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Abstract
The gradient-projection algorithm (GPA) plays an important role in solving
constrained convex minimization problems. Based on the viscosity approximation
method, we combine the GPA and averaged mapping approach to propose implicit
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1 Introduction
LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty
closed convex subset ofH . LetT : C → C be a nonexpansivemapping, namely ‖Tx–Ty‖ ≤
‖x – y‖, for all x, y ∈ C. The set of fixed points of T is denoted by F(T).
Let φ be a bifunction of C ×C into R, where R is the set of real numbers. Consider the

equilibrium problem (EP) which is to find z ∈ C such that

φ(z, y) ≥ , ∀y ∈ C. (.)

We denoted the set of solutions of EP by EP(φ). Given a mapping F : C → H , let φ(x, y) =
〈Fx, y – x〉 for all x, y ∈ C, then z ∈ EP(φ) if and only if 〈Fz, y – z〉 ≥  for all y ∈ C, that is, z
is a solution of the variational inequality. Numerous problems in physics, optimizations,
and economics reduce to find a solution of (.). Some methods have been proposed to
solve the equilibrium problem; see, for instance, [–] and the references therein.
Composite iterative algorithms were proposed by many authors for finding a common

solution of an equilibrium problem and a fixed point problem (see [–]).
On the other hand, consider the constrained convex minimization problem as follows:

minimize
{
g(x) : x ∈ C

}
, (.)

where g : C → R is a real-valued convex function. It is well known that the gradient-
projection algorithm (GPA) plays an important role in solving constrained convex mini-
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mization problems. If g is (Fréchet) differentiable, then the GPA generates a sequence {xn}
using the following recursive formula:

xn+ = PC
(
xn – λ∇g(xn)

)
, ∀n≥ , (.)

or more generally,

xn+ = PC
(
xn – λn∇g(xn)

)
, ∀n≥ , (.)

where in both (.) and (.) the initial guess x is taken from C arbitrarily, and the param-
eters, λ or λn, are positive real numbers satisfying certain conditions. The convergence of
the algorithms (.) and (.) depends on the behavior of the gradient ∇g . As a matter
of fact, it is known that if ∇g is α-strongly monotone and L-Lipschitzian with constants
α,L≥ , then the operator

W := PC(I – λ∇g) (.)

is a contraction; hence the sequence {xn} defined by the algorithm (.) converges in norm
to the uniqueminimizer of (.). However, if the gradient∇g fails to be stronglymonotone,
the operator W defined by (.) would fail to be contractive; consequently, the sequence
{xn} generated by the algorithm (.) may fail to converge strongly (see []). If ∇g is Lips-
chitzian, then the algorithms (.) and (.) can still converge in the weak topology under
certain conditions.
Recently, Xu [] proposed an explicit operator-oriented approach to the algorithm

(.); that is, an averaged mapping approach. He gave his averaged mapping approach
to the GPA (.) and the relaxed gradient-projection algorithm.Moreover, he constructed
a counterexample which shows that the algorithm (.) does not converge in norm in an
infinite-dimensional space and also presented twomodifications of GPAwhich are shown
to have strong convergence [, ].
In , Ceng et al. [] proposed the following explicit iterative scheme:

xn+ = PC
[
snγVxn + (I – snμF)Tnxn

]
, n≥ ,

where sn = –λnL
 and PC(I – λn∇g) = snI + ( – sn)Tn for each n ≥ . He proved that the

sequences {xn} converge strongly to a minimizer of the constrained convex minimization
problem, which also solves a certain variational inequality.
In , Moudafi [] introduced the viscosity approximation method for nonexpansive

mappings, extended in []. Let f be a contraction on H , starting with an arbitrary initial
x ∈ H , define a sequence {xn} recursively by

xn+ = αnf (xn) + ( – αn)Txn, n≥ , (.)

where {αn} is a sequence in (, ). Xu [] proved that if {αn} satisfies certain conditions,
the sequence {xn} generated by (.) converges strongly to the unique solution x* ∈ F(T)
of the variational inequality

〈
(I – f )x*,x – x*

〉 ≥ , ∀x ∈ F(T).

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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The purpose of the paper is to study the iterative method for finding the common so-
lution of an equilibrium problem and a constrained convex minimization problem. Based
on the viscosity approximation method, we combine the GPA and averaged mapping ap-
proach to propose implicit and explicit composite iterative method for finding the com-
mon element of the set of solutions of an equilibrium problem and the solution set of a
constrained convex minimization problem. We also prove some strong convergence the-
orems.

2 Preliminaries
Throughout this paper, we always assume that C is a nonempty closed convex subset of a
Hilbert space H . We use ‘⇀’ for weak convergence and ‘→’ for strong convergence.
It is widely known that H satisfies Opial’s condition []; that is, for any sequence {xn}

with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for every y ∈H with y �= x.
In order to solve the equilibrium problem for a bifunction φ : C ×C → R, let us assume

that φ satisfies the following conditions:
(A) φ(x,x) = , for all x ∈ C;
(A) φ is monotone, that is, φ(x, y) + φ(y,x)≤  for all x, y ∈ C;
(A) for all x, y, z ∈ C, limt↓ φ(tz + ( – t)x, y)≤ φ(x, y);
(A) for each fixed x ∈ C, the function y �→ φ(x, y) is convex and lower semicontinuous.
Let us recall the following lemmas which will be useful for our paper.

Lemma . [] Let φ be a bifunction from C × C into R satisfying (A), (A), (A), and
(A), then for any r >  and x ∈H , there exists z ∈ C such that

φ(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, if

Qrx =
{
z ∈ C : φ(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
,

then the following hold:
() Qr is single-valued;
() Qr is firmly nonexpansive; that is,

‖Qrx –Qry‖ ≤ 〈Qrx –Qry,x – y〉, ∀x, y ∈H ;

() F(Qr) = EP(φ);
() EP(φ) is closed and convex.

Definition. AmappingT :H →H is said to be firmly nonexpansive if and only if T –I
is nonexpansive, or equivalently,

〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖, x, y ∈H .

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =


(I + S),

where S :H →H is nonexpansive. Obviously, projections are firmly nonexpansive.

Definition . Amapping T :H →H is said to be an averaged mapping if it can be writ-
ten as the average of the identity I and a nonexpansive mapping; that is,

T = ( – α)I + αS, (.)

where α ∈ (, ) and S :H → H is nonexpansive. More precisely, when (.) holds, we say
that T is α-averaged.

Clearly, a firmly nonexpansive mapping is a 
 -averaged map.

Proposition . [] For given operators S,T ,V :H →H :
(i) If T = ( – α)S + αV for some α ∈ (, ) and if U is averaged and V is nonexpansive,

then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement I-T is firmly nonexpansive.
(iii) If T = (–α)S+αV for some α ∈ (, ),U is firmly nonexpansive and V is nonexpan-

sive, then T is averaged.
(iv) The composite of finitely many averaged mappings is averaged. That is, if each of

the mappings {Ti}Ni= is averaged, then so is the composite T · · ·TN . In particular, if T

is α-averaged, and T is α-averaged, where α,α ∈ (, ), then the composite TT is
α-averaged, where α = α + α – αα.

Recall that the metric projection from H onto C is the mapping PC : H → C which
assigns, to each point x ∈H , the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C).

Lemma . For a given x ∈ H:
(a) z = PCx if and only if 〈x – z, y – z〉 ≤ , ∀y ∈ C.
(b) z = PCx if and only if ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C.
(c) 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀x, y ∈H .

Consequently, PC is nonexpansive and monotone.

Lemma . The following inequality holds in an inner product space X:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

The so-called demiclosedness principle for nonexpansive mappings will be used.

Lemma . (Demiclosedness principle []) Let T : C → C be a nonexpansive mapping
with Fix(T) �= ∅. If {xn} is a sequence in C that converges weakly to x and if {(I – T)xn}
converges strongly to y, then (I – T)x = y. In particular, if y = , then x ∈ Fix(T).

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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Next, we introduce monotonicity of a nonlinear operator.

Definition . A nonlinear operator G whose domain D(G) ⊆ H and range R(G) ⊆ H is
said to be:
(a) monotone if

〈x – y,Gx –Gy〉 ≥ , ∀x, y ∈D(G),

(b) β-strongly monotone if there exists β >  such that

〈x – y,Gx –Gy〉 ≥ β‖x – y‖, ∀x, y ∈D(G),

(c) ν-inverse strongly monotone (for short, ν-ism) if there exists ν >  such that

〈x – y,Gx –Gy〉 ≥ ν‖Gx –Gy‖, ∀x, y ∈D(G).

It can be easily seen that if G is nonexpansive, then I –G is monotone; and the projection
map PC is a -ism.
The inverse strongly monotone (also referred to as co-coercive) operators have been

widely used to solve practical problems in various fields, for instance, in traffic assignment
problems; see, for example, [, ] and reference therein.
The following proposition summarizes some results on the relationship between aver-

aged mappings and inverse strongly monotone operators.

Proposition . [] Let T :H →H be an operator from H to itself.
(a) T is nonexpansive if and only if the complement I – T is 

 -ism.
(b) If T is ν-ism, then for γ > , γT is ν

γ
-ism.

(c) T is averaged if and only if the complement I – T is ν-ism for some ν > 
 . Indeed, for

α ∈ (, ), T is α-averaged if and only if I – T is 
α -ism.

Lemma . [] Let {an} be a sequence of nonnegative numbers satisfying the condition

an+ ≤ ( – γn)an + γnδn, ∀n≥ ,

where {γn}, {δn} are sequences of real numbers such that:
(i) {γn} ⊂ (, ) and

∑∞
n= γn = ∞,

(ii) lim supn→∞ δ ≤  or
∑∞

n= γn|δn| < ∞.
Then limn→∞ an = .

3 Main results
In this paper, we always assume that g : C → R is a real-valued convex function and ∇g
is an L-Lipschitzian mapping with L ≥ . Since the Lipschitz continuity of ∇g implies
that it is indeed inverse strongly monotone, its complement can be an averaged mapping.
Consequently, the GPA can be rewritten as the composite of a projection and an averaged
mapping, which is again an averagedmapping. This shows that an averagedmapping plays
an important role in the gradient-projection algorithm.

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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Note that ∇g is L-Lipschitzian. This implies that ∇g is (/L)-ism, which then implies
that λ∇g is (/λL)-ism. So, by Proposition ., I – λ∇g is (λL/)-averaged. Now since the
projection PC is (/)-averaged, we see from Proposition . that the composite PC(I –
λ∇g) is (( +λL)/)-averaged for  < λ < /L. Hence, we have that for each n, PC(I –λn∇g)
is (( + λnL)/)-averaged. Therefore, we can write

PC(I – λn∇g) =
 – λnL


I +

 + λnL


Tn = snI + ( – sn)Tn,

where Tn is nonexpansive and sn = –λnL
 .

Let f : C → C be a contraction with the constant ρ ∈ (, ). Suppose that the minimiza-
tion problem (.) is consistent, and let U denote its solution set. Let {Qβn} be a sequence
of mappings defined as in Lemma .. Consider the following mapping Gn on C defined
by

Gnx = αnf (x) + ( – αn)TnQβnx, x ∈ C,n ∈N,

where αn ∈ (, ). By Lemma ., we have

‖Gnx –Gny‖ ≤ (
 – αn( – ρ)

)‖x – y‖.

Since  <  – αn( – ρ) < , it follows that Gn is a contraction. Therefore, by the Banach
contraction principle, Gn has a unique fixed point xfn ∈ C such that

xfn = αnf
(
xfn

)
+ ( – αn)TnQβnx

f
n.

For simplicity, we will write xn for xfn provided no confusion occurs. Next, we prove the
convergence of {xn}, while we claim the existence of the q ∈ U ∩ EP(φ), which solves the
variational inequality

〈
(I – f )q,p – q

〉 ≥ , ∀p ∈U ∩ EP(φ). (.)

Equivalently, q = PU∩EP(φ)f (q).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and φ

be a bifunction from C ×C into R satisfying (A), (A), (A), and (A). Let g : C →R be a
real-valued convex function, and assume that ∇g is an L-Lipschitzian mapping with L ≥ 
and f : C → C is a contraction with the constant ρ ∈ (, ). Assume that U ∩EP(φ) �= ∅. Let
{xn} be a sequence generated by

⎧⎨
⎩

φ(un, y) + 
βn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn = αnf (xn) + ( – αn)Tnun, ∀n ∈N,

where un =Qβnxn, PC(I –λn∇g) = snI + (– sn)Tn, sn = –λnL
 and {λn} ⊂ (, L ). Let {βn} and

{αn} satisfy the following conditions:

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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(i) {βn} ⊂ (,∞), lim infn→∞ βn > ;
(ii) {αn} ⊂ (, ), limn→∞ αn = .

Then {xn} converges strongly, as sn →  (⇔ λn → 
L ), to a point q ∈U ∩EP(φ) which solves

the variational inequality (.).

Proof First, we claim that {xn} is bounded. Indeed, pick any p ∈ U ∩ EP(φ), since un =
Qβnxn and p =Qβnp, then we know that for any n ∈N,

‖un – p‖ = ‖Qβnxn –Qβnp‖ ≤ ‖xn – p‖. (.)

Thus, we derive that (noting Tnp = p and Tn is nonexpansive)

‖xn – p‖ = ∥∥αnf (xn) + ( – αn)Tnun – p
∥∥

≤ ∥∥αnf (xn) – αnf (p)
∥∥ +

∥∥αnf (p) – αnp
∥∥ + ( – αn)‖Tnun – Tnp‖

≤ [
 – αn( – ρ)

]‖xn – p‖ + αn
∥∥(I – f )p

∥∥.
Then we have

‖xn – p‖ ≤ 
 – ρ

∥∥(I – f )p
∥∥,

and hence {xn} is bounded. From (.), we also derive that {un} is bounded.
Next, we claim that ‖xn – un‖ → . Indeed, for any p ∈ U ∩ EP(φ), by Lemma ., we

have

‖un – p‖ = ‖Qβnxn –Qβnp‖

≤ 〈xn – p,un – p〉

=


(‖xn – p‖ + ‖un – p‖ – ‖un – xn‖

)
.

This implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖. (.)

Then from (.), we derive that

‖xn – p‖ = ∥∥αnf (xn) + ( – αn)Tnun – p
∥∥

=
∥∥αnf (xn) – αnp + ( – αn)Tnun – ( – αn)Tnp

∥∥

≤ ( – αn)‖un – p‖ + αn
〈
f (xn) – p,xn – p

〉
≤ ‖xn – p‖ – ‖un – xn‖ + αn

[
ρ‖xn – p‖ + ∥∥(I – f )p

∥∥]‖xn – p‖.

Since αn → , it follows that

lim
n→∞‖xn – un‖ = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/201


Tian and Liu Fixed Point Theory and Applications 2012, 2012:201 Page 8 of 17
http://www.fixedpointtheoryandapplications.com/content/2012/1/201

Then we show that ‖xn – Tnxn‖ → . Indeed,

‖xn – Tnxn‖ = ‖xn – Tnun + Tnun – Tnxn‖
≤ ‖xn – Tnun‖ + ‖Tnun – Tnxn‖
≤ αn

∥∥f (xn) – Tnun
∥∥ + ‖un – xn‖.

Since αn →  and ‖xn – un‖ → , we obtain that

‖xn – Tnxn‖ → .

Thus,

‖un – Tnun‖ = ‖un – xn + xn – Tnxn + Tnxn – Tnun‖
≤ ‖un – xn‖ + ‖xn – Tnxn‖ + ‖Tnxn – Tnun‖
≤ ‖un – xn‖ + ‖xn – Tnxn‖ + ‖xn – un‖,

and

‖xn – Tnun‖ ≤ ‖xn – un‖ + ‖un – Tnun‖,

we have

‖un – Tnun‖ →  and ‖xn – Tnun‖ → .

Observe that

∥∥PC(I – λn∇g)un – un
∥∥ =

∥∥snun + ( – sn)Tnun – un
∥∥

= ( – sn)‖Tnun – un‖
≤ ‖Tnun – un‖,

where sn = –λnL
 ∈ (,  ). Hence, we have

∥∥∥∥PC

(
I –


L

∇g
)
un – un

∥∥∥∥
≤

∥∥∥∥PC

(
I –


L

∇g
)
un – PC(I – λn∇g)un

∥∥∥∥ +
∥∥PC(I – λn∇g)un – un

∥∥

≤
∥∥∥∥
(
I –


L

∇g
)
un – (I – λn∇g)un

∥∥∥∥ +
∥∥PC(I – λn∇g)un – un

∥∥

≤
(

L
– λn

)∥∥∇g(un)
∥∥ + ‖Tnun – un‖.

From the boundedness of {un}, sn →  (⇔ λn → 
L ) and ‖un – Tnun‖ → , we conclude

that

lim
n→∞

∥∥∥∥un – PC

(
I –


L

∇g
)
un

∥∥∥∥ = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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Since ∇g is L-Lipschitzian, ∇g is 
L -ism. Consequently, PC(I – 

L∇g) is a nonexpansive
self-mapping on C. As a matter of fact, we have for each x, y ∈ C

∥∥∥∥PC

(
I –


L

∇g
)
x – PC

(
I –


L

∇g
)
y
∥∥∥∥


≤
∥∥∥∥
(
I –


L

∇g
)
x –

(
I –


L

∇g
)
y
∥∥∥∥


=
∥∥∥∥x – y –


L

(∇g(x) –∇g(y)
)∥∥∥∥



= ‖x – y‖ – 
L

〈
x – y,∇g(x) –∇g(y)

〉
+


L

∥∥∇g(x) –∇g(y)
∥∥

≤ ‖x – y‖ – 
L

∥∥∇g(x) –∇g(y)
∥∥ +


L

∥∥∇g(x) –∇g(y)
∥∥

= ‖x – y‖.

Consider a subsequence {uni} of {un}. Since {uni} is bounded, there exists a subsequence
{unij } of {uni} which converges weakly to q. Next, we show that q ∈ U ∩ EP(φ). Without
loss of generality, we can assume that uni ⇀ q. Then, by Lemma ., we obtain

q = PC

(
I –


L

∇g
)
q.

This shows that q ∈U .
Next, we show that q ∈ EP(φ). Since un =Qβnxn, for any y ∈ C, we obtain

φ(un, y) +

βn

〈y – un,un – xn〉 ≥ .

From (A), we have


βn

〈y – un,un – xn〉 ≥ φ(y,un).

Replacing n by ni, we have

〈
y – uni ,

uni – xni
βni

〉
≥ φ(y,uni ).

Since uni–xni
βni

→  and uni ⇀ q, it follows from (A) that ≥ φ(y,q) for all y ∈ C. Let

zt = ty + ( – t)q, ∀t ∈ (, ], y ∈ C,

then we have zt ∈ C and hence φ(zt ,q) ≤ . Thus, from (A) and (A), we have

 = φ(zt , zt)

≤ tφ(zt , y) + ( – t)φ(zt ,q)

≤ tφ(zt , y),

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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and hence  ≤ φ(zt , y). From (A), we have  ≤ φ(q, y) for all y ∈ C and hence q ∈ EP(φ).
Therefore, q ∈ EP(φ)∩U .
On the other hand, we note that

xn – q = αnf (xn) + ( – αn)Tnun – q

= αnf (xn) – αnf (q) + αnf (q) – αnq + ( – αn)(Tnun – q).

Hence, we obtain

‖xn – q‖ = αn
〈
(f – I)q,xn – q

〉
+

〈
αn

(
f (xn) – f (q)

)
+ ( – αn)(Tnun – Tnq),xn – q

〉
≤ αn

〈
(f – I)q,xn – q

〉
+

(
 – αn( – ρ)

)‖xn – q‖.

It follows that

‖xn – q‖ ≤ 
 – ρ

〈
(f – I)q,xn – q

〉
.

In particular,

‖xni – q‖ ≤ 
 – ρ

〈
(f – I)q,xni – q

〉
. (.)

Since xni ⇀ q, it follows from (.) that xni → q as i→ ∞.
Next, we show that q solves the variational inequality (.). Observe that

xn = αnf (xn) + ( – αn)Tnun = αnf (xn) + ( – αn)TnQβnxn.

Hence, we conclude that

(I – f )xn = –

αn

(I – TnQβn )xn – TnQβnxn + xn.

Since Tn is nonexpansive, we have that I – TnQβn is monotone. Note that for any given
z ∈U ∩ EP(φ),

〈
(I – f )xn,xn – z

〉

= –

αn

〈
(I – TnQβn )xn – (I – TnQβn )z,xn – z

〉
– 〈Tnun – xn,xn – z〉

≤ ‖Tnun – xn‖‖xn – z‖.

Now, replacing n with ni in the above inequality, and letting i→ ∞, we have

〈
(I – f )q,q – z

〉
= lim

i→∞
〈
(I – f )xni ,xni – z

〉 ≤ .

From the arbitrariness of z ∈ U ∩ EP(φ), it follows that q ∈ U ∩ EP(φ) is a solution of
the variational inequality (.). Further, by the uniqueness of solution of the variational
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inequality (.), we conclude that xn → q as n → ∞. The variational inequality (.) can
be written as

〈
f (q) – q,q – z

〉 ≥ , ∀z ∈U ∩ EP(φ).

So, in terms of Lemma ., it is equivalent to the following equality:

PU∩EP(φ)f (q) = q.

This completes the proof. �

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and φ

be a bifunction from C ×C into R satisfying (A), (A), (A), and (A). Let g : C →R be a
real-valued convex function, and assume that ∇g is an L-Lipschitzian mapping with L ≥ 
and f : C → C is a contraction with the constant ρ ∈ (, ). Assume that U ∩EP(φ) �= ∅. Let
{xn} be a sequence generated by x ∈ C and

⎧⎨
⎩

φ(un, y) + 
βn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + ( – αn)Tnun, ∀n ∈N,

where un = Qβnxn, PC(I – λn∇g) = snI + ( – sn)Tn, sn = –λnL
 and {λn} ⊂ (, L ). Let {αn},

{βn} and {sn} satisfy the following conditions:
(i) {βn} ⊂ (,∞), lim infβn > ,

∑∞
n= |βn+ – βn| <∞;

(ii) {αn} ⊂ (, ), limn→∞ αn = ,
∑∞

n= αn = ∞,
∑∞

n= |αn+ – αn| < ∞;
(iii) {sn} ⊂ (,  ), limn→∞ sn =  (⇔ limn→∞ λn = 

L ),
∑∞

n= |sn+ – sn| < ∞.
Then {xn} converges strongly to a point q ∈U ∩EP(φ) which solves the variational inequal-
ity (.).

Proof First, we show that {xn} is bounded. Indeed, pick any p ∈ U∩EP(φ), sinceun =Qβnxn
and p =Qβnp, then we know that for any n ∈ N,

‖un – p‖ = ‖Qβnxn –Qβnp‖ ≤ ‖xn – p‖. (.)

Thus, we derive that (noting Tnp = p and Tn is nonexpansive)

‖xn+ – p‖ = ∥∥αnf (xn) + ( – αn)Tnun – p
∥∥

≤ αnρ‖xn – p‖ + ( – αn)‖xn – p‖ + αn
∥∥f (p) – p

∥∥
≤ (

 – αn( – ρ)
)‖xn – p‖ + αn

∥∥f (p) – p
∥∥.

By induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖, 

 – ρ

∥∥f (p) – p
∥∥}

,

and hence {xn} is bounded. From (.), we also derive that {un} is bounded.

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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Next, we show that ‖xn+ – xn‖ → . Indeed, since ∇g is 
L -ism, PC(I – λn∇g) is nonex-

pansive. It follows that for any given p ∈ S,

∥∥PC(I – λn∇g)un–
∥∥ ≤ ∥∥PC(I – λn∇g)un– – p

∥∥ + ‖p‖
≤ ∥∥PC(I – λn∇g)un– – PC(I – λn∇g)p

∥∥ + ‖p‖
≤ ‖un– – p‖ + ‖p‖
≤ ‖un–‖ + ‖p‖.

This together with the boundedness of {un} implies that {PC(I – λn∇g)un–} is bounded.
Also, observe that

‖Tnun– – Tn–un–‖

=
∥∥∥∥PC(I – λn∇g) – ( – λnL)I

 + λnL
un– –

PC(I – λn–∇g) – ( – λn–L)I
 + λn–L

un–
∥∥∥∥

≤
∥∥∥∥PC(I – λn∇g)

 + λnL
un– –

PC(I – λn–∇g)
 + λn–L

un–
∥∥∥∥ +

∥∥∥∥ – λn–L
 + λn–L

un– –
 – λnL
 + λnL

un–
∥∥∥∥

=
∥∥∥∥( + λn–L)PC(I – λn∇g)un– – ( + λnL)PC(I – λn–∇g)un–

( + λnL)( + λn–L)

∥∥∥∥
+

L|λn – λn–|
( + λn–L)( + λnL)

‖un–‖

≤
∥∥∥∥L(λn– – λn)PC(I – λn∇g)un–

( + λnL)( + λn–L)

+
( + λnL)(PC(I – λn∇g) – PC(I – λn–∇g))un–

( + λnL)( + λn–L)

∥∥∥∥
+

L|λn – λn–|
( + λn–L)( + λnL)

‖un–‖

≤ L|λn– – λn| · ‖PC(I – λn∇g)un–‖
( + λnL)( + λn–L)

+
( + λnL)‖PC(I – λn∇g)un– – PC(I – λn–∇g)un–‖

( + λnL)( + λn–L)

+
L|λn – λn–|

( + λn–L)( + λnL)
‖un–‖

≤ |λn– – λn| ·
[
L
∥∥PC(I – λn∇g)un–

∥∥ + 
∥∥∇g(un–)

∥∥ + L‖un–‖
]

≤ M|λn– – λn|

for some appropriate constantM >  such that

M ≥ L
∥∥PC(I – λn∇g)un–

∥∥ + 
∥∥∇g(un–)

∥∥ + L‖un–‖, ∀n≥ .

Thus, we get

‖xn+ – xn‖
=

∥∥αnf (xn) + ( – αn)Tnun –
(
αn–f (xn–) + ( – αn–)Tn–un–

)∥∥

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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=
∥∥αnf (xn) – αnf (xn–) + αnf (xn–) – αn–f (xn–) + ( – αn)Tnun

– ( – αn)Tnun– + ( – αn)Tnun– – ( – αn)Tn–un–

+ ( – αn)Tn–un– – ( – αn–)Tn–un–
∥∥

≤ αnρ‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–)∥∥ + ( – αn)‖un – un–‖

+ ( – αn)‖Tnun– – Tn–un–‖ + |αn – αn–|‖Tn–un–‖
= αnρ‖xn – xn–‖ + ( – αn)‖un – un–‖ + ( – αn)‖Tnun– – Tn–un–‖

+ |αn – αn–|
(∥∥f (xn–)∥∥ + ‖Tn–un–‖

)
≤ αnρ‖xn – xn–‖ + ( – αn)‖un – un–‖ +M|λn – λn–|

+ |αn – αn–|
(∥∥f (xn–)∥∥ + ‖Tn–un–‖

)

= αnρ‖xn – xn–‖ + ( – αn)‖un – un–‖ + |sn – sn–|M

L
+ |αn – αn–|

(∥∥f (xn–)∥∥ + ‖Tn–un–‖
)

≤ αnρ‖xn – xn–‖ + ( – αn)‖un – un–‖ +M
(|αn – αn–| + |sn – sn–|

)
(.)

for some appropriate constantM >  such that

M ≥ max

{∥∥f (xn–)∥∥ + ‖Tn–un–‖, M

L

}
, ∀n≥ .

From un+ =Qβn+xn+ and un =Qβnxn, we note that

φ(un+, y) +


βn+
〈y – un+,un+ – xn+〉 ≥ , ∀y ∈ C, (.)

and

φ(un, y) +

βn

〈y – un,un – xn〉 ≥ , ∀y ∈ C. (.)

Putting y = un in (.) and y = un+ in (.), we have

φ(un+,un) +


βn+
〈un – un+,un+ – xn+〉 ≥ , ∀y ∈ C,

and

φ(un,un+) +

βn

〈un+ – un,un – xn〉 ≥ , ∀y ∈ C.

So, from (A), we have
〈
un+ – un,

un – xn
βn

–
un+ – xn+

βn+

〉
≥ ,

and hence
〈
un+ – un,un – un+ + un+ – xn –

βn

βn+
(un+ – xn+)

〉
≥ .

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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Since limn→∞ βn > , without loss of generality, let us assume that there exists a real
number a such that βn > a >  for all n ∈N. Thus, we have

‖un+ – un‖ ≤
〈
un+ – un,xn+ – xn +

(
 –

βn

βn+

)
(un+ – xn+)

〉

≤ ‖un+ – un‖
{
‖xn+ – xn‖ +

∣∣∣∣ – βn

βn+

∣∣∣∣‖un+ – xn+‖
}
,

thus,

‖un+ – un‖ ≤ ‖xn+ – xn‖ + 
a
|βn+ – βn|M, (.)

whereM = sup{‖un – xn‖ : n ∈ N}.
From (.) and (.), we obtain

‖xn+ – xn‖
≤ (

 – αn( – ρ)
)‖xn – xn–‖ +M

(|αn – αn–| + |sn – sn–|
)
+ |βn – βn–|M

a
≤ (

 – αn( – ρ)
)‖xn – xn–‖ +M

(|αn – αn–| + |sn – sn–| + |βn – βn–|
)
,

whereM =max[M, M
a ]. Hence, by Lemma ., we have

lim
n→∞‖xn+ – xn‖ = . (.)

Then, from (.) and (.), and |βn+ – βn| → , we have

lim
n→∞‖un+ – un‖ = .

For any p ∈U ∩ EP(φ), as in the proof of Theorem ., we have

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖. (.)

Then from (.), we derive that

‖xn+ – p‖ =
∥∥αnf (xn) – αnp + ( – αn)Tnun – ( – αn)Tnp

∥∥

≤ α
n
∥∥f (xn) – p

∥∥ + αn( – αn)
∥∥f (xn) – p

∥∥‖un – p‖
+ ( – αn)‖un – p‖

≤ αn
(∥∥f (xn) – p

∥∥ + 
∥∥f (xn) – p

∥∥‖un – p‖) + ‖un – p‖

≤ ‖xn – p‖ – ‖un – xn‖ + αn
(∥∥f (xn) – p

∥∥

+ 
∥∥f (xn) – p

∥∥‖un – p‖).
Since αn →  and ‖xn – xn+‖ → , we have

lim
n→∞‖xn – un‖ = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/201
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Next, we have

‖xn – Tnxn‖ =
∥∥αnf (xn) + ( – αn)Tnun – Tnxn

∥∥
≤ αn

∥∥f (xn) – Tnun
∥∥ + ( – αn)‖un – xn‖.

Then, ‖xn – Tnxn‖ → , it follows that ‖un – Tnun‖ → .
Now, we show that

lim sup
n→∞

〈
xn – q, –(I – f )q

〉 ≤ ,

where q = PU∩EP(φ)f (q) is a unique solution of the variational inequality (.). Indeed, take
a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
xn – q, –(I – f )q

〉
= lim

k→∞
〈
xnk – q, –(I – f )q

〉
.

Since {xn} is bounded, without loss of generality, wemay assume that xnk ⇀ x̃. By the same
argument as in the proof of Theorem ., we have x̃ ∈U ∩ EP(φ).
Since q = PU∩EP(φ)f (q), it follows that

lim sup
n→∞

〈
(I – f )q,q – xn

〉
=

〈
(I – f )q,q – x̃

〉 ≤ . (.)

From

xn+ – q = αnf (xn) + ( – αn)Tnun – q

= αnf (xn) – αnf (q) + αnf (q) – αnq + ( – αn)Tnun – ( – αn)Tnq,

we have

‖xn+ – q‖ = ∥∥αn
(
f (xn) – f (q)

)
+ αn

(
f (q) – q

)
+ ( – αn)(Tnun – Tnq)

∥∥

≤ ( – αn)‖Tnun – Tnq‖ + αn
〈
f (xn) – f (q) – (I – f )q,xn+ – q

〉
.

This implies that

‖xn+ – q‖ ≤ ( – αn)‖xn – q‖ + αnρ‖xn – q‖‖xn+ – q‖
+ αn

〈
–(I – f )q,xn+ – q

〉
≤ ( – αn)‖xn – q‖ + αnρ

(‖xn – q‖ + ‖xn+ – q‖)
+ αn

〈
–(I – f )q,xn+ – q

〉
.

Then, we have

‖xn+ – q‖ ≤  – αn + αnρ

 – αnρ
‖xn – q‖ + α

n
 – αnρ

‖xn – q‖

+
αn

 – αnρ

〈
–(I – f )q,xn+ – q

〉
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Tian and Liu Fixed Point Theory and Applications 2012, 2012:201 Page 16 of 17
http://www.fixedpointtheoryandapplications.com/content/2012/1/201

≤ (
 – ( – ρ)αn

)‖xn – q‖ + α
n

 – αnρ
‖xn – q‖

+
αn

 – αnρ

〈
–(I – f )q,xn+ – q

〉

≤ (
 – ( – ρ)αn

)‖xn – q‖ + ( – ρ)αn

(
αn

( – ρ)( – αnρ)
M*

+


( – ρ)( – αnρ)
〈
–(I – f )q,xn+ – q

〉)

=
(
 – ( – ρ)αn

)‖xn – q‖ + ( – ρ)αnδn,

whereM* = sup{‖xn – q‖ : n ∈N}, and δn = αn
(–ρ)(–αnρ)M

* + 
(–ρ)(–αnρ) 〈–(I – f )q,xn+ – q〉.

It is easy to see that limn→∞ ( – ρ)αn = ,
∑∞

n= ( – ρ)αn = ∞, and lim supn→∞ δn ≤ 
by (.). Hence, by Lemma ., the sequence {xn} converges strongly to q. This completes
the proof. �

4 Conclusions
Methods for solving the equilibrium problem and the constrained convex minimization
problem have extensively been studied respectively in a Hilbert space. But to the best of
our knowledge, it would probably be the first time in the literature that we introduce im-
plicit and explicit algorithms for finding the common element of the set of solutions of
an equilibrium problem and the set of solutions of a constrained convex minimization
problem, which also solves a certain variational inequality.
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