠
𝑖,𝑗
= 𝑘
𝑖
𝑡
𝑖,𝑗
+ 𝑏
𝑖
. (2)

In the formula, 𝑠
𝑖𝑗
is the track state of the𝑗th day between

the 𝑖th to the (𝑖 + 1)th inspection; 𝑘
𝑖
is slope value of track

state linear change between the 𝑖th to the (𝑖 + 1)th inspection;
𝑏
𝑖
is intercept; 𝑡

𝑖,𝑗
is the𝑗th day between the 𝑖th to the (𝑖 + 1)th

inspection.
According to the least squaremethod, themodel employs

the vector form. Least squares estimation of the model
parameters accords to the following conditions:

�̂� = (𝐵
𝑇
𝐵)

−1

𝐵
𝑇
𝑌. (3)

In the formula:

�̂� = (

𝑘
𝑖

𝑏
𝑖

) ,

𝑌 = (

𝑠
𝑖+1,0

𝑠
𝑖+2,0

...
𝑠
𝑖+𝑛,0

),

𝐵 = (

𝑡
𝑖+1

𝑡
𝑖+2

...
𝑡
𝑖+𝑛

1

1

...
1

) .

(4)

In the formula, 𝑡
𝑖+𝑛

is the length of time between the 𝑖th to
the (𝑖 + 1)th inspection; 𝑡

𝑖+𝑛
= 𝑇
𝑖+𝑛
−𝑇
𝑖+𝑛−1

, 𝑇
𝑖+𝑛

is the time of
state value 𝑠

𝑖+𝑛,0
at the (𝑖 + 𝑛)th inspection; 𝑠

𝑖+𝑛,0
is state value

of the (𝑖 + 𝑛)th inspection.
The form of recursive forecast of the model is as follows:

𝑠
𝑖+𝑚,𝑗

= 𝑘
𝑖+𝑚

𝑡
𝑖+𝑚,𝑗

+ 𝑏
𝑖+𝑚

,

𝑠
𝑖+𝑚+1,𝑗

= 𝑘
𝑖+𝑚+1

𝑡
𝑖+𝑚+1,𝑗

+ 𝑏
𝑖+𝑚+1

,

𝑠
𝑖+𝑚+2,𝑗

= 𝑘
𝑖+𝑚+2

𝑡
𝑖+𝑚+2,𝑗

+ 𝑏
𝑖+𝑚+2

...

𝑠
𝑖+𝑇,𝑗

= 𝑘
𝑖+𝑇
𝑡
𝑖+𝑇,𝑗

+ 𝑏
𝑖+𝑇
.

(5)

In the formula,𝑚 > 𝑛, and 𝑇 > 𝑚 + 𝑛.

4.2. Model Analysis. Three time intervals data of the first four
historical inspection data and the second to fourth inspection
data in cross-level standard deviation time series data are
considered as an input; the slope and intercept of track

Forward recursion

Updates

Updates

Forecast

Forecast

Forecast
...

...

Ŝi+n+3,0

Ŝi+n+1,0

Ŝi+n+2,0

Si+n+2,0

Si+n+1,0

Si+n,0

Si+2,0

Si+1,0

Figure 6: Forecast process of linear recursive model.

state linear changes in time interval between the fourth and
fifth inspection are considered as output. When the forecast
finishes, the fifth forecast data is updated by the fifth standard
deviation of the actual inspection data, then three-time
interval between the second and the fifth inspection data and
the third to fifth inspection data are used to forecast the slope
and intercept of track state linear changes in time interval
between the fifth and sixth inspections. As the data is updated
gradually, the model pushes and forecasts towards ahead.

Meanwhile, the linear forecast model proposed in this
paper does not have to consider equal interval requirements
of data samples like general time series models. In the
track irregularity time series data, especially data of track
inspection car, due tomaintenancework, passenger and cargo
plan changes, and the track inspection car scheduling and
other reasons, inspection data is unequal interval, namely,
in the model 𝑡

𝑖+𝑛,0
̸= const. Linear model has the following

advantages: simple model based on a linear model and least
squares solution; without regard to unequal interval charac-
teristics. Length of unequal interval is seen as a parameter
directly in the model.

Forecast process of linear recursive model is shown in
Figure 6.

4.3. Residual Correction. In order to further improve the fore-
cast accuracy of themodel, the residual needs to be corrected.
Model residuals sequence data is a cyclical variation with
concussive time series. In this paper, the Fourier transforming
idea is used on residuals analysis.

Model residuals sequence data is as follows:

𝑒
𝑖+𝑘

= 𝑠
𝑖+𝑘

− 𝑠
𝑖+𝑘
. (6)

The Fourier transforming residuals expression 𝑒(𝑡
𝑖
) is

𝑒
𝑖+𝑘

=

1

2

ℎ
0
+

𝑚

∑

𝑗=1

[ℎ
𝑗
cos (𝜔

𝑗
⋅ 𝑇
𝑖+𝑘
) + 𝑙
𝑗
sin (𝜔

𝑗
⋅ 𝑇
𝑖+𝑘
)] . (7)
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In the formula,

𝑖 = 1, 2, . . . , 𝑛,

ℎ
0
=

1

𝑛

𝑛

∑

𝑘=1





𝑒
𝑖+𝑘





,

ℎ
𝑗
=

2

𝑛

𝑛

∑

𝑘=1

𝑒
𝑖+𝑘

⋅ cos (𝜔
𝑗
⋅ 𝑇
𝑖+𝑘
) ,

𝑙
𝑗
=

2

𝑛

𝑛

∑

𝑘=1

𝑒
𝑖+𝑘

⋅ sin (𝜔
𝑗
⋅ 𝑇
𝑖+𝑘
) ,

𝜔
𝑗
=

2𝑗𝜋

∑
𝑛

𝑘=1
𝑡
𝑖+𝑘

.

(8)

By looking for the appropriate value of 𝑚, fitting errors
between model residuals 𝑒

𝑖+𝑘
and periodic sequence 𝑒

𝑖+𝑘

achieved through Fourier transforming can get to a mini-
mum value; namely,

𝑛

∑

𝑘=1

(𝑒
𝑖+𝑘

− 𝑒
𝑖+𝑘
)
2

𝑒
𝑖+𝑘

= min . (9)

After getting the best value of𝑚, the final forecast model
is

𝑠
𝑖+𝑘

= 𝑠
𝑖+𝑘

+ 𝑒
𝑖+𝑘

= 𝑠
𝑖+𝑘

+

1

2

ℎ
0

+

𝑚

∑

𝑗=1

[ℎ
𝑗
cos (𝜔 ⋅ 𝑇

𝑖+𝑘
) + 𝑙
𝑗
sin (𝜔 ⋅ 𝑇

𝑖+𝑘
)] ,

𝑖 = 1, 2, . . . , 𝑛.

(10)

4.4. A Case Study. Change trend and periodic characteristic
of track irregularity standard deviation data can be classified
by cluster analysis. Since the cycle of track maintenance work
is determined by track irregularity change, so it is uncertain.
Thus, data containing multiple cycle cannot be used for
the study. The data within a period that best represents
the development trend of track irregularity characteristics is
selected as data object. Change trends of track irregularities
within each period can be forecasted by studying the law of
track irregularity standard deviation changes in this cycle.
So, 25 of track cross-level standard deviation data of Beijing-
Kowloon line, K449 + 800 − K449 + 825 mileage unit, from
November 13, 2008 to May 18, 2010, are taken as the study
object to forecast 5–25th standard deviation data of track
cross-level.

By solving the least squares estimation, we get recursion
{(𝑘
𝑖
, 𝑏
𝑖
)} as follows: {(𝑘

𝑖
, 𝑏
𝑖
)} = {(0.004012877, 1.052496244),

(0.004880568, 1.072606649), (−0.000814172, 1.257042149),
(0.003246744, 1.247075988), (−0.003644461, 1.423421705),
(0.001636605, 1.30965592), (−0.001246396, 1.374786532),
(0.009376521, 1.168171032), (0.001440352, 1.442494856),
(−0.006255225, 1.647403617), (0.002275014, 1.502381251),
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Figure 7: Forecast curve and the actual curve of cross-level standard
deviation (K449 + 800 to K449 + 825 unit segment).
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Figure 8: Forecast curve after residual revised and the actual curve
of cross-level standard deviation.

(−0.002533806, 1.551368672), (−0.000951367, 1.486815078),
(0.007406862, 1.328357308), (−0.002678251, 1.568176542),
(0.0066245, 1.442194457), (0.002152384, 1.629003922),
(−0.001214053, 1.747250648), (−0.001427253, 1.807423072),
(0.000826365, 1.737111301), (0.004952398, 1.676475089)}.

When the parameters {(𝑘
𝑖
, 𝑏
𝑖
)} are substituted into the

short time track state changes linearly formula, the daily track
state changes between two inspection tome points can be
estimated, and the forecast curve and the actual curve are
shown in Figure 7.

Forecast results after residual correction are shown in
Figure 8.

If we put several indicators together, we can fully measure
the forecast accuracy of the model. Here, we use mean square
error (MSE) and mean absolute percentage error (MAPE).

MSE is the expectation value of square of difference
between the estimate value and true value of the parameter,
and it indicates the degree of changes of data. The smaller
the MSE value is, the mere accurate the forecast model is in
describing the experimental data. The expression of MSE is
as follows:

MSE = √∑𝜀
2

𝑛

.
(11)
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Table 1: Analysis of accuracy of the cross level standard deviation.

Units MSE MAPE MSE after residual correction MAPE after residual correction
K449 + 000 − K449 + 025 0.11 12% 0.08 7.4%
K449 + 100 − K449 + 125 0.14 9.8% 0.07 5.0%
K449 + 200 − K449 + 225 0.09 6.4% 0.07 4.2%
K449 + 325 − K449 + 350 0.11 7.6% 0.06 3.8%
K449 + 425 − K449 + 450 0.08 6.0% 0.06 4.0%
K449 + 475 − K449 + 500 0.12 12% 0.07 7.5%
K449 + 575 − K449 + 600 0.10 7.7% 0.07 5.6%
K449 + 675 − K449 + 700 0.09 4.9% 0.05 2.3%
K449 + 800 − K449 + 825 0.10 5.5% 0.07 3.6%
K449 + 875 − K449 + 900 0.07 4.4% 0.04 2.0%
K449 + 975 − K450 + 000 0.09 7.4% 0.05 3.7%

Expression of MAPE is as follows:

MAPE = 100

𝑛

𝑛

∑

𝑡=1










𝑧
𝑡
− �̂�
𝑡

𝑧
𝑡










. (12)

Forecast accuracy ofMAPE can be divided into four indi-
cators: high-precision forecast (MAPE < 10%), good forecast
(10%<MAPE< 20%), feasible forecast (20%<MAPE< 50%),
and error forecast (MAPE > 50%).

Forecast accuracy of the model in some units segment is
shown in Table 1.

Through the comparison of forecast accuracy indicators
MSE and MAPE, we can find that the values of MSE and
MAPEof themodel after residuals correction are significantly
reduced, and the forecast accuracy is generally improved by
30–40%, which belongs to high-precision forecast.

5. Linear-ARMA Model Based on
Wavelet Decomposition Reconstruction

Forecast models after residual correction generally enjoy
higher forecast accuracy than the original forecast models,
but this also increases the computation and complexity of
the model. Therefore, this paper will propose linear-ARMA
model based on wavelet decomposition reconstruction.

5.1. Wavelet Transform. The wavelet transform [39–45] is a
new field developing rapidly in applied mathematics and
engineering. It is a new branch of mathematics and perfectly
combines functional analysis, Fourier analysis, sample trans-
fer analysis, and numerical analysis. It is based on certain spe-
cial functions; it converts data process or data sequence into
series in order to find the similar spectrum characteristics
and finally achieves data processing.The wavelet transform is
the local transformation of space (time) and frequency and
can extract information effectively from the signal and do
multiscale detailed analysis to functions or signals by dilation
and translation and other computing functions.

As the name implies, “wavelet” means a waveform with
a small area, limited length, and zero mean value. “Small”
refers to the decay of the wavelet; while the “wave” refers to
its volatility, its amplitude shocks in alternate positive and

negative forms. Compared to the Fourier transform, wavelet
transform is the localized analysis of time (spatial) frequency;
it eventually reaches breakdown of time at a high frequency;
and subdivision of frequency at the low frequency, can
automatically adapt to the requirements of time-frequency
signal analysis, and can focus on any detail of the signal,
solving the difficulties of Fourier transforming. Thus, it
becomes a major breakthrough in the scientific method after
the Fourier transforming. So, the wavelet transform is even
called “mathematical microscope.”

In summary, the method that divides functions into a
series of simple basic functions is of theoretical and practical
significance. In this paper, Daubechieswavelet is used in track
irregularity time series data decomposition.Daubechies is the
general name of a series of binary wavelet proposed by the
French scholar Daubechies, which can do multiscale wavelet
decomposition to signal.

5.2. Core Ideas. According to the idea of wavelet decompo-
sition and reconstruction, the standard deviation of track
irregularity sequence data waveform signal is decomposed
into detail waveform signal (𝐷1, 𝐷2, 𝐷3) and approximate
waveform signal (𝐴3), in which detail waveform signal is
stationary series with zero mean. We can use the random
linear model to study it. We use ARMA model in this paper.
Approximate waveform signals are generally nonstationary,
smooth sequence curves. According to its smooth character-
istics, the linear recursivemodel is used in trend analysis.The
modeling idea is shown in Figure 9.

In the figure, 𝐴3
𝑖
is the actual value and 𝐴3

𝑖
, 𝐴3
𝑖+1

are
forecast values. According to the geometric relationship, the
values 𝐴3

𝑖
, 𝐴3
𝑖+1

are as follows:

𝐴3
𝑖
= 𝐴3
𝑖−1

+ (𝐴3
𝑖−1

− 𝐴3
𝑖−2
) ,

𝐴3
𝑖+1

= 𝐴3
𝑖
+ (𝐴3

𝑖
− 𝐴3
𝑖−1
) .

(13)

Finally, the two partial results are combined, and all the
forecast sequence data are added up by weight 1. The formula
is shown as follows:

𝑆 = 𝐷1 + 𝐷2 + 𝐷3 + 𝐴3. (14)
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Â3i+1

A3i+1

ti−2 ti−1 ti+1ti

A3i−1
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Figure 9: Linear recursive model of approximate waveform signal
(LF).

Track irregularity standard
deviation time series data

Wavelet
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Figure 10: Modeling process of linear-ARMA model based on
wavelet decomposition reconstruction.

In the formula,𝐷1,𝐷2, and𝐷3 are high-frequency detail
signal sequence forecasted by the ARMA model, 𝐴3 is
sequence of the low-frequency approximation by linear
model forecast, and 𝑆 is forecast value of the final state.

After decomposition-reconstruction process, the final
forecast result appears, and the modeling process is shown
in Figure 10.

5.3. Case Study. The Daubechies wavelet is selected to
decompose the track irregularity standard deviation time
series data signal; with the decomposition depth being 3,
we use Mallat tower algorithm to do decomposition and
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Figure 11: Level 1 detail waveform signal (HF) of cross-level stan-
dard deviation.
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Figure 12: Level 2 detail waveform signal (HF) of cross-level stan-
dard deviation.

reconstruction of track irregularity standard deviation time
series.

K449-450 km section, the Beijing-Kowloon line, upgo-
ing, at 44th cross-level inspection data is selected as the study
data. The section is divided into 40 units, and the standard
deviation of each unit is calculated, and we get 40 cross-
level standard deviation time-series data. After equal time
intervals conversion of standard deviation time-series, we use
linear-ARMA model based on wavelet decomposition and
reconstruction for analysis.

Take K449+800−K449+825 unit sections, fromNovem-
ber 13, 2008, to May 18, 2010, with 38 cross-level standard
deviation data as study data. The Linear-ARMA model pro-
cess based onwavelet decomposition and reconstruction is as
follows.

(1) Wavelet decomposition of track cross-level standard
deviation data: wavelet decomposition process of
cross-level standard deviation time series is the pro-
cess that divides cross-level standard deviation time
series data into high frequency detail waveform signal
and low frequency approximate waveform signal.The
decomposed waveform signals are shown in Figures
11, 12, 13, and 14.

(2) ARMA model forecast of high-frequency signals:
high-frequency signal is stationary time series. We
use ARMA model to forecast, and the results are
shown in Figures 15, 16, and 17.

(3) Low-frequency signal linear model forecast: low-
frequency signal is a smooth curve, and its linear fore-
cast result is shown in Figure 18.
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Figure 13: Level 3 detail waveform signal (HF) of cross-level stan-
dard deviation.
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Figure 14: Layer 3 approximate series waveform signal (LF) of cross-
level standard deviation.

(4) Model reconstruction and accuracy analysis: all fore-
cast sequence data is added up by weight 1; compar-
ison of forecast values and original values are shown
in Figure 19.

Forecast error of the model is shown in Figure 20.

5.4. Accuracy Analysis. MSE and MAPE are used to measure
accuracy of the model, and the forecast the accuracy of some
units is shown in Table 2.

According to the forecast results of MSE, MAPE value in
Table 2, the model has higher forecast accuracy, and so there
is no need to correct the residual like linear recursive model.
This has shown that linear-ARMA model based on wavelet
decomposition reconstruction is an effective way to forecast
the trend of track state changes.

6. Conclusions

In this paper, data mining and time series theory are used
to study track irregularity standard deviation time series
data. The main purpose of this study is to forecast track
irregularity state in future. By using clustering analysis theory
in data mining, different patterns and characteristics of track
irregularity change can be found.Through a systematic study
of time series data classification and time series forecast
model, this paper puts forward linear recursive models and
linear-ARMAmodel based on wavelet decomposition recon-
struction to forecast the changing trends of track irregularity
standard deviation time series. Simulation results show that
the models have higher accuracy.
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Figure 15: Level 1 forecast value of detail waveform signal (HF) and
original data cross-level standard deviation.
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Figure 16: Level 2 forecast value of detail waveform signal (HF) and
original data cross-level standard deviation.
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Figure 17: Level 3 forecast value of detail waveform signal (HF) and
original data cross-level standard deviation.
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Figure 18: Layer 3 forecast value of approximation waveform signal
(LF) and original data of cross-level standard deviation.
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Figure 19: Comparison of forecast values and original values.

0 100 200 300 400 500 600
−0.05
−0.04
−0.03
−0.02
−0.01

0
0.01
0.02
0.03
0.04
0.05

Inspection time (day)

Er
ro

r

Figure 20: Error analysis.

Table 2: Model accuracy.

Units MSE MAPE
K449 + 000 − K449 + 025 0.03 3.5%
K449 + 100 − K449 + 125 0.02 2.0%
K449 + 200 − K449 + 225 0.03 2.1%
K449 + 325 − K449 + 350 0.02 2.0%
K449 + 425 − K449 + 450 0.02 1.8%
K449 + 475 − K449 + 500 0.03 2.8%
K449 + 575 − K449 + 600 0.03 1.9%
K449 + 675 − K449 + 700 0.03 1.1%
K449 + 800 − K449 + 825 0.02 0.8%
K449 + 875 − K449 + 900 0.02 1.3%
K449 + 975 − K450 + 000 0.02 1.7%

The change of railway track state is a complex process. It
is affected by various aspects of the situation. Although it is
an extremely difficult task to explore laws of its development
and changes, the significance of the study is far reaching.
Because track state is inspected by section, it is not carried
out for each fixedmeasuring points, although there ismileage
data information of fixed measuring points to be studied in
the inspection data. However, it is unavoidable that there
is mileage deviation between the actual measuring point’s
mileage data information andmeasuring point’s mileage data
information in inspection data, and themileage deviationwill
be a few or dozens of meters. It is the basic idea in the study
of track state changes that puts the data after mileage relative
calibration as the subject or takes the section as a whole as

the subject. Due to track maintenance and repair cycle, we
only study track state changes in a cycle. However, track state
change trend between each of the maintenance and repair
cycle is also worth to be studied.
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