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Abstract

Background: Heatmaps are an indispensible visualization tool for examining large-scale snapshots of genomic
activity across various types of next-generation sequencing datasets. However, traditional heatmap software do not
typically offer multi-scale insight across multiple layers of genomic analysis (e.g., differential expression analysis,
principal component analysis, gene ontology analysis, and network analysis) or multiple types of next-generation
sequencing datasets (e.g., ChIP-seq and RNA-seq). As such, it is natural to want to interact with a heatmap’s contents
using an extensive set of integrated analysis tools applicable to a broad array of genomic data types.

Results: We propose a user-friendly ChIP-seq and RNA-seq software suite for the interactive visualization and analysis
of genomic data, including integrated features to support differential expression analysis, interactive heatmap
production, principal component analysis, gene ontology analysis, and dynamic network analysis.

Conclusions: MicroScope is hosted online as an R Shiny web application based on the D3 JavaScript library: http://
microscopebioinformatics.org/. The methods are implemented in R, and are available as part of the MicroScope
project at: https://github.com/Bohdan-Khomtchouk/Microscope.

Background
Most currently existing heatmap software produce static
heatmaps [21, 25, 26, 29, 32, 35, 36, 44], without fea-
tures that would allow the user to dynamically interact
with, explore, and analyze the landscape of a heatmap via
integrated tools supporting user-friendly analyses in dif-
ferential expression, principal components, gene ontolo-
gies, and networks. Such features would allow the user to
engage the heatmap data in a visual and analytical manner
while in real-time, thereby allowing for a deeper, quicker,
and more comprehensive data exploration experience.
An interactive, albeit non-reproducible heatmap tool

was previously employed in the study of the transcriptome
of the Xenopus tropicalis genome [41]. Likewise, manual
clustering of dot plots depicting RNA expression is an
integral part of the Caleydo data exploration environment
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[42]. Chemoinformatic-driven clustering can also be tog-
gled in the user interface of Molecular Property Explorer
[27]. Furthermore, an interactive heatmap software suite
was previously developedwith a focus on cancer genomics
analysis and data import from external bioinformatics
resources [31]. Most recently, a general-purpose heatmap
software providing support for transcriptomic, proteomic
and metabolomic experiments was developed using the R
Shiny framework [1].
Moreover, an interactive cluster heatmap library, InCH-

lib, was previously proposed for cluster heatmap explo-
ration [39], but did not provide built-in support for gene
ontology, principal component, or network analysis. How-
ever, InCHlib concentrates primarily in chemoinformatic
and biochemical data clustering analysis, including the
visualization of microarray and protein data. On the con-
trary, MicroScope is designed specifically for ChIP-seq
and RNA-seq data visualization and analysis in the dif-
ferential expression, principal component, gene ontology,
and network analysis domains. In general, prior software
has concentrated primarily in hierarchical clustering,
searching gene texts for substrings, and serial analysis of
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genomic data, with no integrated features to support the
aforementioned built-in features [3, 37, 46].
As of yet, no free, open-source heatmap software has

been proposed to explore heatmaps at suchmultiple levels
of genomic analysis and interactive visualization capac-
ity. Here we propose a user-friendly genome software
suite designed to handle dynamic, on-the-fly JavaScript
visualizations of gene expression heatmaps as well as
their respective differential expression analysis, principal
component analysis, gene ontology analysis, and network
analysis of genes.

Implementation
MicroScope is hosted online as an R Shiny web server
application. MicroScope may also be run locally from
within R Studio, as shown here: https://github.com/
Bohdan-Khomtchouk/Microscope. MicroScope leverages
the cumulative utility of R’s d3heatmap [20], shiny
[19], stats [33], htmlwidgets [43], RColorBrewer [30],
dplyr [45], data.table [23], goseq [47], GO.db [4], and
networkD3 [24] libraries to create an integrative web
browser-based software experience requiring absolutely
no programming or statistical experience from the user, or
even the need to download R on a local computer.
MicroScope employs the Bioconductor package

edgeR [34] to create a one-click, built-in, user-friendly
differential expression analysis feature that provides

differential expression analysis of gene expression data
based on the quantile-adjusted conditional maximum
likelihood (qCML) procedure and the Benjamini &
Hochberg correction. edgeR is a count-based statistical
method that expects input data in the form of a matrix
of integer values. The value in the i-th row and the j-th
column of the matrix tells how many reads (or fragments,
for paired-end RNA-seq) have been unambiguously
assigned to gene i in sample j [28]. Analogously, for other
types of assays, the rows of the matrix might correspond
e.g., to binding regions (with ChIP-seq), species of bac-
teria (with metagenomic datasets), or peptide sequences
(with quantitative mass spectrometry). In general, the
values in the matrix must be raw counts of sequencing
reads/fragments. This is important for the statistical
model to hold, as only the raw counts allow assessing the
measurement precision correctly. It is important to never
provide counts that were pre-normalized for sequenc-
ing depth/library size, as the statistical model is most
powerful when applied to raw counts, and is designed to
account for library size differences internally via a series
of built-in normalization procedures.
The edgeR results supply the user with rank-based infor-

mation about nominal p-value, false discovery rate, fold
change, and counts per million in order to establish which
specific genes in the data are differentially expressed with
a high degree of statistical significance. This information,

Fig. 1MicroScope user interface. MicroScope UI shown at login, showcasing the Instructions tab and differential expression analysis feature, as well
as features such as: sample file download, input file upload, ‘Run Statistics’ widget, and ‘Download Stats Table’ widget. Additional UI features are
sequentially unlocked as the user progresses through the MicroScope software suite
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in turn, is used to investigate the top gene ontology cat-
egories of differentially expressed genes, which can then
be conveniently visualized as interactive network graph-
ics. Finally, MicroScope provides user-friendly support for
principal component analysis via the generation of biplots,
screeplots, and summary tables. PCA is supported for
both covariance and correlation matrices via R’s prcomp()
function in the stats package.

Results and discussion
Figure 1 shows the MicroScope user interface (UI) upon
login. After a user inputs an RNA-seq/ChIP-seq data
file containing read counts per gene per sample, the
user is guided through the differential expression analysis
(Fig. 2) which, in turn, leads to the heatmap visualization
stage of differentially expressed genes at user-specified
statistical cutoff parameters (Fig. 3). Heatmaps visual-
izing statistically significant genes, as determined by
the differential expression analysis, can be customized

in a variety of ways, through user-friendly methods
such as:

• Statistical parameters visualization cutoff widget
(p-value and/or FDR)

• log2 data transformation widget
• Multiple heatmap color schemes widget
• Hierarchical clustering widget
• Row/column dendrogram branch coloring

widget
• Row/column font size widget
• Heatmap download widget

MicroScope allows the user to magnify any portion of
a heatmap by a simple click-and-drag feature to zoom
in, and a click-once feature to zoom out. MicroScope is
designed with large gene expression heatmaps in mind,
where individual gene labels overlap and render the text
unreadable. However, MicroScope allows the user to

Fig. 2 Differential expression analysis tabulated results. Once the input data is uploaded, a quantile-adjusted conditional maximum likelihood
(qCML) procedure and the Benjamini-Hochberg correction are used to supply the user with information about the nominal p-value, false discovery
rate, fold change, and counts per million calculations for differentially expressed genes. The edgeR package is used
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Fig. 3 Interactive heatmap visualization. MicroScope heatmap options showcasing the magnification feature as well as features such as: statistical
parameter settings, log2 data transformation, multiple heatmap color schemes, hierarchical clustering, row/column dendrogram branch coloring,
row/column font size, and heatmap download button

repeatedly zoom in to any sector of the heatmap to inves-
tigate a region, cluster, or even a single gene. MicroScope
also allows the user to hover the mouse pointer over
any specific gene to show gene name, expression level,
and column ID. It should be noted that specifying the
heatmap statistical parameters impacts the contents of the
heatmap visualization itself, as stringent cutoffs will nat-
urally result in less genes displayed. However, the down-
stream PCA or gene ontology or network analysis is not
impacted by these heatmap visualizations. In other words,
all downstream analyses are performed on the entire input
dataset. It should also be noted that prior to visualizing
heatmaps in MicroScope, experiment-specific data nor-
malization procedures are left to the discretion of the user
[2, 22, 38, 40], depending on whether the user wants to
visualize differences in magnitude among genes or see
differences among samples.
One of the user-friendly features within MicroScope

is that it is responsive to the demands asked of it by
the user. For example, gene ontology analysis buttons
are not provided in the UI until a user runs differential
expression analysis, which constitutes a prerequisite step
required prior to conducting a successful gene ontology
analysis. In other words, MicroScope is user-responsive
in the sense that it automatically unlocks new features

only as they become needed when the user progresses
through successive stages in the software. Furthermore,
MicroScope automatically provides short and convenient
written guidelines directly in the UI to guide the user to
the next steps in the usage of the software. As such, com-
plex analytical operations can be performed by the user
in a friendly, step-by-step fashion, each time facilitated by
the help of the MicroScope software suite, which adjusts
to the needs of the user and provides written guide-
lines on the next steps to pursue. It should be noted that
the differential expression analysis in MicroScope (qCML
and Benjamini & Hochberg correction) is designed to be
broadly applicable to be run on any ChIP-seq or RNA-seq
data inputted by the user.
Following the successful completion of the differen-

tial expression analysis and interactive heatmap visual-
ization, a user is automatically supplied a suite of UI
widgets to perform principal component analysis. The
user is given the choice to specify the matrix type (i.e.,
covariance or correlation matrix) in the sidebar panel
marked ‘Choose PCA Option’. After the PCA is com-
pleted, the user is supplied with a biplot and screeplot
to visualize the results, as well as tabulated informa-
tion showing the relative importance of each principal
component.
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Fig. 4 Principal component analysis. Tabulated summary table of importance of principal components, as well as biplot and screeplot graphics
visualizations, are produced to investigate variation and patterns in gene expression

Fig. 5 Gene ontology analysis tabulated results. Top gene ontology categories are automatically calculated and returned as a ranked list in the UI
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Following the successful completion of the PCA (Fig. 4),
the user is prompted with more UI widgets to proceed
to the gene ontology analysis. Specifying values for these
features and clicking the Do Gene Ontology Analysis
button returns a list of the top gene ontology (GO) cat-
egories according to these exact specifications set by the
user (Fig. 5). To perform the gene enrichment analysis,

MicroScope uses theWallenius non-central hypergeomet-
ric distribution to retrieve p-values for each GO cate-
gory analyzed. Specifically, the goseq package implements
a default option to use the Wallenius distribution to
approximate the true null distribution, without any sig-
nificant loss in accuracy [47]. After a null distribution
is established, each GO category is then tested for over

Fig. 6 Network graphics visualizations of top gene ontology categories. Differentially expressed genes belonging to the respective gene ontology
categories are automatically displayed during the network analysis of the data. Top ten gene ontologies (and their respective genes) are shown
here. Networks are zoomable and dynamically interactive, allowing the user to manually drag nodes across the screen to explore gene_name–
gene_ontology interconnectivity and network architecture
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and under-representation amongst the set of differentially
expressed genes, and the null is used to calculate a p-value
for over and under-representation. Supported organisms
for GO category analysis include: human [5], mouse [6],
rat [7], zebrafish [8], worm [9], chimpanzee [10], fly [11],
yeast [12], bovine [13], canine [14], mosquito [15], rhesus
monkey [16], frog [17], and chicken [18].
The successful completion of this step can be fol-

lowed up by running a network analysis on the top
GO categories, thereby generating network graphics

corresponding to the number of top gene ontology cat-
egories previously requested by the user (Fig. 6). Nodes
represent either gene names or gene ontology identifiers,
and links represent direct associations between the two
entities. In addition to serving as a visualization tool,
this network analysis automatically identifies differentially
expressed genes that are present within each top gene
ontology, which is a level of detail not readily available
by running gene ontology analysis alone. By immediately
extracting the respective gene names from each top gene

Fig. 7 Network analysis visualizations of first ranked gene ontology vs. top-two ranked gene ontologies. Comparison of dynamically interactive
network graphics at various user-specified gene ontology settings (e.g., ‘Choose How Many Top Gene Ontologies to Display’ button in the UI).
Clearly, the GO category “membrane-bounded organelle” contains two unique genes, while the rest are (perhaps unsurprisingly) shared in common
with the GO category “intracellular membrane-bounded organelle”
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ontology category,MicroScope’s network analysis features
serve to aid the biologist in identifying the top differen-
tially expressed genes in the top respective gene ontology
categories. Figure 7 compares interactive network visual-
izations of the top two gene ontologies, thereby demon-
strating the immediate responsiveness of MicroScope’s
network graphics to user-specified settings (e.g., number
of top gene ontologies to display widget).

Conclusion
We provide access to a user-friendly web application
designed to visualize and analyze dynamically interac-
tive heatmaps within the R programming environment,
without any prerequisite programming skills required of
the user. Our software tool aims to enrich the genomic
data exploration experience by providing a variety of
complex visualization and analysis features to investigate
gene expression datasets. Coupled with a built-in analytics
platform to pinpoint statistically significant differentially
expressed genes, an interactive heatmap production plat-
form to visualize them, a principal component analysis
platform to investigate variation and patterns in gene
expression, a gene ontology platform to categorize the
top gene ontology categories, and a network analysis plat-
form to dynamically visualize gene ontology categories at
the gene-specific level, MicroScope presents a significant
advance in heatmap technology over currently available
software.

Availability and requirements
• Project name:MicroScope
• Project home page:

http://microscopebioinformatics.org
• Operating system(s): Platform-independent
• Programming language: R, Shiny
• Other requirements: Internet connectivity
• License: GNU General Public License version 3.0

(GPL-3.0)
• Any restrictions to use by non-academics: No
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