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The associative Hopfield memory is a form of recurrent Artificial Neural Network (ANN) that can be used in applications such
as pattern recognition, noise removal, information retrieval, and combinatorial optimization problems. This paper presents the
implementation of the Hopfield Neural Network (HNN) parallel architecture on a SRAM-based FPGA. The main advantage of the
proposed implementation is its high performance and cost effectiveness: it requires O(1) multiplications and O(log N) additions,
whereas most others require O(N) multiplications and O(N) additions.

1. Introduction

Artificial Neural Networks (ANN’s) have become a subject of
very dynamic and extensive research [1–4]. One important
factor is the progress in VLSI technology, which makes easier
the implementation and testing of ANNs in ways not avail-
able in the past. Indeed, the improvement of VLSI technology
makes feasible the implementation of massively parallel
systems with thousands of processors. Another important
factor is the resurging of ANNs as a powerful paradigm for
complex classification and pattern recognition applications.

There are many publications in the literature concerning
the implementation of Hopfield Neural Network (HNN)
in FPGAs (Field Programmable Gates Arrays). In [2] an
implementation of HNN on Xilinx VirtexE is used for block
truncation coding for image/video compression. Reference
[4] describes an implementation of HNN on FPGA (Virtex-
4LX160) for the identification of symmetrically structured
DNA motifs in Alpha Data, which has better performance
than the same algorithms implemented in C++ on a IBM
X260 Server. In another work [1] is studied the implemen-
tation of an associative memory neural network (AMNN)
using reconfigurable hardware devices such as FPGA and
its applications in image pattern recognition systems. In

reference [5], the authors use a modified rule training
(simultaneous perturbation learning rule) for HNN and
showe its implementation in an FPGA.

The basic associative memory paradigm can be defined
as the storage of a set of patterns in such a way that if a
new pattern X is presented, the response is a pattern among
the stored patterns which closely resembles X . This implies
that it is possible to recall the complete pattern even if
only part of it is available. This powerful concept can be
utilized in many applications such as pattern recognition,
image reconstruction from a partial image, noise removal,
and information retrieval. The Hopfield Neural Network, a
very interesting model of ANNs which was discovered by
Hopfield in the 80’s [6], can be used as an associative memory
and as a solver of combinatorial optimization problems.

HNN consists basically of a number, usually large, of
simple processing units (neurons) with small local memory
per neuron. These neurons are interconnected via the so-
called synapses. Thus, highly parallel computing systems
with simple processing elements and point-to-point com-
munication are typical target architectures for efficiently
implementing ANNs.

Several mapping schemes have been reported to imple-
ment neural network algorithms on parallel architectures.
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Examples can be found in [7–17]. In this paper, an imple-
mentation of HNN into an SRAM-based FPGA is shown.

In Section 2, the theoretical aspects related to the studied
HNN are presented. Section 3 describes the implementation
of the HNN according to our approach. Section 4 shows
the results of the simulations performed using the Mod-
elSim Simulation tool. In Section 5 our implementation is
compared with previous work. The conclusions and planned
future researches are discussed in Section 6.

2. Description of the Proposed Algorithm

Hopfield Neural Networks are recurrent artificial neural
networks. In this type of ANN, the processing elements are
the neurons and every output of each neuron is connected
to the input of all other neurons via synaptic weights. All
weights are calculated using the Hebbian rule defined as
follows:

if i /= j wi j =
r∑

p=0

xPi x
P
j ,

if i = j wi j = 0,

(1)

where 0 < i, j < N + 1, XP = {xP1 , xP2 , . . . , xPN}, and xPi ∈
{−1, 1}; P is number of bits in pattern X and r is number of
patterns set.

To provide an efficient design, with less hardware and
much faster than existing state-of-the-art designs, we assume
that the input patterns, “a[i]”, are binary numbers. Then we
apply 2 to come up with new input patterns, and we continue
the iterations until the new input patterns are exactly equal
to the old ones

ai[t] = f (hi[t]) = f

⎛
⎝
∑

j

wi ja j[t − 1]

⎞
⎠. (2)

This equation proposes the following computation steps
which are performed for 1 ≤ j ≤ N .

Step 1. Distribute aj[t−1] to all elements of column j in the
weight matrix W[t].

Step 2. Multiply aj[t − 1] and Wij .

Step 3. Sum the result of the above multiplication along each
row of W to compute the weighted sums hi[t].

Step 4. Apply the activation function f (hi[t]).

Repeat the above steps except that the distribution of
aj[t − 1] in Step 1 should be done to all elements of row
j instead of column j. This is possible because the weight
matrix is symmetric.

Each of Steps 2 and 4 can be performed concurrently
in all active Processing Elements (PEs), and therefore, each
operation will be performed in parallel taking only one cycle.
Figure 1 shows how the multiplications of Step 2 are done in
parallel for four nodes HNN. Each node (represented by a

circle) corresponds to a PE and is numbered based on the
index of the weight (e.g., PE23 corresponds to W23).

Considering Step 3, the summations will be performed
as follows: each odd PE will add the previous result to its
even neighbor and store the result in its even PE. That is,
PEi j ← PEi j + PEi( j+1), where j takes on even values. Then,
each PE that is distant of a multiple of four will add its result
to the PE two positions apart; that is, PEi j ← PEi j + PEi( j+2),
where j is multiple of four. In step k, each PE that is distant
of a multiple of 2k apart will add its result to the PE 2k−1

positions apart to the right; that is, PEi j ← PEi j + PEi( j+2k−1),
where j is multiple of 2k. In this way, for each row the
weighted sum (hi[t]/1 ≤ i ≤ N) will be computed and
stored in each PE of column 0 in log N steps. The case
for the next iteration is similar to the previous case except
that the addition of the PEs previous results is performed
columnwise instead of rowwise. The process of alternating
between rowwise and columnwise summation from iteration
to another is repeated until the HNN converges to a solution.
The summation method is illustrated in Figure 2 for a row
of 8 neurons. Notice that after log N summation steps each
PE in column 1 will have the corresponding weighted sum.
As shown, after three summation steps (i.e., log N steps), the
final sum is stored in the PEi1 of the corresponding row. A
detailed description of the algorithm can be found in [7, 8].

3. Implementation on an FPGA

Considering that the HNN follows two phases in order
to effectively complete the work, learning and recognition
phases are to be implemented.

3.1. Learning Architecture. The HNN must learn all the
combinations that will be stored. The learning process will
be executed serially for each of the combinations, thus, for N
combinations N clock cycles are needed to finish this process.

An HNN of N-nodes requires N2 learning units to be
capable of calculating the N × N weight matrix calculated
using the Hebbian rule given in (1). Following the same
equation, the weight Wij can be calculated by multiplying
ai by aj and then summing the result with the previously
saved weight. Since our inputs are binary, and the learning
is bipolar {−1, 1}, the result of the multiplication should be
1(0 × 001) if ai is equal to aj and −1(0 × FFF) otherwise.
Then the adder will add either−1 or 1 to the previously saved
weight (Figure 3).

The fact that the weight matrix is symmetric with all Wii’s
equal to zero will allow to implement a learning scheme that
requires only (N2/2)−N learning units.

3.2. Recognition Architecture. Two types of cells are used for
the implementation of the recognition phase of the proposed
algorithm. The first one, the Serial Node (SN), is responsible
for both the multiplication of the weights by the input
patterns and the addition of two serial data. It is important to
note that SNs are used only in Step 1. The second one, called
Master Node (MN), is used in the second step to provide the
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Figure 1: Parallel multiplication of four HNN nodes.
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Figure 3: Architecture of the learning unit and its distribution over the network.
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Figure 4: Architecture of the serial node (SN).

addition of two consecutive SNs, and in subsequent steps to
provide the addition of two consecutive master cells.

To deal with larger networks, this chain of cells can be
increased in a modular way. This would be done at the cost
of adding extra hardware and using more cycles to obtain the
final result. Each time the number of cells in a row increases
by two, one master cell should be added.

3.2.1. The Serial Node (SN). Before going into the imple-
mentation details, it is worth mentioning that in order to
avoid overflows the calculated weights are stored in 12-bit
registers even though each weight can fit in smaller register.
This is true even for large size networks. For instance, in the
case of a network of 100 patterns, the range of the weights
would be between −100 and +100. Therefore, using 12-bit
registers should be more than enough to avoid overflows.

Owing that ai are binary inputs and the calculated
weights are coded with 12 bits, outputs of the learning unit
and the multiplication task can be performed via a multi-
plexer that selects either the weight or its 2’s complement.
The first task of SN is to multiply the input pattern by the
weight. The result is saved in a 12-bit parallel-in serial-out
shift register (PISO SHR). Then the serial output of this
shift register will be added to another serial data. At the
end, the result of this addition is saved in a serial-in serial-
out parallel-out shift register (SISOPO SHR) as shown in
Figure 4.

3.2.2. The Master Node (MN). Since HNNs are supposed to
be implemented on large networks, in Step 1 one MN should
be used for every pair of adjacent SNs, while in subsequent
steps another MN is used for every pair of adjacent master
nodes.

As shown in Figure 5, the basic task of MN is to add two
one bit inputs and store the result in a SISOPO SHR similar
to the one used in SNs.

SISOPO SHR

reset

clk

+
Pout

Sout
Sin1

Sin2

Figure 5: Architecture of the master node.

3.2.3. One Row Architecture. For the calculation of a row
consisting of N nodes, SNs are always used in the first step
while in all the other steps we use the MN. Figures 6 and 7
illustrate rows of four and eight nodes, respectively. Note that
Pout outputs of cells other than master node are not used.
Therefore they are unconnected. This is not a serious issue
because the synthesis tools will optimize them away.

3.2.4. The Last Iteration. In order to stop the process one
should wait until the previous input patterns are exactly
equal to the new ones. The initial input patterns are used
only in the first iteration whereas the recalculated patterns
should be used in the following ones. This work is done by
a state machine that reads the output of the network, checks
it, calculates the new input patterns, and sends them to the
network until the stopping condition is satisfied. Figure 8
presents an 8× 8 mesh connected to the state machine (SM).

4. Simulation Results

The simulation was performed in many steps to ensure the
correctness of the design. First of all, a simulation of the
learning process has been done to train a 32-node HNN
on three patterns: 0 x 10287C82, 0 x 243C2424, and 0 x
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Figure 10: Simulation of a HNN’s row of four nodes (the result 0 x 36 is the sum of the weights and it’s done after 13 cycles).

78404078 (see Figure 9). The Ws correspond to the weights
of one row consisting of 384 bits that is sixteen 12-bit each.
The result is compared with another obtained by a training
software implemented in C# to ensure the correctness of the
design.

Figures 10 and 11 show the results of the simulation of a
row of 4 nodes and 8 nodes, respectively. One can notice that
a row that is twice larger takes two more cycles (serial adder
+ Pout register). The result of Wi is stored in Pout register.

After performing the training of the system, a simulation
of the overall HNN 32 nodes network (“simmn32”) was
performed. “sys o” is the output pattern after a “done”
signal is set, while “na” is the next input pattern and the
“reset n o” is the reset signal of the next MN. Figure 12
shows the simulation of the HNN with correct input pat-
terns. In addition to that, the simulation given in Figure 13,
performed with faulty input patterns, shows that the system
converges to the expected pattern after two iterations.
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Figure 12: Real data example; good and disturbed inputs versus outputs.
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Figure 13: Simulation of 32-nodes HNN.

From Figures 12, 13, and 14, it can be seen that for both
input patterns (values 0 x 10287C82 and 0 x 24BC2426), the
HNN converges to patterns 0 x 10287C82 and 0 x 243C2424
memorized in the network. Thus, disturbed, missing, and
correct patterns can be recovered correctly.

5. Performance and Comparison with
Previous Work

From the simulation results presented in the previous section
it can be clearly shown that a HNN of four nodes will only
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take 13 cycles. A network of eight nodes will take 13 + 2 = 15
cycles and in general a network of N nodes (N power of 2)
takes 13 + 2× log2(N/4).

Many techniques for mapping ANNs onto parallel
architectures have been proposed in the literature. Many
of these techniques have been implemented on general-
purpose parallel machines. Others were implemented on
FPGA architectures.

A comparison with previous work relating general-
purpose parallel machines shows the performance superi-
ority of our implementation over known implementations
on planar architectures. Most known implementations [11,
13, 14, 16, 17] require O(N) time complexity, whereas the
proposed implementation requires O(log N) time complex-
ity. Implementations on nonplanar architectures, such as
hypercube, show a minor performance gain over our design
at the cost of much more complex interconnection network
[10, 15]. This nonplanar architecture, when implemented on
FPGA, requires a complex interconnectivity, which leads to
more hardware resources and a lower time performance. This
in turn could offset any performance gain.

Several FPGA implementations of ANNs have been
reported in the literature [1–5]. Of special interest is the
FPGA design proposed by Leiner et al. [1], because it
implements the same Hopfield neural model. Both imple-
mentations targeted the same FPGA device, which is a
Spartan2 chip the XC2S200. The implementation by Leiner
et al. takes O(N) multiplication and summation steps.
Therefore, our implementation shows a higher performance.
Moreover, we were able to achieve a clock rate of more than
157.604 MHz in contrast to a 50 MHz by Leiner et al.

6. Conclusions and Future Work

The implementation of an efficient algorithm for mapping
into an FPGA the operation of the Hopfield associative
memory was presented in detail. The time complexity is of
order O(log N), which is better than any known algorithm
on planar architecture and achieves the same performance

of higher degree architecture such as hypercubes without the
added cost.

Future work will explore a similar design of an HNN
including fault tolerance.

References

[1] B. J. Leiner, V. Q. Lorena, T. M. Cesar, and M. V. Lorenzo,
“Hardware architecture for FPGA implementation of a neural
network and its application in images processing,” in Pro-
ceedings of the 5th Meeting of the Electronics, Robotics and
Automotive Mechanics Conference (CERMA ’08), pp. 405–410,
October 2008.

[2] S. Saif, H. M. Abbas, S. M. Nassar, and A. A. Wahdan,
“An FPGA implementation of a hopfield optimized block
truncation coding,” in Proceedings of the 6th International
Workshop on System on Chip for Real Time Applications
(IWSOC ’06), pp. 169–172, December 2006.

[3] S. Saif, H. M. Abbas, S. M. Nassar, and A. A. Wahdan, “An
FPGA implementation of a neural optimization of block trun-
cation coding for image/video compression,” Microprocessors
and Microsystems, vol. 31, no. 8, pp. 477–486, 2007.

[4] M. Stepanova and F. Lin, “A hopfield neural classifier and
its FPGA implementation for identification of symmetrically
structured DNA motifs,” Journal of VLSI Signal Processing, vol.
48, no. 3, pp. 239–254, 2007.

[5] Y. Maeda and Y. Fukuda, “FPGA implementation of pulse
density hopfield neural network,” in Proceedings of the Interna-
tional Joint Conference on Neural Networks, Orlando, Fla, USA,
August 2007.

[6] J. J. Hopfield, “Neurons with graded response have collective
computational properties like those of two-state neurons,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 79, 1982.

[7] R. A. Ayoubi and M. A. Bayoumi, “An efficient implemen-
tation of multi-layer perceptron on mesh architecture,” in
Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS ’02), vol. 2, pp. 109–112, May 2002.

[8] R. A. Ayoubi, H. A. Ziade, and M. A. Bayoumi, “Hopfield
associative memory on mesh,” in Proceedings of the IEEE
International Symposium on Cirquits and Systems, pp. 800–803,
May 2004.



Advances in Artificial Neural Systems 9

[9] J. Hwang and S. Kung, “Parallel algorithms/architectures
neural networks,” Journal of VLSI Signal Processing, 1982.

[10] K. Kim and V. K. P. Kumar, “Efficient implementation of
neural networks on hypercube SIMD arrays,” in Proceedings
of the International Joint Conference on Neural Networks, vol.
2, pp. 614–617, Washington, DC, USA, 1989.

[11] Y. Kim, M. J. Noh, T. D. Han, and S. D. Kim, “Mapping
of neutral networks onto the memory processor integrated
architecture,” Neutral Networks, no. 11, pp. 1083–1098, 1988.

[12] S. Y. Kung, “Parallel architectures for artificial neural nets,” in
Proceedings of the International Conference on Systolic Arrays,
vol. 1, pp. 163–174, San Diego, DC, Calif, USA, 1988.

[13] S. Y. Kung and J. N. Hwang, “A unified systolic architecture for
artificial neural networks,” Journal of Parallel and Distributed
Computing, vol. 6, no. 2, pp. 358–387, 1989.

[14] W. M. Lin, V. K. Prasanna, and K. W. Przytula, “Algorithmic
mapping of neural network models onto parallel SIMD
machines,” IEEE Transactions on Computers, vol. 40, no. 12,
pp. 1390–1401, 1991.

[15] Q. M. Malluhi, M. A. Bayoumi, and T. R. N. Rao, “Efficient
mapping of ANNs on hypercube massively parallel machines,”
IEEE Transactions on Computers, vol. 44, no. 6, pp. 769–779,
1995.

[16] S. Shams and J. L. Gaudiot, “Implementing regularly struc-
tured neural networks on the DREAM Machine,” IEEE
Transactions on Neural Networks, vol. 6, no. 2, pp. 407–421,
1995.

[17] S. Shams and K. W. Przytula, “Mapping of neural networks
onto programmable parallel machines,” in Proceedings of the
IEEE International Symposium on Circuits and Systems, pp.
2613–2617, New Orleans, La, USA, May 1990.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


