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Abstract

Background: There are both theoretical and empirical reasons to believe that design and execution factors are
associated with bias in controlled trials. Statistically significant moderator effects, such as the effect of trial quality
on treatment effect sizes, are rarely detected in individual meta-analyses, and evidence from meta-epidemiological
datasets is inconsistent. The reasons for the disconnect between theory and empirical observation are unclear. The
study objective was to explore the power to detect study level moderator effects in meta-analyses.

Methods: We generated meta-analyses using Monte-Carlo simulations and investigated the effect of number of
trials, trial sample size, moderator effect size, heterogeneity, and moderator distribution on power to detect
moderator effects. The simulations provide a reference guide for investigators to estimate power when planning
meta-regressions.

Results: The power to detect moderator effects in meta-analyses, for example, effects of study quality on effect
sizes, is largely determined by the degree of residual heterogeneity present in the dataset (noise not explained by
the moderator). Larger trial sample sizes increase power only when residual heterogeneity is low. A large number of
trials or low residual heterogeneity are necessary to detect effects. When the proportion of the moderator is not
equal (for example, 25% ‘high quality’, 75% 'low quality’ trials), power of 80% was rarely achieved in investigated
scenarios. Application to an empirical meta-epidemiological dataset with substantial heterogeneity (I = 929%,

7% =0.285) estimated >200 trials are needed for a power of 80% to show a statistically significant result, even for a
substantial moderator effect (0.2), and the number of trials with the less common feature (for example, few ‘high
quality’ studies) affects power extensively.

Conclusions: Although study characteristics, such as trial quality, may explain some proportion of heterogeneity
across study results in meta-analyses, residual heterogeneity is a crucial factor in determining when associations
between moderator variables and effect sizes can be statistically detected. Detecting moderator effects requires
more powerful analyses than are employed in most published investigations; hence negative findings should not
be considered evidence of a lack of effect, and investigations are not hypothesis-proving unless power calculations
show sufficient ability to detect effects.
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Background

There are both theoretical and empirical reasons to be-
lieve that trial design and execution factors are associ-
ated with bias. Bias is the systematic deviation of an
estimate from the true value. One example of a trial fea-
ture is randomization. Randomly allocating experimental
subjects to control and intervention groups to ensure
that groups are comparable at baseline was originally in-
troduced in agricultural science and adopted by medical
researchers [1]. The importance of several such features
of what is now known as trial quality or risk of bias has
been recognized for hundreds of years: the first pub-
lished blinded (or masked) experiments with placebo
controls were carried out in 1784 [2].

Critical appraisal of research studies is of particular im-
portance to systematic reviews, which aim to summarize
the available evidence adequately. Methodological charac-
teristics of studies included in a systematic review can
have a substantial impact on treatment effect estimates
[3]. Heterogeneity describes the variance among study re-
sults and it is a function of random variation and system-
atic differences between studies. We routinely assess the
quality of studies we include in meta-analyses as a poten-
tial source of heterogeneity, and a large number of individ-
ual quality criteria and quality checklists or scales are
available for this purpose [4,5]. Typically, in an individual
meta-analysis of randomized controlled trials (RCTs), or
in meta-epidemiological datasets that include RCTs from
several meta-analyses, each study feature is analyzed as a
single dichotomous predictor (trial has the feature or does
not) of the effect size of a trial with two arms. For continu-
ous outcomes, to determine whether the study feature is
associated with the reported treatment effect size, the dif-
ference between the two arms of the RCT is calculated
and standardized to estimate an effect size, along with the
standard error of the effect size. These measures of effect
size are then regressed on the predictor within a meta-
analysis framework to see if the trial feature explains some
of the variation in effect sizes across RCTs. Sterne et al.
[6,7] outline the methodology further, and also apply a
similar approach for dichotomous outcomes.

Although a number of study features have been pro-
posed, an actual association with bias in effect size esti-
mates has been empirically confirmed for only a few, and
the literature shows conflicting results [8]. Some analyses
have demonstrated that low quality trials exaggerate treat-
ment effects [9,10]; for example, low quality trials and those
with inadequate treatment allocation concealment showed
an increased effect size in a large dataset reported by
Moher et al. [11] that included 11 meta-analyses. A sum-
mary score consisting of 11 common quality criteria can
find absolute differences in effect size of 0.20 between trials
meeting a quality threshold and those that do not [12].
Other researchers [13,14] applying quality measures to a
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number of meta-analyses concluded that individual quality
measures were not reliably associated with the strength of
treatment effect across studies and clinical areas. Using data
from other meta-epidemiological studies [10,11,15,16], Juni
et al. [17] reported associations of effect sizes with alloca-
tion concealment and double blinding, whereas the gener-
ation of treatment allocation did not show a statistically
significant effect across datasets. These results highlight an
inconsistency between theory and empirical evidence of
bias. The question of whether generation of treatment al-
location is an important critical appraisal dimension or
whether systematic reviewers are wasting time assessing it
in systematic reviews is a pertinent one. Thus, authors
might ask why they have to adhere to CONSORT reporting
guidelines, if empirical evidence is lacking or inconsistent.

Recently, some research has been dedicated to deter-
mine variables that may explain the reason for inconsist-
ent results in studies investigating evidence of bias [18].
Wood et al. [19] used three meta-epidemiological data-
sets to explore the associations of quality features and
effect sizes [10,15,20] and investigated whether the na-
ture of the intervention and the type of outcome meas-
ure influence the effect of allocation concealment and
blinding. They found that trials using subjective out-
comes showed exaggerated effect sizes when there was
inadequate or unclear allocation concealment or lack of
blinding while associations were negligible in trials with
objective outcomes. Other factors that are inherent to
datasets may influence the ability to detect effects of trial
quality or other study moderator effects.

Existing research on the power of meta-analyses to de-
tect study moderator effects in meta-analysis has focused
on patient characteristics. Specifically, these papers focus
on the decision regarding the appropriateness of meta-
regression or individual patient data [21-23]. The meta-
regression analyses that we consider in this paper are
those in which study level characteristics are of interest; to
our knowledge, there has been little direct investigation of
the effects of heterogeneity on the power to detect study
level moderator effects. Furthermore, simulation has rarely
been applied to meta-analytic questions (meta-analyses
and meta-regressions pose a complex model with within-
trial as well as across-trial variables to consider) but it can
be a powerful tool in systematically assessing the effects of
hypothesized factors [24-26].

The aim of the study was to determine the power to
detect study level moderator effects, such as trial quality,
in meta-analysis taking the number of trials, the effects
of trial sample size, the quality distribution across trials,
and dataset heterogeneity into account.

Methods
We investigated the effect of factors potentially associ-
ated with power in meta-analyses of controlled trials and
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meta-epidemiological studies to detect a moderator ef-
fect via simulation and applied the results to empirical
datasets. For this paper, we assumed a dichotomous pre-
dictor as the moderating variable, that is, feature present
or not (or, for example, ‘high quality’ versus ‘low quality’).
Furthermore, we selected continuous outcomes for this
analysis and used effect size as the measure of treatment
effect. The Institutional Review Board HSPC of the RAND
Corporation to review research involving human subjects,
as required by federal regulations, has reviewed the study
and deemed it exempt (ID 2013-0423).

Simulation design

We used Monte-Carlo simulation to explore the effects
of four parameters, systematically varied in the simula-
tions: (1) The number of trials in each meta-analysis was
set to 5, 10, 20, 50, 100, or 200 trials. The values were
chosen to represent substantial variation in the number
of trials found in individual meta-analyses as well as
meta-epidemiological studies; (2) The sample size within
each trial was set to 20, 50, 100, 200, or 500 participants
to represent the substantial variation in the number of
participants in existing trials; (3) The moderator effect
(that is, the effect of the study-level feature on effect
size) was set to 0.0, 0.1, 0.2, 0.3, or 0.4. A moderator ef-
fect of 0.2 (for example the effect of trial quality) means
the difference in effect sizes between studies with the
feature (for example, ‘high quality’ trials) versus studies
without the feature (for example, low quality’ trials) is
0.2 standard deviations [27]. The value 0.4 represents a
very large moderator effect; we are not aware of an em-
pirical study which has detected a moderator effect this
large, and additional variation was not considered to be
informative; (4) The degree of residual heterogeneity
(study variance due to other factors than the studied
moderator effect) was quantified using 1%, and was set to
0 (no additional heterogeneity apart from that explained
by the moderator variable), 0.1, 0.2, 0.4, or 0.8. The
values were chosen to represent heterogeneity in indi-
vidual meta-analyses as well as meta-epidemiological
datasets. The indicator 1° represents the amount of het-
erogeneity in a meta-analysis above that expected by
chance. Of note, the heterogeneity measure 1%, repre-
sents 1 minus the proportion of the total variation that
is due to chance, thus equal amounts of heterogeneity
(1?) give rise to different proportions of variation that is
not due to chance (I?) [28]. The table in the Additional
file 1 shows the relationship between I* and 1> in our
simulations. In a meta-analysis which comprised larger
individual studies, less variation would be expected by
chance; therefore a meta-analysis with larger trials would
be expected to have a larger value of I> than a second
meta-analysis with smaller trials, while > was constant.
In addition, we varied the balance of the trial level
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moderator variable, to either 50% of the trials having the
feature, or 25% having the feature. For all modeled vari-
ables, values were chosen to represent existing datasets
and scenarios encountered by researchers, as well as
having substantial variation to aid detection of the effect
of the variables.

Allowing each simulation parameter to vary simultan-
eously produced a total of 6 * 5 * 5 * 5 * 2 =1,500 simu-
lation possibilities. For each cell of the simulations, we
generated and analyzed 1,000 meta-analyses. Given the
number of studies per meta-analysis and number of pa-
tients per study, the simulations represent 1.5 million
meta-analyses, comprising 96.25 million trials and nearly
17 billion simulated patients’ data.

Data generation and analysis
Data were generated in two stages using R version 3.02
[29]. In the first instance, we generated a vector for
study effect sizes where all trials had an effect size of 0.0.
Trials were then assigned to their cell of the simulation,
and for each of the cells we added a random variance
parameter to increase the heterogeneity between studies
to give the appropriate value for >

The second stage generated normally distributed data
for each trial, with a mean of 0 and a standard deviation
of 1, with sample sizes per trial ranging from 20 to 500.
The treatment effect for trials with a positive expression
of the moderator variable (for example, ‘high quality’ tri-
als) was zero, and the treatment effect of trials with a
negative expression of the moderator variable (for ex-
ample, low quality’ trials) was created by adding a con-
stant (0.0 through 0.4) to the control group of the trials.

Data analysis was carried out using the Metafor pack-
age [30]. Effect sizes were calculated using the escalc ()
function, and meta-regression models were estimated
with the rma () function, with DerSimonian-Laird esti-
mation. The categorical moderator effect was used as a
predictor in the model. The primary outcome of interest
was the statistical significance of the quality moderator
effect. For each cell of the simulation we calculated the
proportion of analyses in which the result was statisti-
cally significant at P <0.05.

Application examples

In addition to the general simulation models we also used
the specification of five empirical datasets and modeled re-
sults to fit these specific datasets.

First, we obtained a meta-epidemiological dataset by ran-
domly selecting 200 trials from an RCT collection indexed
in PubMed and published in 2006 [31] and extracted the
primary outcome results for each of the trials. In this
meta-epidemiological dataset, some studies had extremely
large sample sizes: for the purpose of calculating the mean
effect size, these studies were removed from the analysis.
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The mean sample size in the dataset was 132 and hetero-
geneity across study results was substantial (I* = 92%, T° =
0.285). We ran Monte-Carlo simulations to determine the
power necessary to detect a moderator effect, such as trial
quality. For this moderator effect size power analysis we
ran simulations for moderator effects of 0.1 and 0.2, gener-
ated 1,000 random effects meta-analyses per simulation,
and systematically varied the proportion of studies with
the feature (for example, proportion of ‘high quality’ trials).

We also performed post hoc power calculations for
four published meta-epidemiologic datasets in a further
application. The datasets were assembled to analyze
the association of study quality indicators and reported
effect sizes. Dataset 1 was derived from all Cochrane
Back Review Group reviews of non-surgical treatment
for non-specific low back pain in the Cochrane Library
2005, issue 3; the dataset included 216 individual trials
[12]. For Dataset 2, prior systematic reviews and meta-
analyses conducted by Agency for Healthcare Research
and Quality (AHRQ)-funded Evidence-based Practice
Centers (EPCs) were searched; this dataset includes 165
trials [8]. Dataset 3 is a replication of a selection of trials
used in a published meta-epidemiological study [11]
using trials from 11 digestive diseases, mental health,
stroke, pregnancy and childbirth, and circulatory disease
treatment meta-analyses; this dataset includes 100 trials.
Dataset 4 is a replication of parts of another published
meta-epidemiological dataset [14] using trials from eight
cardiovascular disease and five pediatric treatment meta-
analyses; this dataset includes 149 trials. More informa-
tion on the dataset composition can be found in Hempel
et al. [8] and Hempel et al. [18]. The power calculation
simulations matched the dataset specifications in terms
of heterogeneity (I*), number of studies, and mean sam-
ple sizes. We computed the power for two representative
levels of moderator effects (0.1 and 0.2) and investigated
the effect of a potential reduction in the residual hetero-
geneity (for example, if other sources of heterogeneity
were known and could be controlled for).

Results and discussion

The results are shown in Figures 1 and 2. Figure 1 is based
on meta-analyses that assume an equal distribution of the
moderator, for example, a 50:50 ratio of low and high
quality studies within the dataset. The figure shows the
power for each of the possible meta-analytic conditions
for five levels of residual heterogeneity, for six levels of the
number of trials per meta-analysis, with five levels of trial
sample sizes, and five levels of moderator effects (such as
the association of study quality and effect sizes). Both fig-
ures may be used as a reference guide for authors to esti-
mate the approximate sample size needed to show a
moderator effect.
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The first diagram on the top left in the figure shows the
power for different levels of residual heterogeneity in a
meta-analysis of five trials that each includes 20 partici-
pants. There is insufficient power to even detect a large
moderator effect (0.4). As the number of participants in-
creases, effects can only be detected in the presence of
very little or no residual heterogeneity (that is, noise).
With an increasing number of trials, the power to detect a
smaller moderator effect (0.1) is <80% in many of the pre-
sented scenarios, even in the presence of no residual het-
erogeneity. However, in a meta-analysis of 100 trials with
500 participants each, detection of substantial moderator
effects (0.3 to 0.4) is possible except in the presence of
large (for example, 0.4, 0.8) residual heterogeneity.

The figure shows the relative importance of individual
variables in the presence of all contributing factors and
emerging trends across scenarios. When there is no het-
erogeneity, the total number of participants in the meta-
analysis is the determining factor for power - for ex-
ample, for a moderator effect of 0.1, approximately 90%
power is attained with 100 trials of # =100 (10,000 par-
ticipants), 50 trials of 200 individuals (also 10,000 partic-
ipants), and 20 trials of 500 participants (again, 10,000
participants). However, when heterogeneity is present,
the number of participants per study is considerably less
important than the number of trials - for a moderator
effect of 0.2, and 1> of 0.1, 50 trials of 50 participants
provides low power - approximately 0.45; increasing the
size of the trials to 500 participants increases power by a
small amount, to approximately 0.55, despite the in-
crease in the total sample size by a factor of 10; but
keeping the size of the trials constant, and doubling the
number of trials gives an increase in power to approxi-
mately 0.75, and doubling the number of trials again (to
200) increases power to approximately 0.95. This finding
is equivalent to the result found in cluster randomized
studies, where the number of individuals is less import-
ant than the number of clusters [32,33]. The number of
studies in the meta-analysis increases the power steadily,
even when the sample sizes of the studies and the mod-
erator effect are only small.

The heterogeneity within the dataset is of particular
importance for the power. Even when large studies are
included in the meta-analyses and a substantial moder-
ator effect is present in the dataset, a large number of
studies is needed to detect the effect; when 1> was set to
0.8, a power of 80% was only achieved when investigat-
ing an extremely large moderator effect (0.4).

The scenario assumed in Figure 1 (an equal distribu-
tion of the moderator variable in the dataset (for ex-
ample, 50% ‘low quality’ and 50% ‘high quality’ studies))
is rare in empirical meta-analyses. Figure 2 shows a
more realistic distribution with only 25% of studies clas-
sified as ‘high quality’ and 75% as ‘low quality’ studies.
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Figure 1 Power simulation, moderator distribution 50:50. The figure shows the power for each of the combination (number of studies in
each meta-analysis ranging from 5 to 200 controlled trials; study sample size ranging from 20 to 500 participants; moderator effect ranging from
0 to 04; residual heterogeneity ranging from T =0 to 0.8; for a 50:50 distribution of the moderator (for example, 50% ‘high quality’, 50%

‘low quality).

While the trend is similar, in this unbalanced moderator = The analysis shows that a ratio of high and low quality
condition, sufficient power to detect a statistically signifi-  studies moving away from 50%, as is typical for empirical
cant moderator effect is achieved in only few scenarios.  datasets, reduces power further.
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Figure 2 Power simulation, moderator distribution 25:75 ratio. The figure shows the power for each of the combination (number of studies
in each meta-analysis ranging from 5 to 200 controlled trials; study sample size ranging from 20 to 500 participants; moderator effect ranging
from 0 to 04; residual heterogeneity ranging from t° =0 to 0.8; for a 25:75 distribution of the moderator (for example, 25% ‘high quality’,

75% ‘low quality’).

Applications researchers should determine how many studies are
Before applying critical appraisal criteria and assessing needed and how much power these studies give to de-
the effects of potential moderators in a meta-regression, tect a moderator effect, such as the effect of low or high
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quality in a dataset that may explain variation in treat-
ment estimates across studies. This factor can determine
whether the analysis has sufficient power to identify ef-
fects, hence it increases our confidence in whether study
results are distorted by lack of quality or other study
characteristics.

We sampled the described RCT collection [31] to
demonstrate the application of the power considerations
in an empirical meta-analysis with large heterogeneity
(I = 92%, 1* = 0.285) where researchers are likely to want
to investigate possible sources of heterogeneity such as
trial quality. We can infer from the simulations that
when high heterogeneity is present, the number of RCTs
in the dataset is more important than the sample size of
the individual trials, and power to detect moderator ef-
fects such as the effect of quality on effect sizes is gener-
ally low. Table 1 shows the power for moderator effects
of 0.1 and 0.2, varying the proportions of studies with a
positive expression of the moderator (for example, pro-
portion of ‘high quality’ trials). The table highlights the
association of the moderator proportion and the number
of RCTs needed to show an effect: As the proportion
moves away from 50%, the size of the smaller group
matters more (for example, only 20% ‘high quality’ RCTs =
40/200, only 40 RCTs total in one group) than the size
of the larger group (for example, even a large number
of RCTs with the more common feature). While the

Table 1 Power to determine the number of studies
needed to show a moderator effect in a given
meta-analysis dataset

Proportion of studies (%) with positive expression
of moderator (for example, ‘high quality’)

Studies (n) 0.5 0.3 0.2 0.1
Moderator effect=0

200 6 6 5 6
400 6 5 6 5
600 5 6 [§ 6
800 6 5 6 7
Moderator effect=0.1

200 24 22 22 13
400 45 40 33 21
600 65 54 48 29
800 75 69 53 39

Moderator effect =0.2

200 75 67 57 32
400 95 93 84 60
600 100 99 9% 78
800 100 100 98 90

Extrapolated from random sample of 200 RCTs, I = 92%, T° = 0.285; mean
sample size 132; alpha = 0.05; in the absence of a moderator effect
(moderator effect =0), the power should vary around 5%.
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difference in power is marginal comparing a ratio of 50%
and 30% (power =75% versus 69%, 800 RCTs, moderator
effect =0.1), results are very different for scenarios with
only 10% ‘high quality’ and 90% ‘low quality’ RCTs
(power = 39%, 800 RCTs, moderator effect =0.1). When
the ratio is far from 50%, the increase in power associated
with more RCTs is small. Even in a dataset of 600 RCTs,
a power of 80% to show a statistically significant effect is
not reached when only a few RCTs show the rare expres-
sion of the moderator, for example, only 60 ‘high quality’
RCTs are present (proportion = 0.1).

The size of the moderator effect will depend on the in-
dividual moderator, for example, the specific quality fea-
ture. In practice, it might be possible to modify the
criteria to avoid a quality scoring that results in a very
imbalanced distribution (which will affect the power
negatively as outlined above). However, even if a distri-
bution across studies in equal proportions (50:50) can be
reached, simulations show that for a moderator effect of
0.1, the approximate power in the sample of 200 studies
is 24%. For a moderator effect of 0.2, the approximate
power in the given sample is 75%, that is, still below the
common power threshold to justify analyses. Power will
be sufficient only for more substantial moderator effects,
and judging from the existing critical appraisal literature,
effects >0.2 are unusual. Either more RCTs are needed
to show an effect, or the residual heterogeneity needs to
be reduced by identifying other predictors of effect size
differences between studies.

In previous work [8,18] we have described inconsistent
results of associations between quality and effect sizes
across meta-epidemiological datasets. In post hoc power
analyses summarized in Table 2, we observed that condi-
tions have to be fust right' to show a statistically sig-
nificant moderator effect, even in meta-epidemiological
datasets that include a large number of studies. Datasets
either featured large heterogeneity thereby minimizing the
power to detect even large quality effects (Dataset 2, a
collection of EPC evidence reports, 1 = 0.345, 165 studies,
I>=97.5%), or did not show sufficient heterogeneity in
effect sizes in the key t’statistic to suggest the need to
identify source of variation across studies (t*=0.03, 149
studies, I” = 60%; Dataset 4, a replication of parts of a
meta-epidemiological dataset by Balk et al. [14]). The post
hoc power analyses indicated that sufficient power was
present only in two of the four selected datasets (Dataset
1, I? =724%, T° = 0305, 216 studies; Dataset 3, I” = 59.6%,
1> =0.131, 100 studies) and in only one of the datasets
were effects of quality shown empirically with a simple
regression model as outlined elsewhere [11,12].

Implications
The simulations show that heterogeneity, in particular,
has a distinct effect on the power to detect moderator
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Table 2 Post hoc power calculations for meta-epidemiological datasets

Power for the identified
heterogeneity (as present
in the empirical dataset)

Power in the presence of reduced
heterogeneity (if other moderators
could be identified and heterogeneity
could be reduced)

Power in the presence

of no residual heterogeneity
(if all other moderators
could be identified)

Dataset 1

216 trials, mean sample size 80

Observed heterogeneity: 1> = 72.4%, T= 0.305

14%
38%
91%

Modeled residual heterogeneity

Moderator effect =0.1

Moderator effect =0.2

Dataset 2

165 trials, mean sample size 286

Observed heterogeneity: 1> = 97.5%, T=0.345
70%
12%
37%

Modeled residual heterogeneity

Moderator effect =0.1

Moderator effect =0.2

Dataset 3

100 trials, mean sample size 119

Observed heterogeneity I =59.6% T=0.131
5%
42%
92%

Modeled residual heterogeneity
Moderator effect =0.1
Moderator effect =0.2

Dataset 4

149 trials, mean sample size 342

Observed heterogeneity I> = %, T= 003

0.25% 0%
50% 85%
100% 100%
35% 0%
20% 100%
60% 100%
0.25% 0%
58% 73%
99% 100%

Dataset characteristics and simulation approach are described in detail elsewhere [18].

effects. We have used the example of trial quality to illus-
trate the effect of a study-level moderator on treatment ef-
fect estimates in meta-analyses; however the results are
valid for any binary study-level moderator. The implication
for meta-analyses and meta-epidemiological dataset ana-
lyses are substantial. First, these power considerations may
explain the inconsistency in the empirical evidence for bias
in medical research. We conclude from the presented data
that in order to have sufficient power to discern statisti-
cally significant distortion effects of moderators such as
trial quality on the true treatment effect (that is, bias),
datasets with low residual heterogeneity or very large data-
sets are needed. A conclusion that a proposed moderator
does not have a substantial effect on trial outcomes is
prone to a type II error without sufficient power in the
dataset being used to test the association. We set up the
presented simulations to include moderator effects (the
treatment effects in the simulations were modeled to be
distorted by the moderator), and we used effects of up to
0.4 in treatment effects, which is a very large effect; how-
ever, only under very specific conditions was power suf-
ficient to detect the included moderator effect. Hence,

findings such as ‘no effect of quality’ have to be considered
in light of the power to detect an effect.

The implications for individual meta-analyses are that
current practices for investigating quality and other
study characteristics may not be enough to detect study
level effects, and statistically insignificant results of meta-
regressions should not be interpreted as evidence that char-
acteristics such as study quality do not affect outcomes.
The statistical power of individual meta-analyses is lower
than the power available in meta-epidemiological studies;
however, heterogeneity may be reduced and other assessed
variables and potential effect modifiers may be added to
the regression model to help isolate effects of study quality.
Imbalanced proportions of investigated moderators reduce
the power to detect moderator effects. Where possible, cri-
teria should be selected accordingly, particularly for critical
appraisal instruments with very strict criteria, such as the
Cochrane Risk of Bias tool [34,35], that routinely result in
very imbalanced distributions - given that the number of
studies with the rare expression of the moderator has pro-
nounced implication for the statistical power and can only
be compensated for statistically with a very large number
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of trials to ensure sufficient power. In situations with
greater imbalance or large amounts of heterogeneity, it
may be appropriate to relax the conventional 5% alpha
cutoff for statistical significance to avoid missing bias.

The nature of meta-epidemiological datasets is that they
are diverse and typically cover a number of interventions,
clinical indications, and other study features because they
are obtained by pooling a number of individual meta-
analyses. Consequently, these datasets are typically charac-
terized by considerable heterogeneity. One approach to
deal with this characteristic is to statistically control for
sources of heterogeneity. Including variables that account
for the heterogeneity as covariates can have large effects
on power. Each covariate costs (approximately) one degree
of freedom, which is (approximately) equal to one study.
However, the covariates must not be collinear with each
other and must not be collinear with quality features. In
addition, systematic factors that account for a substantial
amount of noise in the dataset may be difficult to identify.
Only a few characteristics, such as the type of outcome
measure, seem to be reliably related to the detection of
quality effects [19].

An additional issue with the use of power analysis is
that an estimate of residual heterogeneity cannot be cal-
culated before data are collected and analyzed; hence
power analyses we have described may necessarily be
post hoc. However, in certain situations an estimate of
the residual heterogeneity may be obtainable, for ex-
ample, when updating a systematic review; hence the
power analysis may be carried out a priori.

Limitation

The simulations shown provide a reference guide to re-
searchers when planning meta-regressions. A limitation
of simulations is that they must make simplifying as-
sumptions that may reflect the applicability of the re-
sults. For example, in these simulations, all trials within
a meta-analysis had an equal sample size, while in an
empirical dataset, such characteristics would vary, which
may alter the power of the analysis. Power analyses are
estimates; they estimate the chances of finding a statisti-
cally significant result and are therefore only signposts.
No other studies have investigated (to our knowledge)
the power to detect quality effects (or other study level
moderators) under varying levels of study heterogeneity.

Conclusions

Although study characteristics such as quality may explain
some amount of heterogeneity across study results in
meta-analyses, the amount of residual heterogeneity in ef-
fect sizes is a crucial factor in determining when asso-
ciations between study features and effect sizes can be
statistically detected. Detecting moderator effects requires
more statistically powerful analyses than are employed in
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most published investigations. Hence, negative findings
should not be considered as evidence of a lack of effects,
and investigations should not be considered hypothesis-
proving unless a power calculation shows sufficient ability
was demonstrated to detect an effect of a clinically import-
ant size, such as 0.10 in treatment effect size differences.

Additional file

Additional file 1: Median value of I%s for cells in simulation. The
table shows the median value of I for cells in the presented simulations.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SH and JNVM drafted the manuscript. JNVM carried out the power analyses.
SH, ZW, and MJB provided data for the underlying model parameter. JNVM,
SM, and PS designed the simulation. All authors provided critical revisions
and approve the final version of the manuscript.

Acknowledgements

We thank Breanne Johnsen, Tanja Perry, Aneesa Motala, Di Valentine, and
Sydne Newberry for assistance with the data and manuscript. We thank Sally
Hopewell and Ly-Mee Yu for providing the citations of RCTs published in
2006 and indexed in PubMed. Funding from the Department of Veterans
Affairs (VA), 2011 Under Secretary’s Award in Health Services Research to Paul
Shekelle; the Agency for Healthcare Research and Quality (AHRQ), Contract
No. 290-2007-10062-I; and the RAND Corporation supported the collation of
empirical datasets, Monte Carlo Simulations, and the preparation of the
manuscript. SH, JNVM, and MJB were supported by RAND, the VA, and AHRQ;
ZW and PS received funding from the VA and AHRQ; and SM did not receive
any funding for contributions to the project. The funding agencies had no
role in the design, the collection, analysis, and interpretation of the pre-
sented data, in the writing of the manuscript, or in the decision to submit
this manuscript for publication.

Author details

'RAND Corporation, Santa Monica, CA 90407, USA. “Mayo Clinic, Rochester,
MN 55905, USA. 3University of Pittsburgh, Pittsburgh, PA 15261, USA.
“Veterans Affairs Greater Los Angeles Healthcare System, North Hills, CA
91343, USA.

Received: 17 April 2013 Accepted: 13 November 2013
Published: 28 November 2013

References

1. Torgerson DJ, Torgerson CJ: Designing Randomised Trials in Health, Education
and the Social Sciences: An Introduction. 1st edition. London: Palgrave
Macmillan; 2008.

2. Holmes R: The Age of Wonder: The Romantic Generation and the Discovery of
the Beauty and Terror of Science. London: Random House Digital, Inc; 2009.

3. Verhagen AP, de Vet HC, de Bie RA, Boers M, van den Brandt PA: The art of
quality assessment of RCTs included in systematic reviews. J Clin
Epidemiol 2001, 54:651-654.

4. Moja LP, Telaro E, D’Amico R, Moschetti |, Coe L, Liberati A: Assessment of
methodological quality of primary studies by systematic reviews: results
of the metaquality cross sectional study. BVJ 2005, 330:1053.

5. West S, King V, Carey TS, Lohr KN, McKoy N, Sutton SF, Lux L: Systems to rate
the strength of scientific evidence. Rockville, MD: Agency for Healthcare
Research and Quality; 2002.

6. Sterne JA, Juni P, Schulz KF, Altman DG, Bartlett C, Egger M: Statistical
methods for assessing the influence of study characteristics on
treatment effects in ‘meta-epidemiological’ research. Stat Med 2002,
21:1513-1524.

7. Fritz MS, Mackinnon DP: Required sample size to detect the mediated
effect. Psychol Sci 2007, 18:233-239.


http://www.biomedcentral.com/content/supplementary/2046-4053-2-107-S1.docx

Hempel et al. Systematic Reviews 2013, 2:107
http://www.systematicreviewsjournal.com/content/2/1/107

20.

21.

22.

23.

24.

25.

26.

27.

28.

Hempel S, Suttorp M, Miles J, Wang Z, Maglione M, Morton S, Johnsen B,
Valentine D, Shekelle P: Empirical Evidence of Associations Between Trial
Quality and Effect Size, (Prepared by the Southern California/RAND Evidence-
based Practice Center under Contract No. HHSA 290 2007 10062 I). AHRQ
Publication No. 11-EHC045-EF. Rockville, MD: Agency for Healthcare Re-
search and Quiality; 2011. Available at: http:/effectivehealthcare.ahra.gov/ehc/
products/319/710/Assessing-Empirical-Evidence_Final-Report_20110621.pdf.
Colditz GA, Miller JN, Mosteller F: How study design affects outcomes in
comparisons of therapy. I: Medical. Stat Med 1989, 8:441-454.

Schulz KF, Chalmers |, Hayes RJ, Altman DG: Empirical evidence of bias.
Dimensions of methodological quality associated with estimates of
treatment effects in controlled trials. JAMA 1995, 273:408-412.

Moher D, Pham B, Jones A, Cook DJ, Jadad AR, Moher M, Tugwell P, Klassen
TP: Does quality of reports of randomised trials affect estimates of
intervention efficacy reported in meta-analyses? Lancet 1998,
352:609-613.

van Tulder MW, Suttorp M, Morton S, Bouter LM, Shekelle P: Empirical
evidence of an association between internal validity and effect size in
randomized controlled trials of low-back pain. Spine (Phila Pa 1976) 2009,
34:1685-1692.

Emerson JD, Burdick E, Hoaglin DC, Mosteller F, Chalmers TC: An empirical
study of the possible relation of treatment differences to quality scores
in controlled randomized clinical trials. Control Clin Trials 1990,
11:339-352.

Balk EM, Bonis PA, Moskowitz H, Schmid CH, loannidis JP, Wang C, Lau J:
Correlation of quality measures with estimates of treatment effect in
meta-analyses of randomized controlled trials. JAMA 2002, 287:2973-2982.
Kjaergard LL, Villumsen J, Gluud C: Quality of randomised clinical trials affects
estimates of intervention efficacy, Proceedings of the 7th Cochrane
colloquium Universita STommaso D'Aquino. Rome: Centro Cochrane
Italiano; 1999:57. poster B10.

Juni P, Tallon D, Egger M: Garbage in - garbage out? Assessment of the
quality of controlled trials in meta-analyses published in leading journals,
Proceedings of the 3rd symposium on systematic reviews: beyond the
basics. St Catherine’s College. Oxford: Centre for Statistics in Medicine; 2000.
Juni P, Altman DG, Egger M: Systematic reviews in health care: Assessing
the quality of controlled clinical trials. BMJ 2001, 323:42-46.

Hempel SMJ, Suttorp M, Wang Z, Johnsen B, Morton S, Perry T, Valentine D,
Shekelle P: Detection of Associations between Trial Quality and Effect Sizes.
Methods Research Report. Prepared by the Southern California Evidence-based
Practice Center under Contract No. 290-2007-10062-1. AHRQ Publication No. 12-
EHCO10-EF. Agency for Healthcare Research and Quality: Rockville, MD; 2012.
Wood L, Egger M, Gluud LL, Schulz KF, Juni P, Altman DG, Gluud C, Martin
RM, Wood AJ, Sterne JA: Empirical evidence of bias in treatment effect
estimates in controlled trials with different interventions and outcomes:
meta-epidemiological study. BMJ 2008, 336:601-605.

Egger M, Juni P, Bartlett C, Holenstein F, Sterne J: How important are
comprehensive literature searches and the assessment of trial quality in
systematic reviews? Empirical study. Health Technol Assess 2003, 7:1-76.
Simmonds MC, Higgins JP: Covariate heterogeneity in meta-analysis:
criteria for deciding between meta-regression and individual patient
data. Stat Med 2007, 26:2982-2999.

Higgins JP, Whitehead A, Turner RM, Omar RZ, Thompson SG: Meta-analysis
of continuous outcome data from individual patients. Stat Med 2001,
20:2219-2241.

Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI: Anti-Lymphocyte
Antibody Induction Therapy Study G: Individual patient- versus group-level
data meta-regressions for the investigation of treatment effect modifiers:
ecological bias rears its ugly head. Stat Med 2002, 21:371-387.

Field AP: Meta-analysis of correlation coefficients: a Monte Carlo
comparison of fixed- and random-effects methods. Psychol Methods 2001,
6:161-180.

Field AP: Is the meta-analysis of correlation coefficients accurate when
population correlations vary? Psychol Methods 2005, 10:444-467.

Morton SC, Adams JL, Suttorp M, Shanman R, Valentine D: Meta-regression
Approaches: What, Why, When and How? Agency for Healthcare Research
and Quality: Rockville, MD; 2004.

Cohen J: Statistical power analysis for the behavioral sciences. 2nd edition.
Abingdon: Psychology Press; 1988.

Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency
in meta-analyses. BMJ 2003, 327:557-560.

29.

30.

31

32.

33.
34.

35.

Page 10 of 10

Development Core Team: Manual R: A Language and Environment for
Statistical Computing. Vienna: R Foundation for Statistical Computing; 2011.
Viechtbauer W: Conducting meta-analyses in R with the metafor package.
J Stat Softw 2010, 36:1-48.

Hopewell S, Dutton S, Yu LM, Chan AW, Altman DG: The quality of reports
of randomised trials in 2000 and 2006: comparative study of articles
indexed in PubMed. BMJ 2010, 340:c723.

Snijders TAB, Bosker RJ: Standard errors and sample sizes for two-level
research. J Educ Stat 1993, 18:237-259.

Bland JM: Sample size in guidelines trials. Fam Pract 2000, Suppl 1:517-520.
Higgins J, Green S: Cochrane handbook for systematic reviews of interventions
version 5.1.0. [updated March 2011]. Oxford: The Cochrane Collaboration; 2011.
Hartling L, Hamm MP, Milne A, Vandermeer B, Santaguida PL, Ansari M,
Tsertsvadze A, Hempel S, Shekelle P, Dryden DM: Testing the Risk of Bias
tool showed low reliability between individual reviewers and across
consensus assessments of reviewer pairs. J Clin Epidemiol 2013, 66:973-981.

doi:10.1186/2046-4053-2-107

Cite this article as: Hempel et al.: Risk of bias: a simulation study of
power to detect study-level moderator effects in meta-analysis. Systematic
Reviews 2013 2:107.

r

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J



http://effectivehealthcare.ahrq.gov/ehc/products/319/710/Assessing-Empirical-Evidence_Final-Report_20110621.pdf
http://effectivehealthcare.ahrq.gov/ehc/products/319/710/Assessing-Empirical-Evidence_Final-Report_20110621.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Simulation design
	Data generation and analysis

	Application examples

	Results and discussion
	Applications
	Implications
	Limitation

	Conclusions
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

