
Hindawi Publishing Corporation
Journal of Robotics
Volume 2009, Article ID 986207, 13 pages
doi:10.1155/2009/986207

Research Article

Collaborator: A Nonholonomic Multiagent Team for
Tasks in a Dynamic Environment

Jing Ren and Mark Green

Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada L1G 7K4

Correspondence should be addressed to Jing Ren, jing.ren@uoit.ca

Received 19 January 2009; Revised 1 September 2009; Accepted 16 October 2009

Recommended by Jorge Manuel Dias

In our previous work, we proposed a potential field-based hybrid path planning scheme for robot navigation that achieves complete
coverage in various tasks. This paper is an extension of this work producing a multiagent framework, Collaborator, that integrates
a high-level negotiation-based task allocation protocol with a low-level path planning method taking into consideration several
real-world robot limitations such as nonholonomic constraints. Specifically, the proposed framework focuses on a class of complex
motion planning problems in which robots need to cover the whole workspace, coordinate the accomplishment of a task, and
dynamically change their roles to best fit the task. Applications in this class of problems include bomb detection and removal
as well as rescuing of survivors from accidents or disasters. We have tested the framework in simulations of several tasks and
have shown that Collaborator can satisfy nonholonomic constraints, cooperatively accomplish given tasks in an initially unknown
dynamic environment while avoiding collision with other team members. Finally we prove that the proposed control laws are
stable using the Lyapunov stability theory.

Copyright © 2009 J. Ren and M. Green. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Motion planning is a fundamental and important issue in
robotics. A special type of path planning includes tasks such
as demining [1] and searching for victims after a tragedy,
which are extremely crucial jobs and require complete
coverage in the process of exploration. If time allows, robot
teams should perform a thorough search and cover every
square foot of the workspace. While covering too much
area is not a concern, insufficient coverage could result in
disastrous consequences. Similar criteria apply to many other
robotic applications such as vacuum robots and land mine
detection. In some more complex scenarios, robots are often
interrupted by other tasks. For example, in jobs such as
bomb detection and removal [2], or rescuing of survivors
from accidents or disasters [3], search is the typical mode.
However when a robot discovers an object, such as a survivor,
its search phase is paused and then it attends to its rescue
task. It can only resume searching after the rescue task is
finished. These tasks require some sort of role change such
as the transformation from rescue to search to successfully

complete their mission. Moreover when the task cannot
be accomplished by a single robot, coordination or task
allocation issues arise. In this instance, robots may negotiate
to solve the issues and distribute the tasks among themselves.

The robotics literature contains a number of motion
planning strategies for this class of tasks using neural
networks, fuzzy logic, approximate cellular decomposition,
exact cellular decomposition, and artificial potential fields.
Most prior work focuses on either high-level task allocation
or low-level task execution. Few works combine task alloca-
tion with potential-field based motion planning to provide
a holistic solution. Parker [2] provides a behavior-based
architecture that facilitates fault tolerance: the effectiveness
of the architecture is demonstrated through a team of mobile
robots performing a laboratory version of hazardous waste
cleanup. Gerkey and Mataric [4] presents an auction-based
task allocation, which can achieve a distributed approxima-
tion to the global optimum for resource usage. The primary
contribution of the work is to empirically demonstrate that
the distributed negotiation mechanism is viable and effective
for coordinating a physical multirobot team. [5] showed

2 Journal of Robotics

Intelligent agent

High-level task coordination

Low-level path planning

With nonholonimic constraints

With moving obstacles constraints

With moving obstacles constraints
and nonholonomic constraintsl

· · ·

Physical level control

Actuator Sensor

Figure 1: Agent-based navigation software architecture. The archi-
tecture of a single agent is structured in four hierarchical layers:
DecisionMaking (DM), KnowledgeBase (KBase), Interaction and
Communication. Local and remote sensor information is integrated
into the knowledge base, and no distinction is made between them
during motion planning.

that the coordination of reactive robots can be obtained
through the exploitation of local interactions; however, it
basically remains at the level of task allocation and does not
propagate to the level of task execution. In our previous
work, a novel hybrid navigation scheme is proposed for a
multiagent team aiming to bridge the gap between high-
level task coordination and low-level path planning [6]. This
work did not focus on low-level path planning, assumed ideal
working conditions, and did not take into account moving
obstacles and nonholonomic constraints. Those aspects of
low-level path planning however, are critical to a physical
implementation. In a real-life work environment, moving
obstacles are often inevitable. For instance, cleaning robots
often find themselves in situations where they need to
avoid collision with people going about their own business.
Moreover, unlike simulated robots, many physical robots can
only move forward and backward, subject to nonholonomic
constraints, similar to that of vehicles. In this paper, we
extend our previous results to a more realistic environment
considering each single constraint and both constraints
simultaneously.

For a complex system such as the one previously
described, the central objective is to achieve system stability.
Systems are considered stable when convergence to the global
minimum has occurred, which can only be achieved when

the entire task is completed. Robots often need to work in
an environment which is dynamic, noisy and unpredictable.
Nevertheless, they should be reliable in their ability to
finish the task despite all of the distractions including
the intervention of moving obstacles. This guarantee of
convergence is necessary for critical tasks such as rescuing
victims after a disaster. Stability for single agent navigation
in a static environment can be achieved by constructing a
simple Lyapunov function. However, stability for multiagent
team navigation in a dynamic environment is inherently
more difficult due primarily to the interaction among
agents and the presence of moving obstacles. In this paper,
we propose a cooperative hybrid navigation scheme and
construct a mode-specific team Lyapunov function, which
shows that the system is stable at all times by using arguments
from hybrid systems theory and Lyapunov stability theory.

The rest of the paper is divided into a number of sections
that address individual aspects of this problem. In Section 2,
we describe the hierarchical agent design that is the basis for
this work. Section 3 presents a potential field-based hybrid
navigation scheme. In Section 4, a motion control law is
derived and Section 5 extends the framework to environ-
ments with moving obstacles. Section 6 incorporates non-
holonomic constraints in the agent design, while Section 7
considers the robots with both nonholonomic constraints
and moving obstacles. Section 8 presents simulation results
for a multirobot system subject to nonholonomic constraints
in a dynamic environment. In Section 9 team stability is
analyzed. Finally in Section 10, we make concluding remarks
and discuss future research directions.

2. Agent Design

The multilayer agent architecture used in this work is
depicted in Figure 1. Each of the robots in the team use
the same architecture and there is no centralized control
for the team. The highest level is the task coordination
or knowledge level. At this stage of abstraction, agents
analyze and manage tasks using an inherent coordination
mechanism. The middle level entails path planning, where
agents choose the suitable navigation function to pursue
ideal objectives based on the accumulation of knowledge
or team decisions. Lastly, the lowest level interacts with an
actuator and sensors to govern motion control.

Our agent team is completely decentralized, where there
is no leader or coordinator for the team and each agent
analyzes and makes navigation and coordination decisions
autonomously based on its own knowledge of the world. This
design is inherently fault tolerant and easy to reconfigure in
the event that task requirement changes [6].

Our previous work describes the agent architecture in
detail and how it is used to complete high-level tasks [6].
Here we provide a brief description of its main components
and how they assist with low-level path planning. The archi-
tecture of a single agent consists of four hierarchical layers:
DecisionMaking (DM), KnowledgeBase (KBase), Interaction
and Communication. In the following paragraphs, we define
the functionality of each layer as well as a the interface

Journal of Robotics 3

between the layers. For each of these layers, the control
software is multithreaded, with each main object running in
its own thread.

The Decision Making (DM) layer is the main source of
intelligence in the System. It performs navigation planning
based on the information stored in the Knowledge Base using
the hybrid approach described in [6]. At any point in time a
robot can be in one of a finite set of modes, which represent
high-level navigation goals. A rule-based system is used to
transition between the modes based on the current state of
the task. The modes define the navigation goals for the low-
level path planning system.

The Knowledge Base contains the agent’s most recent
knowledge about the world map, the “group knowledge” as
well as the inference rules for coordination. This information
includes the location of all known obstacles and any goals
that have been located. The information in the Knowledge
Base is built up from the robot’s own experience, plus that
of the other robots it is communicating with.

Devices at the Coordination layer, discussed in [7]
separate the interaction tasks from the main periodic motion
planning task. The interaction between agents is performed
using an unambiguous communication protocol [7]. We
define interfaces between the interaction devices and both
the Knowledge Base and Communication layers. At the
Interaction layer, devices perform coordination as well as
other interaction tasks and store the results in the Knowledge
Base, without interfering with regular decision making. As a
result, it is a simple matter to add new interaction devices if
necessary for new applications.

In summary, the higher levels of the architecture provide
the locations of the obstacles and goals which are the input to
the low-level path planning system. The higher level ensures
that the whole space is searched and all the intended tasked
are completed, while the lower level deals with navigating
robots from their current locations to goal locations.

3. Potential Field-Based Navigation Scheme

A local minimum free potential field can be constructed
using generalized spherical potential functions or harmonic
functions [8]. In this paper we use a two-dimensional
generalized Gaussian function which is much easier to
construct and more effective for obstacles whose protective
areas can be superscribed by circles without overlapping.

Attractive objects centered at (ax, ay) are represented by
the negative Gaussian attractor function:

fA
(
x, y

) = 1− e−((x−ax)2+(y−ay)2)/2σ2
. (1)

Repulsive obstacles and other agents centered at (rx, ry)
are modeled with the circular, two-dimensional generalized
Gaussian repulsor functions:

fR
(
x, y

) = e−(1/2)(((x−rx)2+(y−ry)2)/σ2)C . (2)

For some positive integer C. The variance, σ , is a measure
of the size of the obstacle. The parameter C determines the
effective range (steepness) of the obstacle and can be varied to

modify the obstacle’s repulsive effect. We represent obstacle
shapes with a superscribed circle.

By specifying a minimum clearance between obstacles
and highly localizing the influence of the obstacles through
modifications to the parameter C, generalized Gaussian
function modeling can be used to construct potential fields
that are free of undesired local minima. Figure 2(a) uses a
small C and there are local minima among the obstacles, by
changing C to a larger value and thereby highly localizing
the effects of the obstacles, local minima disappear in
Figure 2(b).

In [6], we proposed a mode-switching technique, where
mode switches are based on events such as unsearched
sectors decreasing and the number of found objects/obstacles
increasing. Using the technique of artificial potential fields,
we construct a navigation function,VXi

i (q) for agent i in mode
Xi (where Xi can be any of the modes defined above). To
construct the navigation function for a given mode, we use
the three part formula:

VXi
i

(
q
) = VAXi

(
qi
)

+VOXi
(
qi
)

+
∑

j /= i
VR

(
qi, qj

)
. (3)

In (3),VAXi(qi) represents the sum of the effects on agent i of
all the NA attractors in the system during mode Xi, and thus

VAXi
(
qi
) =

NA∑

k=1

(
1− e−(((xi−(ak)x)2+(yi−(ak)y)2)/2σ2

)
. (4)

VOXi(qi) represents the sum of the effects on agent i of
all the known static obstacles in the system during mode Xi.
The number of known static obstacles is NO; so we can state
this as

VOXi
(
qi
) =

NO∑

k=1

(
e−(1/2)(((xi−(rk)x)2+(yi−(rk)y)2)/σ2)C

)
. (5)

Finally, the functions VR(qi, qj) represent the repulsor
functions between pairs of agents i and j. Note that VR is
not mode dependent, since the number of agents is assumed
to be constant. Thus, in general

VR
(
qi, qj

)
= e−(1/2)(((xi−xj)2 +(yi−yj)2)/σ2)C . (6)

4. Motion Control Law

Using the technique of artificial potential fields, we construct
a navigation function, VXi

i (q) for each agent i in mode Xi
(where Xi can be any of the modes defined above). The
(mode-dependent) kinematics of each agent are then given
by:

q̇i = −α
∂VXi

i /∂qi∣
∣
∣∂VXi

i /∂qi
∣
∣
∣
. (7)

In (7), the operator ∂VXi
i (q)/∂qi represents the gradient of

VXi
i (q) with respect to only qi. Thus, we use a gradient

descent method to generate a unit vector direction for q̇i and

4 Journal of Robotics

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

#

#

@#

##

#

(a)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

#

#

@#

##

#

(b)

Figure 2: Effect of parameter C.

the constant velocity parameter α to determine agent speed.
We use a unit gradient since our Gaussian-like potential
functions decay very rapidly.

Note that the gradient decent method gives the direction
of motion towards the goal, but the speed of this motion,
represented by α, is a function of the robot design. That is,
each robot has a maximum speed that must be accounted for
by the navigation system.

5. Extension to Environments with
Moving Obstacles

Moving obstacle avoidance is of great importance in robotics
research and is inherently harder than dealing with only static
obstacles. Many works have been devoted to this problem
[9–12]. The most related work in literature is presented
by Esposito and Kumar in [12]. In that work, Esposito
and Kumar propose a nonlinear programming method
for computing optimal feasible directions for the mobile
robots. By moving along feasible directions instead of the
negative gradient direction, robots can successfully avoid all
the moving obstacles while retaining a stable trajectory. In
other words, the optimal direction decreases the potential
function value most rapidly within the feasible direction
set. It is not optimal in term of time or shortest distance
though. Although that method is effective in many cases,
it may fail to converge for some steps, especially in cases
where the number of moving obstacles increases (i.e., more
nonlinear constraints need to be considered). Also this
method is computationally expensive due to the iterations in
the optimization process (please refer to [13]).

Our algorithm uses geometry transformation to solve the
moving obstacle avoidance problem. Similar to the work of
Esposito and Kumar, this algorithm achieves moving obstacle
avoidance by finding optimal feasible solutions. However,
there is no approximation in the proposed method and only
several geometry transformations are involved even for the
most complex scenarios; so it can achieve accurate solutions

with less computation. More importantly, the proposed
method can guarantee to find an optimal solution when there
is one.

Another advantage of the proposed method is that it
is easier to incorporate the algorithm into various motion
planning algorithms. For example, we will show in Section 7
that the proposed algorithm can be easily incorporated into
the nonholonomic robot’s motion planning [14] and achieve
moving obstacle avoidance.

We associate with each moving obstacle a dynamic
constraint [12] of the following form:

gj
(
q
) =

∣
∣
∣qi − Pj

∣
∣
∣

2 −D2
obs ≥ 0, (8)

where Pj is the position of the moving obstacle j, and Dobs

is the minimum safe distance between the robot and the
moving obstacle.

When moving obstacles are far away from robots, they
are ignored by the planning algorithm. When the robot
moves within the threshold distance Dobs of a moving
obstacle, the constraints become activated, and robots move
along the feasible motion directions. If the path is totally
blocked by obstacles (static and moving), the robot will
simply halt until it is cleared, which is the same strategy that
is used in [15].

In the context of moving obstacle avoidance, feasible
motion directions denoted by dfi are the directions that can
stabilize the system and move robots away from the activated
moving obstacles and thus satisfy the following conditions:

dTfi dngi > 0, (9)

dTfi dgj ≥ 0, j = 1, 2, . . . ,m, (10)

where dgj = ∂gj/∂qi represents the gradient of the constraint

gj and dngi = −(∂VXi
i (q)/∂qi)/‖∂VXi

i (q)/∂qi‖ is the negative

gradient direction of the navigation function VXi
i (q) of robot

i. In (9), we require any control which can stabilize the
system to have a positive projection on dngi (moving towards

Journal of Robotics 5

67

1

1 2
2

3
3 4

4
5

5
6

7

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6

7
@

R

Figure 3: The darker line is the trajectory of a robot trying to reach
the goal (@ at the top of the figure). It must achieve this goal while
avoiding the moving obstacle (lighter line).

the goal). In (10) we require any control which can move
the robot away from the moving obstacle to have a positive
projection on dgj (moving away from the moving obstacles).

Theorem 1. The feasible motion direction set can be con-
structed only using the robot gradients of the navigation
function and the constraints for moving obstacles. (Please see
the appendix for the proof.)

In our setting, the robot will move along the optimal
feasible direction calculated from the constructed feasible set,
where the direction is optimal in the sense that it is closest
to the negative gradient direction. We will show later in this
section that the resulting motion directions are the same
as the optimization method in [12] when the optimization
method converges. Recall that the set [Θmin,Θmax] is the set
of feasible directions in the following form of a rotation angle
with respect to the negative gradient direction dngi. From
basic geometry (refer to Figure 13), we can see that there
will be no feasible solution if Θmin > Θmax. If there exists
a feasible solution and dngi is in the feasible set, then dngi is
the optimal feasible gradient direction, otherwise the optimal
feasible gradient direction can be obtained by rotating dngi to
the feasible direction set with smallest rotation.

If we use Θri to denote the optimal rotation angle, the
following formula for Θri is given by

Θri =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if Θmin ≤ 0, Θmax ≥ 0,

Θmin if Θmin > 0,

Θmax if Θmax < 0.

(11)

We define the optimal feasible gradient direction dfngi to be

dfngi = dngiB
T
ri

(
q
)
, (12)

0 1 2 3 4 5 6
×10−12

0

10

20

30

40

50

60

70

80

90

Figure 4: Histogram of position differences of 350 steps in both
x and y directions shows that the trajectories generated from two
algorithms are the same.

where the rotation matrix Bri(q) is of the following form:

Bri
(
q
) =

⎡

⎣
cosΘri − sinΘri

sinΘri cosΘri

⎤

⎦. (13)

The control law is then given by

q̇ = k · dfngi. (14)

In Figure 3, we illustrate this algorithm in a typical goal
reaching task. The robot is required to reach the goal while
avoiding the moving obstacle.

In Figure 4, we show that the results obtained from this
method are the same as those from optimization method
in [12] when the optimization method converges. Figure 4
shows the histogram of the trajectory differences between
optimization method and the proposed method in both x
and y direction, we can see the differences are the order of
10−15, which is not significant.

The proposed algorithm is much more computationally
efficient than the optimization method. We use moving
obstacles with randomly generated positions and run the
program 50 times (totally 350 steps) for the simple scenario
illustrated in Figure 3, the average number of iterations is
above 5 for optimization method, and we know that when it
comes to some complex scenarios, the number of iterations
will increase substantially. The proposed algorithm, however,
always has the computation complexity of O(1), so it is
at least five times faster than the optimization method on
average.

6. Nonholonomic Robots

The nonholonomic robots we consider in this paper are
the Hilare type mobile robot, which have the most typical
nonslip constraint. This robot has two parallel wheels which
can be controlled independently. By commanding the same

6 Journal of Robotics

θ

motion direction
(move forward)
i

θngi

θni

−θi

(a)

θi(orientation)

θngi

θni

−θi
motion direction

(backward)

(b)

Figure 5: (a) The robot forward direction has a positive projection
on the negative gradient direction; the robot will move forward
to guarantee the θni is in the set [−π/2,π/2]. (b) The robot
backward direction has a positive projection on the negative
gradient direction; the robot will move backward to guarantee that
the θni is in the set [−π/2,π/2].

velocity to both wheels, the robot moves in a straight line.
By commanding velocities with the same magnitude but
opposite directions, the robot pivots about its axis. The
nonslip constraint forces the mobile robot to move only
forward or backward. We resolve the constraint by selecting
the forward or backward direction based on whichever one
has a positive projection on the gradient descent direction,
then update the heading as fast as possible to match our
heading to the gradient descent heading. If we assume it is
a kinematic system, the inputs are the linear and angular
velocity.

We define the angle corresponding to the negative
gradient of the navigation function θngi as

θngi = arctan

(

−∂V
Xi
i

∂yi
,−∂V

Xi
i

∂xi

)

, (15)

and define the angle between the negative gradient and the
heading to be θni = min{�(θngi, θi), �(θngi,−θi)}. θni is in
the set [−π/2,π/2] by construction (please refer to Figure 5).
The angular velocity control law is given by

θ̇i = β
θngi − θi∣∣
∣θngi − θi

∣∣
∣

, (16)

and the linear velocity control law is given by

q̇i = −α
(
∂VXi

i /∂qi
)
BTni

(
q
)

∣
∣
∣∂VXi

i /∂qi
∣
∣
∣

, (17)

where α and β are constant speed parameters and

Bni =
⎡

⎣
cos θni − sin θni

sin θni cos θni

⎤

⎦. (18)

Figure 6(a) shows the effectiveness of the algorithm in
a multiple obstacle avoidance task. A nonholonomic robot
successfully reaches the target after transversing a workspace
which is packed with randomly generated obstacles of
different size. Figure 6(b) is a close-up view of Figure 6(a)
showing fairly smooth motion of the robot around the
obstacles.

7. Both Nonholonomic Constraints and
Moving Obstacles

In this section, we consider the motion control problem
subject to both nonholonomic constraints and moving
obstacles. We will first find a feasible direction set such that
all directions in this set can move the robot towards the
goal and at same time away from the moving obstacles. We
define the optimal feasible direction as the direction that is in
the feasible set and closest to the gradient descent direction.
If the robot’s forward direction is in the feasible set, the
robot will move forward; if the robot’s backward direction
is in the feasible set, the robot will move backward (note
that backward direction and forward direction cannot be in
the feasible set at the same time). When neither of these
directions is in the feasible set, the robot will not generate
linear velocity but will rotate towards the optimal feasible
direction. In this way, the robot can move towards (taking
both positions and orientations into account) the goal and
avoid moving obstacle at same time.

If we use Θoi to denote the optimal rotation angle, the
following formula for Θoi is given by

Θoi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if Θmin ≤ 0, Θmax ≥ 0,

Θmin if Θmin > 0,

Θmax if Θmax < 0,

(19)

(refer to Figure 13) and we define the feasible steepest descent
direction di to be

di = dngiB
T
oi

(
q
)
, (20)

where Boi(q) is defined as follows:

Boi
(
q
) =

⎡

⎣
cosΘoi − sinΘoi

sinΘoi cosΘoi

⎤

⎦. (21)

Motion Control Law. The (mode-dependent) kinematics of
each agent is then given by

θ̇i = β
θroi

|θroi|
, (22)

where θroi is defined as the angle from the orientation θi to
the optimal feasible direction di:

q̇i = −α
(
∂VXi

i /∂qi
)
BTai

(
q
)

∣
∣∣∂VXi

i /∂qi
∣
∣∣

, (23)

Journal of Robotics 7

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70
R1063

@

(a)

20 22 24 26 28 30 32 34 36 38 40
20

22

24

26

28

30

32

34

36

38

40

(b)

Figure 6: Motion planning for nonholonomic robots with multiple obstacles.

where the rotation matrix Bai(qi) is defined as

Bai
(
q
) =

⎡

⎣
cosΘai − sinΘai

sinΘai cosΘai

⎤

⎦, (24)

where Θai is defined as the rotation angle from the negative
gradient direction to the actual motion direction (forward
direction or backward direction). Note that we require Θai

to be in the set [−π/2,π/2]; the robot will move forward if
forward direction is a feasible direction, move backward if
backward direction is a feasible direction. Bai is set to a zero
matrix when neither the forward direction nor the backward
direction is in the feasible set. In this case, the robot will not
have any linear velocity.

Figure 7 shows the comparison of two scenarios,the first
scenario is the goal reaching task with no obstacles. The
second scenario is the goal reaching task with one moving
obstacle that is always in the way of the robot at each step
of its motion. From the figures, it is clear that the robot can
reach the goal in six steps if the route is clear, while needs 80
steps under the influence of the moving obstacle.

Figure 8 shows the difference of robot motions with
and without moving obstacles in the task of static obstacle
avoidance. The first figure shows that the robot can get
around the static obstacle in 60 steps, however with a moving
obstacle, the robot in the second figure needs 90 steps.

8. Simulation Results

In this section, we show how this framework succeeds
in a typical navigation and coordination task: search-and-
transport. We have performed simulations of agent teams in
several environments. Figure 9 shows the results of a typical
simulation, played in a 10 × 10 grid containing 6 static
obstacles (represented with the # symbol) and 2 moving
obstacles (represented with the M symbol) with a team of
3 agents trying to find 3 small objects (represented by the
@ symbol) and 3 big objects (represented by the O symbol).

The O symbols also represent positions where the big objects
are picked up, and the @ symbols also represent positions
where the small objects are picked up. The solid lines near
the moving obstacles are trajectories of the moving obstacles.
The robot R1 starts at position (1, 0), the robot R2 starts at
position (3, 0), and the robot R3 starts at position (5, 0). The
small object collection location is (9, 0) and the big object
collection location is (1, 0).

In Figure 9, we illustrate the search-and-transport task.
Only R3’s trajectory is shown (represented by dashed line) in
Figure 9 to reduce clutter.

Figures 10(a)–10(c) is part of the simulation. We use
it to illustrate coordination among agents by showing the
paths followed by the three agents and moving obstacles. The
trajectories of agents R1, R2, and R3 are represented by the
solid line, dash-dot line and dashed line, respectively. From
this figure, we can see that R2 found a big object at the “O”
point, R3 came to help and they returned the big object back
to the big object collection position together. R1 found a
small object at the “@” point, and is carrying it back to the
small object collection position. The figure also illustrates
how all agents avoid both static and moving obstacles at all
times.

Figure 11 illustrates our moving obstacle avoidance tech-
nique. When R1 spots a moving obstacle represented by
the M symbol, a moving obstacle avoidance algorithm is
incorporated into the navigation function. By always moving
along the feasible direction, R1 can make progress to the goal
and avoid collision with the obstacle at the same time.

In Figure 12 we illustrate how our method works with a
more complex scenario. The environment is enlarged from
10 by 10 to 50 by 50. The workspace is more clustered
and the obstacles have a larger size and assume different
shapes. It is shown that all the algorithms presented in
the paper are not affected by these changes. The three
robots can still coordinate and accomplish the search-and-
transport task. The new workspace contains eight closely
placed static obstacles of different shapes and two moving

8 Journal of Robotics

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100
6

@

Trajectory
of the robot

Start

(a)

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100
80

@∗

Trajectory
of the robot

Trajectory of the
moving obstacle

Start

(b)

Figure 7: (a) shows the robot motion with nonholonomic constraints, no obstacle. (b) shows the robot motion with nonholonomic
constraints, with a random moving obstacle, note that to fully test our algorithm, we keep the moving obstacle activated for each step.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100
60

@

R

∗∗

Start

(a)

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80
90

@
R

#

Start

(b)

Figure 8: (a) shows the robot motion with nonholonomic constraints, with a static obstacle at (55, 40), (b) shows the robot motion with
nonholonomic constraints, with a moving obstacle moving around (55, 40).

obstacles (represented with the M symbol). The number of
large objects remains three and the number of small objects
is increased to four. As in the last scenario, the solid lines
near the moving obstacles are the trajectories of the moving
obstacles. The robot R1 starts at position (5, 0), the robot R2
starts at position (15, 0), and the robot R3 starts at position
(25, 0). The small object collection location is (45, 0) and the
big object collection location is (5, 0).

9. Team Stability Analysis

The definition of our modal navigation functions, and of
our mode-switching rules, allows us to show that the system
(entire agent team) is globally stable at all times and in all
states [16].

With the mode switching technique defined in [6], we
can guarantee the mode switches occur in finite time as
follows. Although the order of mode switches cannot be
predicted in advance, our switching technique guarantees
that the mode-transition graph will be acyclic since mode
switches only occur when the team has made progress
towards solving the overall task and there is never a
situation where a given mode is reentered. Therefore it is
straightforward to show that our hybrid system is one of the
switched system defined in [16].

Now we only need to show that the low-level path
planning scheme presented here is stable.

9.1. Stability without Constraints. Within each mode, we can
define a mode-specific Lyapunov function of the following

Journal of Robotics 9

0 2 4 6 8 10
@@@

@

0

1

2

3

4

5

6

7

8

9

10

11

Position of
robot home

Trajectory of the robots

Trajectory of
moving

obstacles

@

#

@

#

O

O

#

#

M
M

#

#

Obstacles

OOO

O

Big objects

Small objects

Figure 9: This figure is the snapshot after the task is completed. All
three big objects are returned to the big object collection position
and all three small objects are returned to the small object collection
position. The robots are back in their home position. The dashed
line represents the trajectory of agent R3.

form:

VX
(
q
) =

Q∑

i=1

VXi
i

(
q
)−

Q∑

i=1

Q∑

j=i+1

VR
(
qi, qj

)
(25)

=
Q∑

i=1

(
VAXi

(
qi
)

+VOXi
(
qi
))

+
Q∑

i=1

Q∑

j=i+1

VR
(
qi, qj

)
,

(26)

where the step from (25) to (26) is justified by the fact that
VR(qi, qj) = VR(qj , qi). In these equations Q is the number
of robots.

To show intramodal Lyapunov stability, we are required
to show VX(q) ≥ 0 for all q and V̇X(q) < 0 for all q, t.
VX(q) ≥ 0 follows naturally from the definition of VX(q) in
(26). To show that VX(q) is always decreasing, we begin by
using (25). For convenience, in the derivations that follow,
we have replaced terms of the following formVR(qi, qj) with
the short form VRij :

V̇X
(
q
) =

Q∑

i=1

∂VXi
i

(
q
)

∂qi
q̇Ti +

Q∑

i=1

∑

i /= j

∂VXi
i

(
q
)

∂qj
q̇Tj

−
Q∑

i=1

Q∑

j=i+1

(
∂VRij
∂qi

q̇Ti +
∂VRij
∂qj

q̇Tj

)

.

(27)

Now, observe that since qj only appears in VXi
i (q)

through the VRij terms, the second term of (27) can be

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

@ R1

R2

R3

#M
M

#

45

O

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

@ R1

R2
R3

#MM

#

60

O

(b)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

@ R1

R2

R3

#

#

MM

#

76

O

(c)

Figure 10: This figure is to show the agent team coordination in a
big object carrying task. In (a) R2 finds a big object, stops searching
and calls for help. In (a) R3 comes to help after receiving the confirm
message. In (b) R3 arrives at the big object and R2 and R3 are
carrying the big object home together. Finally, in (c) R2 and R3
reached the object home.

10 Journal of Robotics

rewritten as

Q∑

i=1

∑

i /= j

∂VXi
i

∂qj
q̇Tj =

Q∑

i=1

∑

i /= j

∂VRi j
∂qj

q̇Tj

=
Q∑

i=1

Q∑

j=i+1

∂VRij
∂qj

q̇Tj +
Q∑

i=1

i−1∑

j=1

∂VRij
∂qj

q̇Tj

=
Q∑

i=1

Q∑

j=i+1

∂VRij
∂qj

q̇Tj +
Q∑

p=1

Q∑

s=p+1

∂VRps
∂qp

q̇Tp

=
Q∑

i=1

Q∑

j=i+1

(
∂VRij
∂qi

q̇Ti +
∂VRij
∂qj

q̇Tj

)

.

(28)

Thus, the second and third terms in (27) will cancel, and
we will have

V̇X
(
q
) =

Q∑

i=1

∂VXi
i

(
q
)

∂qi
q̇Ti . (29)

If we substitute for q̇i using the dynamics defined in (7),
we will have

V̇X
(
q
) = −α

Q∑

i=1

∂VXi
i

(
q
)

∂qi

(
∂VXi

i /∂qi
)T

∣
∣∣∂VXi

i /∂qi
∣
∣∣

= −α
Q∑

i=1

∣∣
∣
∣
∣
∂VXi

i

(
q
)

∂qi

∣∣
∣
∣
∣,

(30)

and we will have V̇X(q) < 0 for all t, q as required.

Remark 1. The constructed Lyapunov function VX(q) is a
generalized energy function. The first term

∑Q
i=1 VA

Xi(qi)
decreasing means that the agents get closer to the attractors.
The second term

∑Q
i=1 VO

Xi(qi) decreasing means that the
agents move away from the static obstacles. The third term
∑Q

i=1

∑Q
j=i+1 VR(qi, qj) decreasing means that the agents try

to stay away from the other team members.

9.2. Stability Subject to Nonholonomic Constraints. If we
substitute into (29) for q̇i using the dynamics defined in (17),
we will have

V̇X
(
q
) = −

Q∑

i=1

(
∂VXi

i

(
q
)

∂qi

)

αBni
(
q
)
(
∂VXi

i /∂qi
)T

∣
∣∣∂VXi

i /∂qi
∣
∣∣
. (31)

If we denote vxi = −∂VXi
i (q)/∂xi and vyi = −∂VXi

i (q)/∂yi,

(
∂VXi

i

(
q
)

∂qi

)

Bni
(
q
)
(
∂VXi

i

∂qi

)T

=
⎡

⎣
vxi

vyi

⎤

⎦

T

Bni

⎡

⎣
vxi

vyi

⎤

⎦

=
⎡

⎣
vxi

vyi

⎤

⎦

T⎡

⎣
cos θni − sin θni

sin θni cos θni

⎤

⎦

⎡

⎣
vxi

vyi

⎤

⎦

=
(
v2
xi cos θni + v2

yi cos θni

)
.

(32)

Note that by construction, θni ⊆ [−π/2,π/2]. Therefore
we will have V̇X(q) < 0 for all t, q as required.

9.3. With Moving Obstacles. From (29), we have

V̇X
(
q
) =

Q∑

i=1

∂VXi
i

(
q
)

∂qi
q̇Ti . (33)

If we substitute for q̇i using the dynamics defined in (14),
we will have

V̇X
(
q
) =

Q∑

i=1

∂VXi
i

(
q
)

∂qi
kdfngi. (34)

According to the definition of feasible directions (refer to
(9)), we have V̇X(q) < 0 for all t, q as required.

9.4. With Moving Obstacles and Nonholonomic Constraints. If
we substitute for q̇i using the dynamics defined in (23), we
will have

V̇X
(
q
) = (−α)

QX
∑

i=1

(
∂VXi

i

(
q
)

∂qi

)

Bai
(
q
)
(
∂VXi

i /∂qi
)T

∣∣
∣∂VXi

i /∂qi
∣∣
∣
. (35)

If we denote vxi = −∂VXi
i (q)/∂xi and vyi = −∂VXi

i (q)/∂yi,

(
∂VXi

i

(
q
)

∂qi

)

Bai
(
q
)
(
∂VXi

i

∂qi

)T

=
⎡

⎣
vxi

vyi

⎤

⎦

T

Bai
(
q
)
⎡

⎣
vxi

vyi

⎤

⎦

=
⎡

⎣
vxi

vyi

⎤

⎦

T⎡

⎣
cos θai − sin θai

sin θai cos θai

⎤

⎦

⎡

⎣
vxi

vyi

⎤

⎦

=
(
v2
xi cos θai + v2

yi cos θai

)
.

(36)

Note that by construction, θai ⊆ [−π/2,π/2]. Therefore
we will have V̇X(q) < 0 for all t, q as required.

Journal of Robotics 11

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

#
M

M

#

21

O

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

#
M

M

#

26

O

(b)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

#
M

M

#

29

O

(c)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

#
M

M

#

33

O

(d)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11

#
M

M

#

36

O

(e)

Figure 11: (a) R1 spots a moving obstacle in the way. and start moving obstacle avoidance algorithm for their navigation. (b)–(e) shows
for each step, the robot is moving away from the current position the obstacle therefore avoiding collision. Meanwhile the total effects of
attractive “force” from the unsearched cells and the objects attract the robot towards to the goal.

10. Conclusions and Future Work

In our previous work, we proposed a software framework
and a hybrid navigation scheme for multiple agent naviga-
tion and coordination. However, there were several issues
that remained unresolved in the previous work. Specifically,

the robots and their environment were abstractions of the
real world. For instance, the robots had the ability to move
in all directions and the environment contained only fixed
obstacles. In this paper, we extend our work by eliminating
these ideal characteristics and considering the challenges
that robots are likely to encounter in the real world. In

12 Journal of Robotics

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

@
O @ O

O

@

@

@@@@

M

M

1003 OOO

Figure 12: We show the simulation results with a more complex
environment. Obstacles are larger and take on different shapes, and
the workspace is more crowded. This figure is the snapshot after
the task is completed. All three big objects are returned to the big
object collection position and all four small objects are returned to
the small object collection position.

θ1 mindfng

dg2

dg1

dng

θr

θ2 max

π/2
θ1 max

−π/2
θ2 min

Figure 13: This figure illustrates our optimal feasible direction
scheme. Note that the filled area is the resulting feasible area.

particular, we propose geometric-based methods to avoid
moving obstacles and satisfy nonholonomic constraints. Our
methods are suitable for fast online calculation and they are
easily combined with one another to solve more complex
problems such as nonholonomic constraints with moving
obstacles. Furthermore, our control framework applies to
a wide range of scenarios. We have demonstrated the
search-and-transport problems with interdependencies for a
multiagent team. And this framework is applicable to a much
wider range of tasks than were discussed in this paper, due
to our hierarchical design and fully distributed organization
and because our stability proof makes no assumptions about
the nature of the team members.

Appendix

Proof. (For simplicity, we drop the subscript “i” which refers
to the ith robot in this proof.)

First we denote the angle corresponding to the gradient
of constraint gj by θv j and define it as follows:

θv j = arctan

(
∂gj
∂y

,
∂gj
∂x

)

, (A.1)

where −π < θv j ≤ π. To better illustrate our method, we
represent all directions in the following form of rotation
angles with respect to dng. Θ j is defined as the angle between
dng and dgj . We define this angle to be positive if a counter-
clockwise rotation takes dng to dgj and negative otherwise:

Θ′j = θv j − θng. (A.2)

The resultant Θ′j falls in the interval [−2π, 2π] and we
transform it to the interval [−π,π] by the following formula:

Θ j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Θ′j if − π ≤ Θ′j ≤ π,

Θ′j − 2π if Θ′j > π,

Θ′j + 2π if Θ′j < −π.
(A.3)

Next we construct a feasible direction set [Θ j min,Θ j max] for
each of the activated moving obstacles:

Θ j min =

⎧
⎪⎪⎨

⎪⎪⎩

Θ j − π

2
if Θj ≥ 0,

−π
2

if Θj < 0,

Θ j max =

⎧
⎪⎪⎨

⎪⎪⎩

Θ j +
π

2
if Θj ≤ 0,

π

2
if Θj > 0.

(A.4)

Note that the feasible direction set [Θ j min,Θ j max] for
each activated moving obstacle constraint is a subset of
[−π/2,π/2] because all feasible directions must lie in the
same half-tangent plane as dng. Next, we find the inter-
section θ f = [Θmin,Θmax] of the feasible direction sets
[Θ j min,Θ j max] that works for all moving obstacles:

Θmin = max{Θ1 min,Θ2 min, . . . ,Θmmin},

Θmax = min{Θ1 max,Θ2 max, . . . ,Θmmax}.
(A.5)

By construction, we know that θ f is also a subset of
[−π/2,π/2].

References

[1] S. Hirose, S. Yokota, A. Torii, et al., “Quadruped walking robot
centered demining system—development of TITAN-IX and its
operation,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA ’05), vol. 2005, pp. 1284–
1290, 2005.

[2] L. E. Parker, “ALLIANCE: an architecture for fault tolerant
multirobot cooperation,” IEEE Transactions on Robotics and
Automation, vol. 14, no. 2, pp. 220–240, 1998.

[3] A. Davids, “Urban search and rescue robots: from tragedy to
technology,” IEEE Transactions on Intelligent Systems, vol. 17,
no. 2, pp. 81–83, 2002.

Journal of Robotics 13

[4] B. P. Gerkey and M. J. Mataric, “Sold!: auction methods for
multirobot coordination,” IEEE Transactions on Robotics and
Automation, vol. 18, no. 5, pp. 758–768, 2002.

[5] A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella,
“Collaboration through the exploitation of local interactions
in autonomous collective robotics: the stick pulling experi-
ment,” Autonomous Robots, vol. 11, no. 2, pp. 149–171, 2001.

[6] J. Ren, K. A. McIsaac, and R. V. Patel, “A novel hybrid
navigation scheme for reconfigurable multi-agent teams,”
International Journal of Robotics and Automation, vol. 21, no.
2, pp. 100–109, 2006.

[7] H. Ghenniwa and M. Kamel, “Interaction devices for coor-
dinating cooperative distributed systems,” Intelligent Automa-
tion and Soft Computing, vol. 6, no. 3, pp. 173–184, 2000.

[8] J.-O. Kim and P. K. Khosla, “Real-time obstacle avoidance
using harmonic potential functions,” IEEE Transactions on
Robotics and Automation, vol. 8, no. 3, pp. 338–349, 1992.

[9] R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Multivalued
distance maps for motion planning on surfaces with moving
obstacles,” IEEE Transactions on Robotics and Automation, vol.
14, no. 3, pp. 427–436, 1998.

[10] K. Fujimura and H. Samet, “Hierarchical strategy for path
planning among moving obstacles,” IEEE Transactions on
Robotics and Automation, vol. 5, no. 1, pp. 61–69, 1989.

[11] R. A. Conn and M. Kam, “Robot motion planning on
N-dimensional star worlds among moving obstacles,” IEEE
Transactions on Robotics and Automation, vol. 14, no. 2, pp.
320–325, 1998.

[12] J. M. Esposito and V. Kumar, “A method for modifying closed-
loop motion plans to satisfy unpredictable dynamic con-
straints at run-time,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA ’02), pp. 1691–
1696, Washington, DC, USA, 2002.

[13] M. Bazaraa, H. Sherali, and C. Shetty, Nonlinear Programming
Theory and Algorithms, John Wiley & Sons, New York, NY,
USA, 1995.

[14] H.-S. Shim and Y.-G. Sung, “Stability and four-posture
control for nonholonomic mobile robots,” IEEE Transactions
on Robotics and Automation, vol. 20, no. 1, pp. 148–154, 2004.

[15] J. Evans, B. Krishnamurthy, B. Barrows, T. Skewis, and V.
Lumelsky, “Handling real-world motion planning: a hospital
transport robot,” IEEE Control Systems Magazine, vol. 12, no.
1, pp. 15–19, 1992.

[16] M. S. Branicky, “Multiple Lyapunov functions and other anal-
ysis tools for switched and hybrid systems,” IEEE Transactions
on Automatic Control, vol. 43, no. 4, pp. 475–482, 1998.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

