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A multilevel aggregation method is applied to the problem of segmenting live cell bright field microscope images. The method
employed is a variant of the so-called “Segmentation by Weighted Aggregation” technique, which itself is based on Algebraic
Multigrid methods. The variant of the method used is described in detail, and it is explained how it is tailored to the application
at hand. In particular, a new scale-invariant “saliency measure” is proposed for deciding when aggregates of pixels constitute
salient segments that should not be grouped further. It is shown how segmentation based on multilevel intensity similarity alone
does not lead to satisfactory results for bright field cells. However, the addition of multilevel intensity variance (as a measure of
texture) to the feature vector of each aggregate leads to correct cell segmentation. Preliminary results are presented for applying the
multilevel aggregation algorithm in space time to temporal sequences of microscope images, with the goal of obtaining space-time
segments (“object tunnels”) that track individual cells. The advantages and drawbacks of the space-time aggregation approach for
segmentation and tracking of live cells in sequences of bright field microscope images are presented, along with a discussion on
how this approach may be used in the future work as a building block in a complete and robust segmentation and tracking system.

1. Introduction

There is extensive current interest in the high-content,
high-throughput screening of live cell populations, and the
experimental techniques being developed for this purpose
are leading to important biological insights with applications
to new clinical therapies [1–4]. Due to the large amount
of data generated by these experiments, automated data
processing systems for segmentation and tracking of live cells
in sequences of microscope images are a virtual necessity.
Several comprehensive systems for segmentation and track-
ing have recently been described in the literature (see, e.g.,
[5, 6] and references therein). In most existing approaches,
cells are segmented using advanced level set, active contour
or watershed methods, or ingenious combinations of them
[5–7]. In this paper, we investigate the use of a multilevel

aggregation algorithm as an alternative method for segment-
ing live cell bright field microscope images. We use a variant
of the so-called “Segmentation by Weighted Aggregation”
(SWA) technique [8, 9]. Our algorithmic contribution is a
new scale invariant “saliency measure” for this algorithm to
decide when aggregates of pixels constitute salient segments
that should not be grouped further. We investigate the per-
formance of the multilevel aggregation algorithm for bright
field cell segmentation in images and sequences of images,
and discuss its advantages and drawbacks compared to other
methods as a possible building block in comprehensive
automatic cell segmentation and tracking systems.

1.1. Problem Description. Figure 1 shows a micro-scope
image with approximately two dozen mouse C2C12
myoblast cells on a dark grey background. C2C12 myoblasts



2 International Journal of Biomedical Imaging

Figure 1: Bright field microscope image with approximately two
dozen cells on a grey background. Some interior structure can
be discerned in cells (including the cell membrane, the dark grey
cytoplasm, and the lighter cell nucleus with dark nucleoli inside).
Cells that are close to division appear as bright, nearly circular
shapes. Some cells are touching, and some cell parts overlap. Our
goal is to obtain separate segments for each cell in the image.

(ATCC CRL-1772) are muscle cell precursors, which have
varied shape and size as well as good motility in vitro. In
tissue culture, they will grow to a fully confluent monolayer
with well-separated cell nuclei and a small amount of
overlapping cytoplasm between adjacent cells.

Our goal is to obtain separate segments for each cell
in images like Figure 1. It can be seen immediately from
Figure 1 that this is a difficult task. Two major challenges
are, first, that the cells appear in two distinct basic shapes
(cells that are close to division show as bright circular
shapes, while regular cells have more stretched shapes in
which the cytoplasm and nucleus can be discerned), and,
second, that cells may be touching or overlapping. While
our ultimate goal is to automatically segment sequences of
complex images like Figure 1, we start out in this paper with
segmentation of simplified cases (isolated cells and small
groups of cells).

1.2. Approach and Algorithm. We use a variant of the
Segmentation by Weighted Aggregation technique [8, 9]
to segment the microscope images, which itself is based
on Algebraic Multigrid (AMG) methods for solving linear
systems of equations [10, 11]. The SWA method attempts
to segment the image into salient (or “prominent”) groups
of pixels by using a multilevel aggregation procedure that
groups blocks of pixels at various scales, based on multiscale
feature vectors for the pixel blocks. The SWA method
has more recently also been used as the basis of a more
general multilevel clustering algorithm [12, 13]. The variant
of the method that we use is described in detail below,
and it is explained how it is tailored to the application at
hand. Our algorithmic contribution is a new scale invariant
“saliency measure” for deciding when aggregates of pixels
constitute salient segments that should not be grouped
further. Our new saliency measure is a variant of the
saliency measure employed in [8, 9] that takes scaling into
account. Furthermore, we use the so-called “first pass” of

the standard AMG graph coarsening algorithm [10, 11] to
coarsen the pixel graph, rather than the direct aggregation
methods that are used in SWA algorithms described in the
literature [8, 9, 12, 14]. We test our approach on parts
of real microscope images, and show how segmentation
based on multilevel intensity similarity alone does not lead
to satisfactory results. However, the addition of multilevel
variance of mean intensities (as a measure of texture) to the
feature vector of each aggregate, as in [9, 14], leads to correct
cell segmentation.

In the second part of the paper, preliminary results are
presented for applying the multilevel aggregation algorithm
in space time to temporal sequences of microscope images,
with the goal of obtaining space time segments (object
tunnels) that track individual cells. This parallels previous
research results on space time segmentation using level set
methods [15, 16] and on comprehensive segmentation and
tracking systems for sequences of cell images [5, 6], but
space time segmentation using SWA has, to our knowledge,
not been investigated in the literature yet. The ultimate
goal of this space time segmentation is to determine a space
time segment (object tunnel) for each individual cell, taking
into account cell divisions. Ideally, when a cell divides,
the segment of the mother cell should terminate and cell
segments should start for the two daughter cells. In this
sense, the desired outcome of our space time segmentation
is more complicated than for related problems such as
cerebral vasculature segmentation in CT scans, for which
three-dimensional level set algorithms have been developed
[17]. Also, the full space time segmentation problem is
complicated since cells change shape when they divide
and cells may touch and overlap. In this paper, we present
preliminary results on our experience with extending
the spatial SWA segmentation algorithm to space time
segmentation of sequences of images, for simplified cases of
isolated cells and pairs of cells. We identify problems that
remain and suggest possible extensions of the algorithm
that may handle them, and we comment on the potential
of the SWA segmentation method as a building block in
comprehensive segmentation and tracking systems along the
lines of [5, 6] and references therein.

While the general ideas and concepts of the SWA
framework are described in several places [8, 9, 12, 14], most
of the description in the literature is formulated in general
terms, and not all algorithmic details are spelled out. In this
paper, we want to present methods and results that are fully
reproducible by the reader, and for this reason we provide a
complete description of the version of the SWA algorithm we
settled on. One property of the SWA algorithm is that it has
a significant number of parameters that have to be chosen
judiciously to obtain the desired segmentation. While this
may be perceived as a potential drawback of the approach,
it also opens opportunities to finetune the algorithm for the
application class at hand. Indeed, the problem of segmenting
an image without further specifications is often ill-posed.
For example, a satellite image with roads, buildings, cars
and people can be segmented at the level of the roads and
buildings, or at the more detailed level of individual cars and
people. Finetuning the SWA parameters allows the user to
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steer the segmentation in the desired direction. The question
about how to choose the SWA parameters is not discussed
much in the literature [8, 9, 12, 14], and in most cases specific
parameters are not given for segmentation results that are
presented as examples. Again in the interest of reproducibil-
ity, we make sure in this paper to include full details about the
parameters we choose for each image or image sequence for
which we give segmentation results, and we also formulate
some general guidelines for choosing parameters.

1.3. Context. Automatic segmentation and tracking of live
cells in bright field microscopy images is a difficult task
[5, 18]. For this reason, fluorescence microscopy is often used
in place of bright field microscopy to image live cells. In flu-
orescence microscopy, cells are made fluorescent by applying
fluorescent dyes, or by making the cells artificially express
fluorescent proteins. The strong fluorescence signals facilitate
tracking [6], but may also have significant drawbacks. In
many cases, the fluorescence introduced is toxic for the cells
[19], and it may change cell behaviour. On the contrary,
bright field microscopy is well suited for live cell studies as
the imaging conditions can usually be chosen to minimize
phototoxicity.

For example, the experiments reported in [20] show how
the shape of a cell can be linked to genetic factors, in this
case signaling proteins. In this study, the cells were fixed and
permeabilized prior to phalloidin staining and, since the cells
are no longer alive, it is impossible to examine the same
cells at a later time. Killing the cells is often a necessary
step when using stains. However, the image segments we
obtain from our analysis can be used to categorize cell shapes
while keeping the cells in culture. This ensures minimal
interference with normal cell function through toxicity from
photochemical effects and the high intensity illumination
that is required to excite fluorescent probes.

In other types of experiments, fluorescent markers are
used to measure concentrations of certain specific proteins
that are under study. A limited number of fluorescent marker
channels with nonoverlapping spectra (typically up to three)
are used in combination. If one or two of these channels are
used solely for tracking purposes, the number of channels
available for measuring protein concentrations is reduced,
which may be a significant limitation.

For these reasons, it can be an advantage if methods can
be derived that manage to track cells based on bright field
images [5].

In addition, bright field images typically contain many
features of interest, and accurate segmentation methods for
bright field images are intrinsically useful since they allow
the study of cell morphology and internal cell structure, and
their dynamics. For example, the morphology of a cell can
be indicative of cell health or can indicate various stages
of pathology [20]. Also, accurate bright field segmentation
of cells and cell organelles may allow for more precise
integration of fluorescence signals over relevant parts of
precisely identified cells, enhancing the accuracy of protein
expression level measurements. Finally, it should also be
noted that the contrast of bright field images is often
enhanced by the use of phase contrast microscopy. The

images discussed in this paper were obtained with this
technique. This allows us to see detailed structure within cells
on Figure 1 (including cell nuclei and nucleoli), but it also
generates bright halos around cells which may complicate
segmentation since they do not uniformly enclose cells.

The microscope images used in this paper (including
Figure 1) were obtained as follows. Cells were plated at a low
density in glass chamber slides and imaged at 20X using a
phase contrast objective (Nikon TEU 2000 with CFI Plan
Fluor ELWD 20X) and a cooled CCD camera (Hamamatsu
C9100-12). Each image contains 512 by 512 pixels, with a res-
olution of 0.8 μm/pixel and 14 effective bits per pixel. Unless
otherwise noted, all cell culture reagents were purchased
from Invitrogen. C2C12 myoblasts were cultivated in growth
medium (Dulbecco’s Modified Eagle Medium supplemented
with 20% fetal bovine serum (Sigma), 2 mM glutamine, 50
units penicillin and 50 μg/mL streptomycin in 10 cm cell
culture plates (Corning). Cells were treated with 1.5 mL of
0.05% Trypsin-EDTA for 5 minutes, manually dispersed by
pipetting and diluted in growth medium to 50,000 cells/mL.
Subsequently, 3 mL of this suspension was added to one Lab-
Tek chambered coverglass well (Nunc) and cells were allowed
to settle undisturbed at 37◦C and 10% CO2 for 16 hours.
The slide was then placed on the motorized stage of a Nikon
TEU 2000 equipped with a Solent environmental chamber
where the cells were kept at the same CO2 and temperature
conditions as before. The microscope images were acquired
at five-minute intervals during 24 hours.

1.4. Organization of the Paper. The rest of this paper is
structured as follows. In Section 2, we give a brief description
of the SWA algorithm and introduce a new scale invariant
saliency measure. In Section 3 we investigate how the
algorithm performs for segmenting bright field cell images.
In Section 4 we explain how the approach is extended to
segmentation in space time in a straightforward way, and
investigate the performance of space time segmentation
for simple sequences of real cell images. Computational
cost and scalability of the SWA algorithm are discussed in
Section 5. Section 6 discusses conclusions and future work.
Finally, Appendix A gives a pseudocode-style step-by-step
description of our algorithmic implementation.

2. Algorithm Description

In this section, we describe the multilevel segmentation
algorithm that we employ in this paper. We start with an
overview of the basic SWA algorithm from [8, 9, 12–14, 21],
followed by a subsection on some specific more detailed
aspects of the algorithm. In the third subsection, we propose
and discuss a new scale invariant saliency measure for the
SWA algorithm. For a complete description of the algorithm
we use, we refer the reader to Appendix A, which provides
an actual pseudocode-style step-by-step description of our
implementation.

2.1. Overview of Algorithm. Figure 2 shows a schematic rep-
resentation of the SWA algorithm. A high-level description
of the SWA algorithm proceeds as follows. In the first,
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Figure 2: Schematic representation of the SWA algorithm.

top-down phase of the algorithm, pixels are recursively
grouped into increasingly large overlapping blocks. At any
level in the process, blocks that are sufficiently different
from their neighbours are identified as salient segments.
The top-down phase ends when all remaining blocks have
become salient. In the second, bottom-up phase of the
algorithm, overlapping blocks that were identified as salient
are recursively sharpened, until all fine-level pixels are
assigned to a unique segment at the top level.

We now give a more detailed description of the algo-
rithm.

The problem of image segmentation can be viewed in
terms of segmentation of a weighted undirected graph,
with each node of the graph representing a pixel, and
each edge corresponding to a link between neighbouring
nodes, weighted by the similarity in intensity between the
two neighbouring pixels. The SWA algorithm starts with
this weighted graph on the finest level (which we call
level 1) and forms a weighted graph of reduced size on
level 2, with the nodes of the level-2 graph representing
overlapping blocks of level-1 nodes. Each level-2 block is
formed around a level-1 seed point, which is called a C-
point (short for coarse point) on level 1. Nodes on level 1
that are not chosen as C-points are called F-points (short
for fine points). The overlapping blocks are chosen such that
they group neighbouring nodes that have similar intensities.
This graph coarsening can be done in a variety of ways,
and the particular approach we employ is explained in the
next subsection and in Appendix A.3. This graph coarsening
process is then repeated on level r, r = 2, 3, 4, . . ., to obtain
the coarse-level graph on level r + 1. The left branch of
the diagram in Figure 2 shows for an example image how

the nodes (shown as red dots) are coarsened during the
first, top-down phase of the algorithm. (For each coarse-level
overlapping block, one finest-level node corresponding to
the C-point of the block on the previous level is shown as
a representative.)

In more specific terms, we start from the pixel graph of
the original image, with the intensities of the pixels stored
in level-1 intensity vector I[1]. (We scale each input image
such that the maximum intensity value equals 1.) Pixels that
are neighbours in the horizontal or vertical directions are
connected by weighted edges in the graph, with edge weights

A[1]
i j defined using an exponential function of the intensity

difference between the pixels they connect:

A[1]
i j =

⎧
⎪⎨

⎪⎩

e−α|I
[1]
i −I[1]

j | if i, j are neighbours,

0, otherwise,
(1)

with α ≥ 0 a user-defined parameter. C-points are then
chosen for the level-1 graph and their indices are stored in
vector C[1]. An interpolation matrix from level 2 to level 1 is
defined as

P[1,2]
i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i ∈ C[1], i = C[1]
j ,

0 if i ∈ C[1], i /=C[1]
j ,

A[1]

iC[1]
j

∑
k∈C[1] A[1]

ik

if i /∈C[1].

(2)

Here we use the shorthand notation i ∈ C[1] to mean that
i = C[1]

j for some j. Each column j of P[1,2] represents a level-

2 node, and element P[1,2]
i j indicates which fraction of level-1

node i belongs to level-2 block j. (The rows of P[1,2] sum to
one.) The edge weights between nodes of the level-2 graph
are calculated by an averaging process known as Galerkin
coarsening [11]:

A[2] = P[1,2]TA[1]P[1,2]. (3)

In a similar way, interpolation operators P[r,r+1] are derived
between the other recursive levels, and coarse-level graph
weights are calculated by

A[r+1] = P[r,r+1]TA[r]P[r,r+1]. (4)

On each level, the blocks are tested for saliency: a salient
(or “prominent”) block is a block that is sufficiently different
from all the blocks it is connected to, as determined by a
saliency measure. Once a block is designated salient, it is not
allowed to merge with other blocks on coarser levels. (In our
implementation, salient blocks are propagated to all coarser
levels.) The coarsening process terminates at the level where
all blocks have become salient, at which point we have found
all segments in the image. In Figure 2, the bottommost image
is at the coarsest level where coarsening stops because each of
the two nodes represents a salient segment (the white and the
black segment).

The right branch of the diagram in Figure 2 represents
the second, bottom-up phase of the algorithm. Recall that
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the segments obtained on the coarsest level correspond to
overlapping blocks on the finest level. It is important to retain
overlapping blocks in the first phase of the algorithm, since
a pixel that may appear to belong primarily to a certain
block according to fine-level information, may be reclassified
as belonging to a different block later when coarser-level
information is taken into account. The goal of the second
phase is to uniquely assign every finest-level pixel to one
of the segments. The nodes on the second-to-coarsest level
are first assigned to the segments obtained on the coarsest
level according to the weights in the interpolation matrix,
and this is repeated recursively for nodes on increasingly
fine levels. In this way, the representation of the so-far
overlapping segments is obtained on each recursive level.
On each level, the overlap between segments is reduced by a
sharpening procedure, with a sharpening threshold d1, which
we normally take equal to 15%. In this sharpening procedure,
nodes that belong for more than 85% to a segment are
assigned for 100% to that segment, while nodes that belong
for less than 15% to a segment are fully decoupled from that
segment. Finally, on the finest level, every pixel is assigned to
the segment to which it belongs the most.

The SWA algorithm is in many ways similar to AMG
methods for solving linear systems of equations [10, 11], and
the V-shaped process of Figure 2 is called a V-cycle in multi-
grid terminology. Contrary to the AMG V-cycle, where cycles
are repeated to iteratively produce better approximations to
linear equations, we perform the image segmentation V-cycle
only once, giving the final segmentation.

Figure 3 shows a flow chart of the SWA algorithm. The
core of the algorithm can be described recursively. The
recursive part of the algorithm is preceded and followed by
a nonrecursive part on the finest level. In the recursive part
we consider two adjacent levels: level r (the current fine level)
and level r + 1 (the current coarse level). On level r, we find
a suitable subset of fine-level nodes (the C-points) that will
form the seed points for the coarse-level blocks. Then, as long
as we are not yet on the coarsest level (i.e., not all nodes are
salient), we calculate the coarse-level graph weights from the
fine-level weights, and coarsen again recursively. Once on the
coarsest level, the recursive function returns the segments
found, and performs a bottom-up process that ultimately
leads to each pixel in the (finest-level) image being assigned
to exactly one of the (initially overlapping) segments found
on the coarsest level. The nonrecursive and recursive parts of
the algorithm are described in detail in Appendices A.1 and
A.2, respectively, and the coarsening algorithm is given in
Appendix A.3. Calculation of the saliency measure to detect
segments is discussed in Section 2.3.

2.2. Additional Algorithmic Elements. The following are
further details and enhancements of the SWA algorithm.

(i) In order to coarsen the graph at the current level,
we use the so-called first pass of the standard
AMG coarsening algorithm [10, 11]. This algorithm

coarsens the connectivity graph with weights A[r]
i j

by first dividing the connections in sets of weak
and strong connections based on their weights, and

Nonrecursive partDefine finest-
level variables

Coarsening

Compute coarse-
level variables

Are all
C-points salient?

No

Yes

Recursive partAll segments found

Are we on
the finest level?

Assign nodes
to segments

No
Yes

Assign each
fine-level pixel
to one segment

Figure 3: Flow chart for the algorithm with the recursive and
nonrecursive parts.

then approximately determining a subset of the
nodes of the graph that is a maximal independent
set in the subgraph formed by only retaining the
strongly connected edges. See Appendix A.3 for a full
description of the coarsening algorithm we employ.
Strength parameter θ ∈ [0, 1] (see (A.22)) is used
as a threshold to determine strong connections in
the coarsening algorithm. The nodes in the maximal
independent set, which are selected such that they
are not linked by strong connections, become the C-
points on the current level. Nodes that have strong
connections to many other nodes are more likely to
be chosen as C-points. Note also that, on coarse level
r, nodes that have already been designated salient
on previous levels (see Section 2.3), automatically
become C-points at the beginning of the coarsening
on level r. Note that we use standard AMG coarsening
[10, 11] to coarsen the graph, rather than the
direct aggregation methods that are used in SWA
algorithms described in the literature [8, 9, 12, 14].
We find the standard AMG coarsening a simple and
effective graph coarsening algorithm that leads to
good results, as confirmed by extensive experiments.

(ii) Calculating A[r+1] by

A[r+1] = P[r,r+1]TA[r]P[r,r+1] (5)
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gives the coupling weight between two blocks based
on finer-level coupling weights across their shared
boundary. However, it is beneficial to also consider
the direct similarity between the blocks in terms of
their average intensity. The average intensity of each
block on level r + 1 can easily be calculated from the
average intensity on level r by multiplication with a
scaled interpolation matrix, see (A.11) and (A.10).
The coupling weights can then be rescaled as follows
to incorporate similarity in average intensity:

A[r+1]
i j ←− A[r+1]

i j e−α̃|I
[r+1]
i −I[r+1]

j |. (6)

Here, I[r+1]
i is the average intensity of block i on level

r + 1, and α̃ ≥ 0 is a user-defined parameter. Note
that, while the diagonal terms of A[r] do not affect the
selection of C-points on level r, they do affect the off-
diagonal terms of A[r+1] that subsequently influence
the selection ofC-points on level r+1. Diagonal terms
of A[r] represent the internal similarity of blocks,
and should be taken into account when calculating
similarity between coarse-level blocks.

(iii) Another blockwise quantity we use to better connect
similar blocks is multilevel variance in intensity (as a
measure of texture) [21]. Every node on level r + 1
corresponds to an overlapping group of nodes on
level r, every node on level r corresponds to an over-
lapping group of nodes on level r − 1, and so forth.
The variance in intensity of the level-r nodes that
correspond to a level-r + 1 node is easily calculated
using the standard expression var(X) = E((X −
E(X))2) = E(X2)−E(X)2, see (A.12). These variances
are calculated between all consecutive levels, and are
assigned to coarse-level nodes by recursive averaging
(see (A.13)). An r-component multilevel feature
vector with intensity variances can thus be associated
with every node on level r+1, see (A.14). In each such
feature vector, the last component gives the variance
between the average intensities of the level-r nodes
that correspond to the level-r + 1 node, the one-
before-last component gives the average over those
level-r nodes of the variance between the average
intensities of the level-r − 1 nodes that correspond to
each of those level-r nodes, and so forth. The averages
in the feature vectors can be calculated efficiently via
recursive averaging, see (A.13). The coupling weights
between blocks can then be rescaled according to the
similarity in these variance vectors, with a scaling
parameter β, see (A.17). In practice, it turns out that
variance for small blocks is less relevant and may
cause incorrect segmentation. We therefore only use
variance rescaling on levels larger than level ρ, with ρ
a user-defined parameter.

(iv) In order to avoid small segments, we only allow
detection of salient segments on levels larger than
level σ , with σ a user-defined parameter.

(v) In summary, we list the free parameters in our algo-
rithm, to be chosen such that correct segmentation

is obtained for the application at hand: top-level
intensity scaling factor α, coarse-level intensity rescal-
ing factor α̃, coarse-level variance rescaling factor β,
coarsening strength threshold θ, saliency threshold
γ (see the next section), sharpening threshold d1,
segment detection threshold level σ , and variance
rescaling threshold level ρ.

2.3. Scale Invariant Saliency Measure. We propose a saliency
measure that is a modified version of the saliency measures
used in [8, 9, 12–14, 21]. Our modified saliency measure is
scale invariant.

The saliency measures used in [8, 9, 12–14, 21] can be
derived and motivated as follows.

On each level r, define the energy functional

Γ[r]
(

u[r]
)

=
∑

i> j A
[r]
i j

(

u[r]
i − u[r]

j

)2

∑
i> j A

[r]
i j u

[r]
i u[r]

j

= u[r]TL[r]u[r]

(1/2)u[r]TW [r]u[r]
.

(7)

Here, A[r] is the coupling matrix on level r, the matrices L[r]

and W [r] are given by

L[r]
i j =

⎧
⎪⎪⎨

⎪⎪⎩

−A[r]
i j if i /= j,

∑

k /= i
A[r]
ik if i = j,

W [r] = A[r],

(8)

and u[r] is a Boolean state vector for a particular block on
level r such that u[r]

j = 1 if node j belongs to the block

and u[r]
j = 0 otherwise. Subscripts denote matrix or vector

components. L[r] is called the Laplacian of the (weighted)
graph. Note that W [r] = A[r] on all levels so there is no real
need to introduce the variables W [r], but below we choose to
use the W [r] in expressions for the saliency measure.

The SWA algorithm seeks segments (Boolean vectors
u[r]) that yield low values of the energy functional. On the
finest level, this formulation is equivalent to a normalized
cut formulation for the segmentation problem [14, 22].
In the normalized cut approach, a generalized eigenvalue
problem is formulated on the finest level that is related to
functional (7). The few eigenvectors with lowest eigenvalues
are computed and are used to segment the image using
a clustering method. Note that AMG solvers can also be
developed that directly calculate the eigenvectors of this fine-
level eigenvalue problem in an efficient manner [23]. In
the SWA approach, however, we do not directly calculate
the fine-level eigenvectors, but, instead, consider increasingly
coarse versions of the coupling matrix and detect salient
segments based on connection strength in those coarse-level
coupling matrices, guided by functional (7). This approach
allows us to take into account coarse-level features (like
multilevel variance) for segment detection.

At level r, the SWA algorithm checks for each node i
whether it is salient. (Recall that node i is interpreted as an
overlapping block of finest-level pixels.) To this end, define
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Figure 4: A simple example image with a square block of white
pixels in the center. We assume that the white pixels are aggregated
to a single, nonoverlapping block on level 2.

the Boolean vector for the single-node segment with node i

on level r by u[r],i
j = δi j (i.e., u[r],i

i = 1, and u[r],i
j = 0 for j /= i).

The saliency measure Γ[r]
i of node i is then given by

Γ[r]
i = Γ

(

u[r],i
)

= L[r]
ii

(1/2)W [r]
ii

, (9)

and node i is designated a salient segment if its saliency
measure is smaller than a user-defined constant γ:

Γ[r]
i < γ. (10)

(Note that saliency measure (9) cannot be used on the finest

level, since W [1]
ii = 0 for all finest-level nodes i. In practice,

this is normally resolved by not allowing salient nodes on
the finest level.) It can be understood easily that saliency
measure (9) is sensitive to the scales of segments [8], and,
depending on the application, this may lead to difficulties.
In what follows, we illustrate the scale sensitivity of saliency
measure (9) by a simple example, and propose a new variant
of saliency measure (9) that takes into account scaling.

Saliency measure (9) for node i on level r can be related
to the block of pixels on the finest levels that corresponds
to node i (which we can call block i). Indeed, the saliency
measure can be interpreted as the sum of the coupling
coefficients along the border of block i divided by the sum of
the coupling coefficients along connections internal to block
i [12]. It can easily be seen that this interpretation is exact for
any nonoverlapping block, as is illustrated by the following
simple example.

Consider Figure 4 which represents an example image
with a square block of white pixels in the centre, and assume
that this block corresponds to node i on level 2 in the
aggregation process (we thus call it block i). The ith column
of the interpolation matrix between levels 2 and 1, P[1,2],
contains 1 s in the rows corresponding to the pixels in block
i, and 0 s in the other rows. It is convenient to represent the
ith column of P[1,2] in so-called stencil form, as

P[1,2]
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (11)

Let us define two more matrices, the adjacency matrix V [1]

and the unweighted graph Laplacian G[1], which are Boolean
versions of W [1] and L[1], not weighted by the coupling
strengths in A[1]:

V [1]
i j =

⎧
⎪⎨

⎪⎩

0 if A[1]
i j = 0,

1 if A[1]
i j /= 0,

G[1]
i j =

⎧
⎪⎪⎨

⎪⎪⎩

−V [1]
i j if i /= j,

∑

k /= i
V [1]
ik if i = j.

(12)

The stencils of the operators V [1] and G[1] are given by

V [1] =

⎡

⎢
⎢
⎢
⎣

1

1 1

1

⎤

⎥
⎥
⎥
⎦

,

G[1] =

⎡

⎢
⎢
⎢
⎣

−1

−1 4 −1

−1

⎤

⎥
⎥
⎥
⎦
.

(13)

(Note that these stencils represent the nonzero elements
in each of the columns (or rows) of V [1] and G[1]. Since
each column has the same pattern of nonzeros, we don
not give the stencils of V [1] and G[1] a subscript index.
Note that columns corresponding to pixels close to the
boundaries of the image would have a different nonzero
pattern, but we assume that the white block in Figure 4 is
embedded in a larger black image and is located far from the
image boundary, such that we don not have to worry about
boundaries.)

Let us now calculate the ith diagonal elements of
the level-2 versions of V [1] and G[1], namely, V [2] =
P[1,2]TV [1]P[1,2] and G[2] = P[1,2]TG[1]P[1,2].

First, we want to show that diagonal element G[2]
ii =

P[1,2]T
i G[1]P[1,2]

i equals the boundary length of block i, which
in this example is 3×4 = 12. Applying matrixG[1] to column

P[1,2]
i gives, in stencil notation,

G[1]P[1,2]
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −1 −1 −1 0

−1 2 2 2 −1

−1 1 0 1 −1

−1 2 1 2 −1

0 −1 −1 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)

Multiplying this with row P[1,2]T
i results in a scalar value of

P[1,2]T
i G[1]P[1,2]

i = 12, (15)

which is the boundary length of block i, as desired.

Next we want to show that (1/2)V [2]
ii = (1/2)

× P[1,2]T
i V [1]P[1,2]

i equals the number of internal connections
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(a) Small Lii, large Wii (b) Large Lii, small Wii

Figure 5: Example shapes for analyzing scale behaviour of saliency
measures.

within block i. First apply matrix V [1] to column P[1,2]
i to get,

in stencil notation,

V [1]P[1,2]
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 0

1 2 3 2 1

1 3 4 3 1

1 2 3 2 1

0 1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16)

Then multiply this with row P[1,2]T
i to obtain

P[1,2]T
i V [1]P[1,2]

i = 24, (17)

which equals twice the number of internal connections,
or approximately twice the area of block i. Due to this
interpretation of the diagonal elements of matrices G[r] and
V [r] in terms of block boundary length and block area, we
will in what follows refer to the matrices G[r] as boundary
length matrices, and to V [r] as area matrices.

It is now easy to see that the ith diagonal element of
L[r] corresponds to the sum of the coupling coefficients
along the boundary of block i, or, in other words, to the
boundary length of block i weighted by the similarity with
neighbouring blocks along the block boundary. For this
reason, we call the matrices L[r] weighted boundary length
matrices. Similarly, the ith diagonal element of W [r] = A[r]

corresponds to twice the sum of the coupling coefficients
along connections internal to block i, or, in other words, to
twice the area of block i, weighted by the mutual similarity of
neighbouring finer-level blocks in the interior of block i. We
therefore call the matrices W [r] weighted area matrices. Note
that this interpretation also follows directly from plugging

u[r] = P[1,2]
i into (7) (middle expression).

With these interpretations of the diagonal elements of
L[r], W [r], G[r] and V [r] in hand, we can now analyze the
scale behaviour of saliency measure (9), and propose a new
scale invariant version of it. Figure 5 shows two examples
of images with a white shape on a black background. The
original saliency measure

Γ[r]
i = L[r]

ii

(1/2)W [r]
ii

, (18)

is much smaller for shape (a) than for shape (b): shape (a)
has a shorter boundary and a larger area than shape (b), and

the similarity-weighted boundary length L[r]
ii is proportional

to the block boundary length, while the similarity-weighted

area (1/2)W [r]
ii is proportional to the area. For the example

considered, this is undesirable, since both shapes should be
deemed equally salient: their saliency measure should be
of similar value for the SWA algorithm to segment them
correctly if they were to occur together in a larger image.
It is also clear that saliency measure (18) tends to assume
geometrically smaller values as levels get coarser, since, in
two dimensions for example, shape areas normally grow by a
factor of four when boundary lengths double. This can also
be seen as follows. Consider two white blobs with the shape
of Figure 5(a), a large one and a small one. The large blob
would reduce to a single node at a coarser level than the
small blob, and the salience measure (18) for the large blob
would be smaller than for the small blob, since the ratio of
boundary length to area is smaller for the large blob than for
the small blob. We can thus say that saliency measure (18) is
not scale invariant (and also not shape-invariant, according
to the example of Figure 5). Potential scaling difficulties with
saliency measure (18) have been discussed in the literature
and some ad hoc fixes have been proposed [8], but a generally
applicable modification that addresses these scaling issues
has not been proposed yet.

In order to remedy the potential scaling difficulties of
saliency measure (18), we propose the following new saliency
measure:

Γ[r]
i = L[r]

ii /G
[r]
ii

W [r]
ii /V

[r]
ii

. (19)

The motivation behind this new saliency measure is simple:
we normalize the similarity-weighted boundary length by
dividing it by the unweighted boundary length, and we
normalize the similarity-weighted area by dividing it by the

unweighted area. As a consequence, the quantities L[r]
ii /G

[r]
ii

andW [r]
ii /V

[r]
ii become scale invariant (they lie between 0 and

1, since all coupling weights also lie between 0 and 1). The
new saliency measure can then simply be interpreted as

Γ[r]
i = average similarity along boundary of block i

average similarity in interior of block i
.

(20)

This interpretation also provides an easy intuitive under-
standing of the saliency measure: a block is salient if it has low
average similarity to its neighbouring blocks, but this has to
be evaluated relative to how similar its own finer-level blocks
are to each other. It is also clear that the new saliency measure
may make it easier for many applications to choose a saliency
threshold γ below which nodes are to be considered salient:
due to the scale invariance (and shape-invariance) of the new
measure the saliency threshold can remain constant on all
levels, and segments with different shapes can be detected
more consistently.

We have experimented extensively comparing the
scale invariant saliency measure (19) and the original
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saliency measure (18). Even though the scale invariant
saliency measure is somewhat more expensive to compute
(a second three-way sparse matrix product V [r+1] =
P[r,r+1]TV [r]P[r,r+1] has to be evaluated on each level), we
have found that it is much easier for our application to find
a suitable value of the saliency threshold γ that works well
on all recursive levels and for the different shapes the cells in
our images assume. For our application, the extra work leads
to a significantly more robust, less parameter-dependent
algorithm and is thus worthwhile. It has to be noted, though,
that for some applications the original saliency measure (18)
may give good results (with less work), or may be preferable
for other reasons. The original saliency measure is expected
to work well for segments of similar size and shape. Also, the
original saliency measure favours large segments (since the
saliency measure tends to assume smaller values on coarser
levels), and this may be beneficial in applications in which
only large segments are of interest. (E.g., one could consider
an image with many white blobs of different sizes on a black
background, and if only the large blobs are important, the
original saliency measure can be used to select them.)

To finalize this section on a scale invariant saliency
measure, we want to make three remarks. First, the example
in Figure 4 that led to the interpretations of L[r]

ii , G[r]
ii , W [r]

ii

and V [r]
ii in terms of block boundary lengths and areas,

was set in the context of nonoverlapping blocks. In the first
stage of the SWA V-cycle, overlapping blocks are employed.
The interpretation in terms of block boundaries and areas
becomes less straightforward in this case and the heuristics
become approximate, but the formulas remain well posed
and extensive testing indicates that the measure performs as
expected for the case of overlapping blocks as well. Second,
saliency measure (19) is not defined on the finest level

since W [1]
ii = 0 and V [1]

ii = 0 for all finest-level nodes i.
In many applications, salient segments on the finest level
are not of interest, and can be disallowed. If they are to
be allowed, the areas of finest-level pixels can be set to
one, and scale invariant saliency measure Γ[1]

i = L[1]
ii /G

[1]
ii

can be used. Third, scale invariant saliency measure (19)
only uses the diagonal elements of the boundary length
and area matrices L[r], G[r], W [r] and V [r], and the off-
diagonal information in these matrices remains unused.
The off-diagonal elements of these matrices can be used
to refine (19). For example, if block i shares a very short
boundary with block j to which it is very similar, but is very
different from all other neighbouring blocks, then its average

similarity along the boundary, L[r]
ii /G

[r]
ii , may be very small,

even though block i is very similar to one of its neighbours.
In this case, it may be desirable not to designate block i as
salient, and to aggregate it with block j. Such a situation

can be detected by comparing the sizes of L[r]
i j /G

[r]
i j for all

neighbours j of i (these ratios of off-diagonal elements can
be interpreted as average similarities between blocks along
their mutual boundary), and block i may only be considered
salient if all of these are small (relative to block i’s internal
similarity). Improvements of this kind may be important for
certain types of applications, and remain a topic of further
research.

3. Segmentation Results

3.1. Cell Segmentation. In this section we evaluate the
performance of the multilevel segmentation algorithm by
applying it to bright field phase contrast cell microscopy
images. First we demonstrate the advantage of segmenting
taking the multilevel intensity variance into account, versus
not taking it into account.

The image of Figure 6(a) has two regions that differ in
texture but are identical in average intensity. Using only
intensity, only one segment is found (Figure 6(b)) because
the algorithm cannot distinguish the patterned shape from
the uniform background. However, when intensity variance
is incorporated, the two segments are identified separately
(Figure 6(c)). (Note that the SWA algorithm finds the
background as a separate segment.)

Next we apply our algorithm to the single isolated cell
of Figure 7(a). (All cell images in this and the next section
are obtained by cutting out a square n × n region from
larger 512 by 512 images as in Figure 1.) The cell is not
segmented correctly when using only intensity. By using
variance, however, correct segmentation is obtained: the
variance of the background is low, but cells have high
internal variance. By preferentially grouping blocks with high
variance and blocks with low variance, cell parts are forced to
merge together rather than merge with the background.

Figures 8, 9 and 10 show further examples of successful
segmentation results for increasingly difficult cases of cells
with elongated expansions, touching cells, and cells that are
close to division (bright and circular). Note that the seg-
mentation parameters employed differ somewhat between
the examples; parameter selection is discussed at the end
of this section. Also, if the background is not contiguous,
the SWA algorithm finds a segment for each of the separate
background regions. These background segments can easily
be grouped together since they have very similar feature
vectors at the level where they are detected as salient
segments.

Finally, Figure 11 shows segmentation results for a more
difficult example involving four whole cells at once, one of
which is close to division. With one choice of parameters, we
get Figure 11(b), which correctly identifies the 2 cells at the
bottom with sharper boundaries but does not segment the
top 2 cells correctly. With another choice of parameters, we
get Figure 11(c), where all four cells are found. However, part
of the top-right cell is segmented with the background, and
the nucleus of the bottom cell has its own segment.

3.2. Discussion. The results of Figures 7–10 demonstrate
that the SWA algorithm is capable of correctly segmenting
bright field cell images of moderate complexity. However,
some important problems remain. First, it is undesirable that
parameters have to be changed depending on the image,
since we are pursuing an automatic method. The SWA
algorithm contains a number of segmentation parameters
that have to be chosen. (The next subsection explains how
we have chosen the parameters for our algorithm to obtain
the results shown above.) However, the goal of the SWA
approach is to include enough multilevel features in the
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(a) Original image (b) 1 segment found, not using
variance

(c) 2 segments found (pat-
terned shape and background),
using variance

Figure 6: Parameters used: (b) n = 60, α = 10, α̃ = 10, θ = 0.1, γ = 0.1, d1 = 0.15, σ = 5; (c) n = 60, α = 10, α̃ = 10, β = 10, θ = 0.1,
γ = 0.1, d1 = 0.15, σ = 5, ρ = 1.

(a) Original image (b) 4 segments found (includ-
ing the background segment),
not using variance

(c) 2 segments found (includ-
ing the background segment),
using variance

Figure 7: Parameters used: (b) n = 60, α = 100, α̃ = 10, θ = 0.1, γ = 0.5, d1 = 0.15, σ = 6; (c) n = 60, α = 100, α̃ = 10, β = 30, θ = 0.1,
γ = 0.5, d1 = 0.15, σ = 6, ρ = 1.

(a) Original image (b) 4 segments found

Figure 8: Parameters used: (b) n = 60, α = 130, α̃ = 5, β = 50,
θ = 0.08, γ = 0.5, d1 = 0.15, σ = 6, ρ = 1.

feature vectors of the overlapping blocks on the various
levels to allow the algorithm to find correct segments for
all images in a certain class, for example, the bright field
cell images obtained by our experiment, with a single set
of parameters. If this is achieved, the free parameters of the
method are not a drawback, but are actually used to finetune
the algorithm for the application class at hand, steering
the segmentation in the desired direction. In our current
implementation we have included multilevel intensity and
multilevel intensity variance, and have shown that this allows
the algorithm to correctly segment relatively complex bright

(a) Original image (b) 4 segments found

Figure 9: Parameters used: (b) n = 60, α = 130, α̃ = 4, β = 100,
θ = 0.1, γ = 0.8, d1 = 0.15, σ = 6, ρ = 1.

field cell images. Since these images are difficult to segment,
this is a significant achievement, even if somewhat different
parameters are required for different images. Note also that
the multilevel information about the segments gained by
the SWA algorithm leads to several other advantages over
commonly used segmentation methods, as discussed in
Section 6. However, it is clear that further research is needed
before a fully automatic reliable SWA segmentation method
is obtained for the bright field images under consideration.

A first type of improvement can be offered by including
more features in the feature vector. For example, geometrical
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(a) Original image (b) 5 segments found

Figure 10: Parameters used: (b) n = 60, α = 190, α̃ = 5, β = 100,
θ = 0.09, γ = 0.35, d1 = 0.15, σ = 6, ρ = 3.

(a) Original image

(b) 4 segments found (c) 5 segments found

Figure 11: Parameters used: (b) n = 120, α = 50, α̃ = 0, β = 110,
θ = 0.15, γ = 1.5, d1 = 0.15, σ = 5, ρ = 1; (c) n = 120, α = 100,
α̃ = 0, β = 110, θ = 0.11, γ = 0.9, d1 = 0.15, σ = 5, ρ = 3.

shape moments can be calculated for overlapping blocks
at all levels, giving information about block shape and
orientation that can be used to preferentially group together
blocks that have similar shape or orientation [9, 14]. We
expect that this can be used to deal better with the difference
between cells that are close to division (they appear bright
and circular) and regular cells. Anisotropic texture can be
considered as well. The algorithm performs well on bright
field images containing few cells, but the quality of the
segmentation deteriorates when more cells are present. This
is mainly due to the low-contrast boundaries and the broken
halos that surround the cells. One way to overcome this
problem may be to detect and promote boundary integrity
across neighbouring aggregates as in [21]. Cross-correlation
between features can also be taken into account. Application

of these and other algorithmic enhancements will be studied
in future research.

A second type of improvement, however, may be
achieved by simply considering the extra information that
is present in temporal sequences of images. The SWA
algorithm can take immediate advantage of this infor-
mation by applying it directly to these image sequences
in space time. However, before exploring SWA segmen-
tation in space time in Section 4, we first discuss how
we chose the parameters for the segmentation results of
Figures 7–11.

3.3. Choice of Segmentation Parameters. To apply the algo-
rithm to an image, we need to choose values for segmen-
tation parameters α, α̃, β, θ, γ, d1, σ and ρ. In order to
find suitable parameters, we normally start with an initial
parameter choice, and then finetune individual parameters
according to the following guidelines. A suitable initial
parameter set for our types of images is given by

(
α, α̃,β, θ, γ,d1, σ , ρ

) = (100, 100, 100, 0.1, 0.1, 0.15, 5, 1).
(21)

(1) To increase the contrast level of the image, increase
top-level intensity scaling factor α, which amplifies
the intensity difference between pixel pairs.

(2) For images containing broad bright or dark bound-
aries of regions (such as the halos in the bright
field cell images), we do not want these boundaries
to become salient segments themselves. Since a
large coarse-level intensity rescaling factor α̃ causes
blocks with high average intensity to become more
disconnected from their neighbours, a bright block
can very easily become a salient segment. To avoid
this, decrease α̃ to a small value, say in the range [0, 5].

(3) In order to separate desired segments that differ more
in average intensity and less in intensity variance,
choose a larger intensity rescaling factor α̃ and a
smaller variance rescaling factor β. Do the opposite
if the desired segments differ more in variance.

(4) If the algorithm finds too many (small) segments, try

(i) decreasing θ (more strong connections),

(ii) decreasing γ (stricter saliency threshold),

(iii) increasing σ (segments allowed only on coarser
levels).

On the contrary, if too few (large) segments are found,
then shift the parameter values in the opposite direction

(5) The process for segmenting image sequences in space
time (see next section) is similar but we usually start
with a smaller θ, such as 0.03. This is so because
a node in an image sequence typically has more
neighbours than a node in a single image. If we used
the same θ, there would be fewer strong connections
since our strength criterion defines strength relative
to row sums of the coupling matrix (see (A.22)).
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

(g) t = 7 (h) t = 8 (i) t = 9

Figure 12: Original image sequence.

4. Space Time Segmentation and Tracking

In this section we describe results obtained when applying
the multilevel SWA algorithm to sequences of images. In our
experimental technique we take images frequently enough
that moving cells overlap significantly between frames. (The
motion of the cells is slow compared to the image frequency.)
Cell trajectories in space time thus form “object tunnels”
that are found efficiently by the SWA algorithm. The extra
temporal information makes it easier to resolve difficult
cases such as touching cells, dividing cells, and cells that
temporarily overlap. The resulting space time segments can
also be used for tracking cell motion.

By stacking up the images, the problem of segmenting
multiple images can be viewed as segmenting one three-
dimensional (3D) data set. It is not difficult to modify
the SWA algorithm to suit a 3D problem because the
algorithm is already designed to coarsen arbitrary graphs,
which can represent geometric grids of any dimension. The
details of this simple modification are given in Appendix A.4.
Additionally, SWA can easily be applied to datasets with three
spatial dimensions and one temporal dimension with little or
no modicfication.

We now describe segmentation results for sequences of
bright field cell images.

Figure 12 shows a cell with an irregular shape moving
from the top-left corner of the window to the bottom-right
corner, while slightly changing its shape, from image t =
1 to image t = 9. (The actual time between images is 5
minutes.) Applying the SWA algorithm with appropriately
chosen parameters to this stack of images, we find the two
segments shown in Figure 13. Note that the cell boundary
is quite accurately captured in every frame, even though the
boundary of the cell is irregular.

Figure 14 shows a plot of this result in 3D with the red
tube representing the cell wall. In Figure 14(a), the images
are stacked with the t = 1 slice on top. In Figure 14(b), the
stack is reversed to show the t = 9 slice on top.

The next set of images (Figure 15) shows a slow-moving
triangular cell, and Figure 16 shows cell contours annotated
by a human expert. Figure 17 shows the SWA segmentation
results, and Figure 18 gives a 3D representation of them.
In comparison with the human expert, the SWA algorithm
segments 71634 out of the 121 × 121 × 5 = 73205 pixels
correctly, yielding a 97.85% accuracy.
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 6

(g) t = 7 (h) t = 8 (i) t = 9

Figure 13: 2 segments found with parameters (n,α, α̃,β, θ, γ,d1, σ , ρ) = (60, 100, 5, 160, 0.0055, 0.062, 0.15, 5, 2).
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(b) Looking down from t = 9

Figure 14: 3D representation of the cell segment.

Figure 19 shows a sequence of 11 cell images which
represent a cell dividing into two cells. In Figure 20,
segmentation parameters are chosen such that the cells
remain in one segment. This may be useful if one desires
one large connected segment for all cells in a tree-like
structure. Figure 22 shows that segmentation parameters can
be modified to obtain two segments, one for each of the
daughter cells. Even though the first few images contain

only one cell, the information from later times causes the
algorithm to interpret the mother cell as two cells that are
about to separate. Having two segments instead of one large
segment for all three cells may be useful if one desires
separate segments for each unique cell. In fact, if earlier
images were included, one would want a third segment for
the mother cell in this case. These two results illustrate how a
judicious choice of segmentation parameters allow the user
of the SWA algorithm to steer the segmentation process
towards the outcome that is desirable for the application
at hand. Figures 21 and 23 show 3D trajectories for the
two segmentations. While more research is clearly needed
to handle these rather complex cell divisions properly, the
preliminary results shown point to interesting possibilities
to use the space time SWA algorithm as a building block of
comprehensive tracking systems.

5. Scalability

Multilevel algorithms often enjoy the desirable properties
of fast execution time and low memory cost that are
linearly proportional to the number of data elements [9–
11]. In this section, we demonstrate how we achieved linear
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5

Figure 15: Original image sequence.

(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5

Figure 16: Annotations by a human expert.

runtime as a function of the number of pixels in the input
image for our implementation of the SWA algorithm. We
show that this, as expected, also holds for the space time
version of the algorithm. This makes the space time SWA
algorithm a highly attractive building block for segmentation
and tracking systems applied to long sequences of high-
resolution images. Also, if applications were to arise in which
image sequences with very large numbers of pixels have to
be segmented in short time, efficient parallel versions of
the SWA algorithm could be developed, along the lines of

successful parallel implementations of AMG, which have
been shown to scale well on large parallel computers (see,
e.g., [24], and references therein).

We test runtime scaling by fixing a set of segmentation
parameters and running the algorithm on images of different
resolution, from 512 × 512 to 10 × 10. (We do this using an
original 512×512 image that is downsampled to increasingly
lower resolution.) For each resolution, we determine the
typical runtime by calculating the average runtime over three
trials. Figure 24 shows that the runtime scales almost linearly
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5

Figure 17: 2 segments found with parameters (n,α, α̃,β, θ, γ,d1, σ , ρ) = (121, 11, 30, 10, 0.025, 0.01, 0.15, 7, 3).
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(b) Looking down from t = 5

Figure 18: 3D representation of the segments.

as a function of the number of pixels. Our implementation
is a mixed MATLAB-C research code, taking advantage of
MATLAB’s sparse matrix data structures and operations,
and employing C for the compute-intensive parts of the
code that cannot easily be done efficiently in MATLAB (in
particular, the AMG coarsening step). This implementation
could obviously be accelerated significantly for a production
environment by migrating the whole implementation to C.
However, even in our mixed MATLAB-C implementation,
we obtain almost linear scaling, and a quite reasonable
runtime of approximately 14 seconds for segmenting a 512
× 512 image. Figure 25 shows that we also obtain linear
runtime for a 3D 512 × 512 × 5 image downsampled to
increasingly lower resolution.

6. Conclusions and Future Work

In this paper, we have investigated the use of a multilevel
aggregation algorithm as a method for segmenting live cell

bright field microscope images. We use a variant of the
Segmentation by Weighted Aggregation (SWA) technique
[8, 9] and incorporate an improved scale invariant saliency
measure, which can identify salient segments more accu-
rately. We have shown that bright field cell images of mod-
erate complexity are segmented correctly by incorporating
multilevel intensity and intensity variance. We have shown
how the SWA algorithm can be applied without significant
modification to temporal sequences of images, producing
segments that track cell contours in space and time. Correct
segmentation still depends on a judicious choice of seg-
mentation parameters, and further research is needed before
a fully automatic reliable SWA segmentation method is
obtained for the bright field images under consideration. In
future work, we plan to investigate improving segmentation
results by including more features in the feature vector. For
example, we are considering to include shape moments,
anisotropic texture, cross-correlation between features, and
boundary detection [9, 14, 21]. We also plan to apply the
multilevel aggregation algorithm to segmentation of cell
parts (cytoplasm, nucleus and nucleoli).

While the robust application of multilevel aggregation
to bright field cell images requires further research, it is
already clear that the SWA segmentation approach may have
several advantages over more commonly used segmentation
techniques, which include level set, active contour, and
watershed methods. First of all, multilevel aggregation is
fast and linearly scalable in the number of pixels to be
segmented. The algorithm is conceptually simple since there
is no need to define initial level set seeds, or extract markers
as in watershed. The space time segmentation approach
uses extra temporal information that makes it easier to
resolve difficult cases like touching cells, dividing cells
and cells that temporarily overlap. Nevertheless, it seems
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

(i) t = 9 (j) t = 10 (k) t = 11

Figure 19: Original image sequence.

that extensive further research is required to handle these
difficulties properly. The feature vector for each resulting
segment contains multilevel information about the segment
that can be exploited in various ways. It can be used to
classify segments as background, dividing cell, or regular cell,
and it can potentially be used (in 3D) to separate tracks of
dividing cells from tracks of regular cells, to aid the proper
handling of cell division events. It can also be used to study
cell morphology and its dynamics.

The multilevel segmentation approach provides a single,
unified technique that produces accurate cell trajectory
segments (for moderately complex cases so far) and gives a
lot of additional useful information. It is clear that it will have
to be combined with other advanced methods of geometric,
modeling and statistical nature in order to obtain a complete
and robust segmentation and tracking system, along the
lines of the sophisticated and comprehensive segmentation
and tracking methods that recently have been described (see
[5, 6] and references therein). However, due to its conceptual
simplicity, linear efficiency, and tunability, and due to
the useful additional multilevel information it provides,
multilevel aggregation may simplify the development of
such comprehensive systems, and it thus promises to be

an attractive alternative to level set, active contour and
watershed approaches as a basic building block for robust
segmentation and tracking systems.

Appendix

A. Detailed Description of Multilevel
Segmentation Algorithm

A.1. Nonrecursive Part.
Input: an n× n greyscale image with N = n2 pixels.

Output: an N × m Boolean segmentation matrix U
describing m segments (Uij = 1 means that pixel i belongs
to the jth segment).

(1) Define global segmentation parameters:

(i) α (top-level intensity scaling factor),

(ii) α̃ (coarse-level intensity rescaling factor),

(iii) β (coarse-level variance rescaling factor),

(iv) θ (coarsening strength threshold),

(v) γ (saliency threshold),
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

(i) t = 9 (j) t = 10 (k) t = 11

Figure 20: 2 segments found with parameters (n,α, α̃,β, θ, γ,d1, σ , ρ) = (60, 8, 4, 200, 0.025, 0.15, 0.15, 6, 1).
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Figure 21: 3D representation of the segments.

(vi) d1 (sharpening threshold),

(vii) σ (segment detection threshold level),

(viii) ρ (variance rescaling threshold level).

(2) Initialize level 1 variables 	[1], M[1], I[1], A[1], S[1],
L[1], G[1], V [1] and Γ[1]:

(a) Current level 	[1] = 1.

(b) Current number of nodes M[1] = N .

(c) Label the pixels {1, 2, . . . ,M[1]}. Let I[1] be an
M[1]× 1 vector with I[1]

j as the intensity of pixel
j, where the intensity values may range from 0
to 1. (Each input image is scaled such that the
maximum intensity value equals 1.)

(d) Let coupling matrix A[1] be an M[1] × M[1]

matrix with

A[1]
i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−α|I
[1]
i −I[1]

j | if i, j are horizontal or
vertical neighbours,

0, otherwise.
(A.1)

(e) Let variance matrix S[1] be an M[1] ×M[1] zero
matrix.

(f) Let weighted boundary length matrix L[1] be an
M[1] ×M[1] matrix with

L[1]
i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−A[1]
i j if i /= j,

∑

k /= i
A[1]
ik if i = j.

(A.2)
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Figure 22: 3 segments found with parameters (n,α, α̃,β, θ, γ,d1, σ , ρ) = (60, 11, 2, 300, 0.015, 0.05, 0.15, 5, 4).

(g) Let area matrix V [1] be an M[1] ×M[1] matrix
with

V [1]
i j =

⎧
⎪⎨

⎪⎩

0 if A[1]
i j = 0,

1 if A[1]
i j /= 0.

(A.3)

(h) Let boundary length matrix G[1], be an M[1] ×
M[1] matrix with

G[1]
i j =

⎧
⎪⎪⎨

⎪⎪⎩

−V [1]
i j if i /= j,

∑

k /= i
V [1]
ik if i = j.

(A.4)

(i) Let saliency vector Γ[1] be an M × 1 vector with

Γ[1]
i = L[1]

ii

G[1]
ii

. (A.5)

(3) Determine overlapping segments by calling the recur-
sive graph segmentation function:

U [1] = imageVCycle
(

	[1],M[1], I[1],A[1], S[1],V [1],Γ[1]
)

.

(A.6)

(The recursive function imageVCycle is described in
Appendix A.2).

(4) Assign pixels uniquely to segments: set

Uij ←−

⎧
⎪⎨

⎪⎩

1 if j = min
{

j : max
k

U [1]
ik = U [1]

i j

}

,

0, otherwise.
(A.7)

A.2. Recursive Part (Function imageVCycle).
Input: 	[r], M[r], I[r], A[r], S[r], V [r], Γ[r].

Output:U [r], in whichU [r]
i j indicates the fraction of node

i on level r belonging to segment j.

(1) If 	[r] ≤ σ , set all Γ[r]
i = ∞. (No salient segments

allowed on current level.)

(2) Coarsen the current graph: set

C[r] = coarsenAMG
(

A[r],Γ[r], γ, θ
)

, (A.8)

where coarsenAMG is a function described in
Appendix A.3.

(3) Let M[r+1] be the length of C-point vector C[r].
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Figure 23: 3D representation of the segments.
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Figure 24: Runtime versus image size. (Single images.)

(4) Let 	[r+1] = 	[r] + 1.

(5) If M[r] = M[r+1] (no further coarsening obtained),
output U [r] as an M[r] ×M[r] identity matrix (every
current node is a segment). Otherwise continue.

(6) Let interpolation matrix P[r,r+1] be an M[r] ×M[r+1]

matrix with

P[r,r+1]
i j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if i ∈ C[r], i = C[r]
j ,

0 if i ∈ C[r], i /=C[r]
j ,

AiC[r]
j

∑
k∈C[r] Aik

if i /∈C[r].

(A.9)

(7) Let column-scaled interpolation matrix P̃[r,r+1] be an
M[r] ×M[r+1] matrix with

P̃[r,r+1]
i j =

P[r,r+1]
i j

∑
k P

[r,r+1]
k j

. (A.10)

(8) Let coarse-level intensity vector I[r+1] be anM[r+1]×1
vector with

I[r+1] =
(

P̃[r,r+1]
i j

)T
I[r]. (A.11)
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Figure 25: Runtime versus image size. (Space time sequences of
images.)

(9) For each block on the current coarse level, r + 1,
compute a new intensity variance measure relative to
level r:

S[r+1]
coarse =

(

P̃[r,r+1]
)T(

I[r]
)2 −

(

I[r+1]
)2

, (A.12)

and average the previously calculated variance mea-
sures for levels finer than level r + 1:

S[r+1]
fine =

(

P̃[r,r+1]
)T
S[r]. (A.13)

Here, (I[r])2 and (I[r+1])2 are the vectors I[r] and I[r+1]

squared componentwise. Then coarse-level intensity
variance matrix S[r+1] is an M[r+1] × (r + 1) matrix
given by

S[r+1] =
[

S[r+1]
fine | S[r+1]

coarse

]

. (A.14)

(10) Define coarse-level coupling matrix A[r+1], an
M[r+1] ×M[r+1] matrix, in three steps.

(a) Let

A[r+1] = P[r,r+1]TA[r]P[r,r+1]. (A.15)

(b) Rescale using coarse-level intensity:

A[r+1]
i j ←− A[r+1]

i j e−α̃|I
[r+1]
i −I[r+1]

j | ∀i, j. (A.16)

(c) If 	[r+1] ≥ ρ, rescale using multilevel variance:
Set, for all i, j,

A[r+1]
i j ←− A[r+1]

i j e−β‖s[r+1]
i −s[r+1]

j ‖
2 , (A.17)

where s[r+1]
i is the ith row of coarse-level

intensity variance matrix S[r+1].

(11) Let coarse-level weighted area matrix W [r+1] =
A[r+1].
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(12) Let coarse-level area matrix V [r+1] = P[r,r+1]T

V [r]P[r,r+1].

(13) Define coarse-level weighted boundary length matrix
L[r+1], an M[r+1] ×M[r+1] matrix, in two steps:

(a) Let L[r+1] = −A[r+1].

(b) L[r+1]
ii ← −∑k /= i L

[r+1]
ik for all i.

(14) Define coarse-level boundary length matrixG[r+1], an
M[r+1] ×M[r+1] matrix, in two steps:

(a) Let G[r+1] = −V [r+1].

(b) G[r+1]
ii ← −∑k /= i G

[r+1]
ik for all i.

(15) Let coarse-level saliency vector Γ[r+1] be an M[r+1]×1
vector, determined as follows. For each C-point i,
if it was salient on level r, keep it salient on level
r + 1. If not, determine its saliency using the saliency
measure.

If Γ[r]

C[r]
i
= 0, then Γ[r+1]

i = 0, otherwise

Γ[r+1]
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L[r+1]
ii /G[r+1]

ii

W [r+1]
ii /V [r+1]

ii

if
L[r+1]
ii /G[r+1]

ii

W [r+1]
ii /V [r+1]

ii

> γ

0 otherwise.
(A.18)

(16) Recursively segment the coarse graph: Let

U [r+1] = imageVCycle
(

	[r+1],M[r+1], I[r+1],A[r+1],

S[r+1],V [r+1],Γ[r+1]
)

.

(A.19)

(17) Find the current segmentation matrix from the
coarse-level segmentation matrix: Let

U [r] = P[r,r+1]U [r+1]. (A.20)

(18) Sharpen overlapping segments: For all i, j, set

U [r]
i j ←−

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if U [r]
i j < d1,

1 if U [r]
i j > 1− d1,

U [r]
i j otherwise

(A.21)

(19) Return current segmentation matrix U [r].

A.3. AMG Coarsening (Function coarsenAMG). Input: A[r],
Γ[r], γ, θ.

Output: C[r], indices of C-points chosen on level r.

(1) Let M[r] be the number of rows (or columns) in A[r].

(2) Let A[r] be an M[r] × M[r] matrix containing only
strong connections. That is,

A
[r]
i j =

⎧
⎪⎨

⎪⎩

A[r]
i j if i /= j, A[r]

i j ≥ θ
∑

k /= i
A[r]
ik ,

0 otherwise.
(A.22)

(One may also use the criterion A[r]
i j ≥ θmaxk /= iA

[r]
ik

for strong connections, which is more standard in the
AMG context. In our experience, either criterion may
be used, but θ may have to be chosen differently.)

(3) Let λ be an M[r] × 1 vector in which λi denotes the

number of nonzero entries in column i of A
[r]

.

(4) Let T be anM[r]×1 zero vector that keeps track of the
set to which each node is assigned. For node i, Ti = 0
means it is unassigned, Ti = 1 means it is a C-point,
and Ti = 2 means it is an F-point.

(5) For i = 1, 2, . . . ,M[r], if Γ[r]
i < γ, then set Ti ← 1

and λi ← 0. (So that salient nodes, or segments, are
designated as C-points.)

(6) While not all Ti > 0, do the following.

(a) Let j be the smallest value satisfying Tj = 0 and
λj = maxkλk. (Nodes that strongly influence
many other nodes are likely to be chosen as C-
points.)

(b) Set Tj ← 1 and λj ← 0.

(c) Let K = {k : A
[r]
k j > 0,Tk = 0}. (K is the set of

unassigned nodes that are strongly influenced
by node j.)

(d) For all k ∈ K , do the following.

(i) Set Tk ← 2 and λk ← 0. (Nodes in K
become F-points.)

(ii) Let H = {h : A
[r]
kh > 0,Th = 0}. (H is the

set of nodes that strongly influence k.)
(iii) For all h ∈ H , set λh = λh + 1. (Nodes in H

are made more likely to become C-points.)

(7) Let the vector of C-points be C[r] = {i : Ti = 1}.
(8) Return C[r].

A.4. 3D Modifications. Let k be the number of consecutive
images we wish to segment in space time. The following
modifications need to be made to the nonrecursive part of
the algorithm (Appendix A.1). To highlight the changes, we
do not rewrite any steps that do not change.

(1) Read in the k greyscale images as n × n intensity

matrices, I[1]
1 , I[1]

2 , . . . , I[1]
k . Each input image is scaled

such that the maximum intensity value equals 1. Let
N = n2.
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(2) (The global segmentation parameters are defined as
before.)

(3) Initialize variables 	[1], M[1], I[1], A[1], S[1], L[1], G[1],
W [1], V [1] and Γ[1]:

(a) Set the current number of nodes M[1] = Nk.

(b) Obtain the M[1] × 1 intensity vector I[1] by
reshaping the n× nk intensity matrix given by

[

I[1]
1 I[1]

2 · · · I[1]
k−1 I[1]

k

]

. (A.23)

(c) A[1] is an M[1] ×M[1] matrix with

A[1]
i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−α|I
[1]
i −I[1]

j | if i, j are horizontal, vertical

or time-wise neighbours,

0, otherwise.
(A.24)

(d) The other variables are defined as before.

(4) Call the recursive function as before.

(5) U is defined as before.

Everything else in the algorithm, including the recursive
part and the coarsening, remains unchanged.
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