
Hindawi Publishing Corporation
X-Ray Optics and Instrumentation
Volume 2008, Article ID 168237, 7 pages
doi:10.1155/2008/168237

Research Article

Custom Hardware Processor to Compute a Figure of
Merit for the Fit of X-Ray Diffraction Peaks

Juan A. Gomez-Pulido,1 Florentino Sanchez-Bajo,2 Sidolina Pereira dos Santos,3

Miguel A. Vega-Rodriguez,1 and Juan M. Sanchez-Perez1

1 Department of Technologies of Computers and Communications, Polytechnic Institute,
University of Extremadura, Campus Universitario s/n, 10071 Caceres, Spain

2 Department of Applied Physics, School of Industrial Engineering, University of Extremadura,
Avenida de Elvas s/n, 06071 Badajoz, Spain

3 Department of Computer Science, Polytechnic Institute of Leiria, Alto do Vieiro, 2401-951 Leiria, Portugal

Correspondence should be addressed to Juan A. Gomez-Pulido, jangomez@unex.es

Received 24 October 2007; Revised 5 February 2008; Accepted 24 March 2008

Recommended by Scott Misture

A custom processor based on reconfigurable hardware technology is proposed in order to compute the figure of merit used to
measure the quality of the fit of X-ray diffraction peaks. As the experimental X-ray profiles can present many peaks severely
overlapped, it is necessary to select the best model among a large set of reasonably good solutions. Determining the best solution
is computationally intensive, because this is a hard combinatorial optimization problem. The proposed processors, working in
parallel, increase the performance relative to a software implementation.

Copyright © 2008 Juan A. Gomez-Pulido et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Peaks in X-ray diffraction patterns can be modelled using
analytical functions. In this way, the widely used pseudo-
Voigt function [1] represents, in many cases, a good approx-
imation to the real shape of the X-ray diffraction profiles.
This is especially important when strong overlap between
adjacent reflections arises, and it is necessary to separate the
contribution of the different peaks, for example, to obtain
information about microstructural quantities (as the mean
size domain) from the parameters describing the shape and
width of the peak [2–4]. For severely overlapped reflections,
many peak combinations (with different parameters) can
exist generating the same or similar experimental profile.
For this reason, a figure of merit quantitatively assesses the
fit to the experimental data. This is a typical combinatorial
optimization problem. Due to the fact that there are not
any exact methodologies to find the optimal solution,
evolutionary algorithms (EAs) are used for this purpose.
Nevertheless, the repetitive, multistep computation of the

figure of merit required by the algorithm makes it necessary
to search for technologies that accelerate the overall process.
In this paper, a reconfigurable hardware custom processor is
proposed. Although this processor alone is not competitive,
the ease with which the hardware can be configured as
distributed processors working in parallel increases the final
performance even compared to software implementation on
cluster computers.

2. The Optimization Problem

In diffraction profile, several peaks can appear, perhaps
many of them severely overlapped. After obtaining the
experimental data (usually in the form of intensity versus
angle), and determining how many peaks are in a particular
region of the spectrum, the goal is to fit a model profile
to the data. In this regard, if a profile has two overlapped
peaks, many two-peak sets generate model profiles that
fit reasonably well to this experimental profile. In order
to determine the best solution, a function whose value

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193618483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jangomez@unex.es

2 X-Ray Optics and Instrumentation

evaluated for each solution allows quantifying the degree of
fit to the experimental profile is needed. This function is
called the figure of merit.

2.1. Generation of the Tiffraction Profile

In order to test the procedure depicted here, we have used
as benchmark the simulated step-scanning diffraction profile
shown in Figure 1. This profile has been generated between
25◦ and 35◦ with a step of 0.01◦, assuming CuKα radiation,
and including two strong overlapped peaks modelled by
means of the pseudo-Voigt function. In order to perform a
realistic simulation, we included the following:

(1) the CuKα2 component of each reflection, generated
as a pseudo-Voigt function with the same shape and
width as the CuKα1 component, a maximum peak
intensity equal to the maximum peak intensity of the
CuKα1 divided by 2, and a position of the maximum
equal to x02 = 2·arcsin[sin(x01/2)·λ2 /λ1], where λ1 =
1.5405929 Å and λ2 = 1.5444274 Å are, respectively, the
wavelengths of the CuKα1 and CuKα2 radiation, and
x01 the position of the maximum of the CuKα1 peak;

(2) a linear function representing the background, in the
form b(x) = 100 − 10 [(x/25) − 1];

(3) statistical noise (assuming a Poisson distribution).

The pseudo-Voigt function is defined as

pV(x) = I0
[
η L(x) + (1− η)G(x)

]
, (1)

where L(x) and G(x) are, respectively, the Cauchy and Gauss
functions;

L(x) = 1

1 +
((
x − x0

)
/w
)2 ,

G(x) = e− ((x−x0)/w)2· ln 2.

(2)

Then, the pseudo-Voigt function is

pV(x) = I0

[
η

1 +
((
x − x0

)
/w
)2 + (1− η) e− ln 2·((x−x0)/w)2

]

,

(3)

where I0 is the maximum intensity of the peak, x0 is the
position of the maximum, w is of half width at half maximum
(HWHM), and η is the partition factor, a number between 0
and 1 that indicates the relative weight of the Cauchy and
Gauss functions (see Figure 2).

The parameters characterizing the two pseudo-Voigt
functions describing the CuKα1 peaks included in the profile
were the following: I0 (1) = 1000.0, η (1) = 0.5, w (1) = 0.2◦,
x01 (1) = 30.0◦, I0 (2) = 500.0, η (2) = 0.5, w (2) = 0.2◦, and x01

(2) = 30.5◦. Here, the variable x corresponds to the angular
variable 2θ, usually expressed in degrees.

2.2. The Figure of Merit

In the present work, the test profile with two strong
overlapped peaks was considered for experimental purposes.

3534333231302928272625

2θ (degrees)

0

200

400

600

800

1000

1200

1400

1600

1800

In
te

n
si

ty
(c

ou
n

ts
)

Figure 1: The simulated diffraction profile with two very strong
overlapped peaks used in this work.

x
x0

w

I0
2

I0

f (x)

Figure 2: Meaning of some parameters defining the pseudo-Voigt
function.

The objective of the optimization process is to establish how
many peaks there are (although in our case this information
is assumed in the generation of the profile) and what are the
parameters characterizing the pseudo-Voigt functions (I0, x0,
η, and w) that provide the best fit to the data. In other
words, it must be determined which one of the many two-
peak sets (possible solutions) represents the best fit to the
experimental profile. For this purpose, a figure of merit to
calculate the degree of adjustment to the profile is needed.
With this aim, one could define several figures of merit.
According to the usual practice in X-ray diffractometry, in
this work, we have chosen the chi-squared function, χ 2, given
by the following expression:

χ2 =
N∑

i=1

pi
(
yi,obs − yi,cal(�α)

)2
, (4)

where the following hold.

X-Ray Optics and Instrumentation 3

(1) N is the number of data points, in our case, 1001.

(2) yi,obs is the value of the measured intensity at the ith
step. In our case, this intensity corresponds to the
simulated profile.

(3) yi,cal is the value of the intensity calculated from the
model at the ith step. The calculated intensities are
obtained from the model using two pseudo-Voigt
functions to represent the CuKα1 peaks (and the
corresponding CuKα2 components for each peak) and
a linear background.

(4) pi = 1/σ2
i = 1/yi,obs is the weight assigned to each

intensity, assuming Poisson statistic.

(5) �α = (α1,α2,α3, . . .) is a vector representing the para-
meters of the problem to be optimized. In this case,
the parameters are I0, x0, w, and η for each peak,
in addition to the coefficients of a linear function
describing the background.

The lower the figure of merit is, the closer the solution is
to the objective. Therefore, the effort of the problem consists
of finding the vector �α = {I0(1), x0(1),w(1),η(1), I0(2),
x0(2),w(2),η(2), . . .} so that χ 2 be minimum.

The number of peaks in the profile (and even their
approximated position) is usually a priori known data,
because the crystallographic structure of the material ana-
lyzed by means of X-ray diffraction is often known. But also it
would be interesting to know if it is possible to determine the
number of peaks using a computational tool. It is necessary
to keep in mind that an optimization can be good but false if
spurious peaks are added, because the decrease of the degrees
of freedom can lead to a very good fit without physical
meaning. Obviously, the optimization can also be bad if any
peak is omitted. However, this is outside the scope of this
work.

2.3. Using Evolutionary Algorithms

The presented problem has a very high number of possible
solutions, and it is necessary to find the best one. There are
not any exact methodologies to find the optimal solution of
this problem, where conventional algorithms do not locate
good results. For this reason the authors of this paper
have used evolutionary algorithms (EAs) [5, 6], because
these algorithms (in sequential and parallel implementations
[7]) have been employed with success in many works.
Nevertheless, some considerations should be followed to
use evolutionary techniques for this optimization problem:
the individual formulation (containing the �α information)
must be carefully chosen and the evolutionary algorithm
must avoid falling in a local minimum. This way, two EAs
have been used to tackle this optimization problem: genetic
algorithm and differential evolution algorithm.

Genetic Algorithms (GAs) imitate the way nature selects
the best individuals [8, 9]. They frequently are used on
complex optimization problems whose set of possible solu-
tions is very large. The algorithm basically consists of an

iterative three-step loop. Each loop is considered to be a
generation. Each step is characterized by a genetic operator:
crossover, selection, or mutation, that works (in this order) in
each generation. Differential evolution (DE) is a less known
evolutionary algorithm [10]. From 1994, DE has been used
for many optimization problems, with satisfactory results. It
is used here with the goal of comparing it with the GA results.
DE is a very simple population-based stochastic function
minimizer/maximizer, used in a wide range of optimization
problems, including multi-objective optimization [11].

2.4. Difficulties

Computing EAs can be difficult because the task usually
requires great computational effort. If a high-level of pre-
cision is required, many computing resources could be
necessary, with their associated cost. For this reason, any
tool that helps to accelerate the computations is welcome.
One of the appropriate technologies for this purpose is
reconfigurable computing.

3. Hardware Custom Processor

3.1. Reconfigurable Computing

Reconfiguration of circuitry at runtime to suit the applica-
tion at hand has created a promising paradigm of computing
that blurs traditional frontiers between software and hard-
ware. This powerful computing paradigm, named reconfig-
urable computing, is based on the use of programmable logic
devices, mainly field programmable gate arrays (FPGAs)
[12] incorporated in board-level systems. FPGAs have the
benefits of hardware speed and software flexibility; also,
they have a price/performance ratio much more favorable
than application-specific integrated circuits (ASICs). For
these reasons, FPGAs are a good alternative for many real
applications in image and signal processing, multimedia,
robotics, telecommunications, cryptography, networking,
and computation in general [13].

Furthermore, as reconfigurable computing is becoming
an increasingly important computing paradigm, more and
more tools are appearing in order to facilitate the FPGA
programmability using higher-level of hardware description
languages (HDLs).

3.2. Goal

The main goal of this research is to determine if it is
profitable to develop a specific-purpose FPGA processor
that computes the evolutionary algorithm in order to find
the best solution of the optimization problem. Since the
biggest resource consumption comes from the arithmetic
computation of the figure of merit, the goal is to design
an arithmetic processor to compute it. In the design of this
processor, it is convenient to introduce the largest possible
degree of parallelism, because this is the main advantage of
the hardware to increase the efficiency in comparison with
the software.

4 X-Ray Optics and Instrumentation

clk

xm(31:0)

x(31:0)

w(31:0)

pv_start

eta(31:0)

im(31:0)

clk

xm(31:0)

x(31:0)

w(31:0)

pv_start

eta(31:0)

im(31:0)

fx(31:0)
fx(31:0)

pv_rdy
pv_rdy

 Pseudo-Voigt arithmetic unit

Floating point
arithmetic units

A_fp_addsub(31:0)

B_fp_addsub(31:0)

op_fp_addsub(5:0)

nd_fp_addsub

fp_addsub

a(31:0)

b(31:0)

operation(5:0)

operation_nd

res_fp_addsub(31:0)

rdy_fp_addsub
rdy

clk
clk

A_fp_mul(31:0)

B_fp_mul(31:0)

fp_mul

a(31:0)

b(31:0)

nd_fp_mul
rdyoperation_nd

clk
clk

a(31:0)

b(31:0)

operation_nd rdy

res_fp_div(31:0)

rdy_fp_div

fp_div

res_fp_mul(31:0)

rdy_fp_mul

clk
clk

A_fp_div(31:0)

B_fp_div(31:0)

nd_fp_div

a_int13_to_float(12:0)

nd_int13_to_float

clk
clk

int13_to_float

result(31:0)

rdy

a(12:0)

operation_nd

res_int13_to_float(31:0)

rdy_int13_to_float

Controller

clk
clk

fitness_start
fitness_start

pv_rdy

rdy_fp_addsub

rdy_fp_div

rdy_fp_mul

rdy_int13_to_float

fx(31:0)

ReadData(12:0)

res_fp_addsub(31:0)

res_fp_div(31:0)

res_fp_mul(31:0)

res_int13_to_float(31:0)

Memory storing profile data

memAddr(9:0)
addr(9:0) dout(12:0)

clkclk

fitness_start

nd_fp_addsub

fitness_rdy

nd_fp_div

pv_rdy nd_fp_mul

rdy_fp_addsub

rdy_fp_div

rdy_fp_mul

fitness_rdy

rdy_int13_to_float

fx(31:0)

ReadData(12:0)

res_fp_addsub(31:0)

res_fp_div(31:0)

res_fp_mul(31:0)

res_int13_to_float(31:0)

nd_int13_to_float

pv_start

A_fp_addsub(31:0)

a_int13_to_float(12:0)

B_fp_addsub(31:0)

B_fp_div(31:0)

B_fp_mul(31:0)
fitness(31:0)

memAddr(9:0)

op_fp_addsub(5:0)

x(31:0)

A_fp_div(31:0)

A_fp_mul(31:0)

fitness_rdy

nd_int13_to_float

nd_fp_addsub

nd_fp_div

nd_fp_mul

pv_start

A_fp_addsub(31:0)

A_fp_div(31:0)

A_fp_mul(31:0)

a_int13_to_float(12:0)

B_fp_addsub(31:0)

B_fp_div(31:0)

B_fp_mul(31:0)

fitness(31:0)

op_fp_addsub(5:0)

x(31:0)

result(31:0)

result(31:0)

result(31:0)

Figure 3: Top-level architecture of the processor.

3.3. Designed Processor

A processor computing the figure of merit has been designed.
In order to probe this processor, a test circuit implement-
ing the benchmark profile gives the input values of the
parameters (I0 (1) = 1000.0, η (1) = 0.5, w (1) = 0.2, x01 (1) =
30.0, etc.), and reads the output signals (a fitness rdy signal
indicates when merit computation has been finished; and a
merit signal indicates the value of the figure of merit).

The top-level architecture of the processor is shown in
Figure 3. This architecture has the following parts: a memory
storing the data of the profile to be processed, a set of
floating-point arithmetic units, a control unit, and a pseudo-
Voigt (pV) arithmetic unit.

The memory storing the data of the profile to be
processed is a Read-Only-Memory (ROM) device. It stores
the data (counts versus degrees) of the profile used as
benchmark (Figure 1). The size of this memory is 832 bytes
(512 addresses for 13-bit words). Any profile can be loaded
into this memory through an initialization file.

The set of floating-point arithmetic units perform the
operations described in 4. This set is formed by four units:
one adder/subtracter, one multiplier, one divider, and one
converter of integer numbers to floating-point format. The
real numbers processed in these units have a precision of
32 bits.

The controller is the core element of the processor. It
plays the role of controlling the sequence of calculation of the
figure of merit. The controller needs to read the profile data
coming from the memory, and give them, in the appropriate
order, to the floating-point arithmetic units, setting accurate
control signals. This unit is also connected with the pV
arithmetic unit. Finally, the calculated value of the figure of
merit is read from this control unit.

A design direction that would contribute to an increase
in performance is introducing a high grade of parallelism.
Theoretically, this is possible in the processor because from
(4) the circuit could carry out N adders in parallel. But, due
to the FPGA limited size, to introduce N floating adders,
N memories and N pV arithmetic units are not possible.
Therefore, the parallelism advantages of the hardware must
come from this processor.

The pV arithmetic unit computes the operations des-
cribed in (3) according to the input signals that arrive from
the test circuit. This unit consists of two parts, as it is shown
in Figure 4: a set of floating-point arithmetic units and a pV
controller. The floating-point arithmetic units are necessary
to run the operations described in (3). There are six units:
two adder/subtracters, two dividers, one multiplier, and one
converter of integer numbers to floating-point format. The
real numbers processed in these units also have a precision
of 32 bits. There is a reason for which several repeated
units of the same floating-point arithmetic module have

X-Ray Optics and Instrumentation 5

res_fp_addsub_1(31:0)

res_fp_addsub_2(31:0)

res_fp_div_1(31:0) A_fp_div_1(31:0)

res_fp_div_2(31:0) A_fp_div_2(31:0)

B_fp_addsub_1(31:0)

B_fp_addsub_2(31:0)

B_fp_div_1(31:0)

B_fp_div_2(31:0)

op_fp_addsub_1(5:0)

op_fp_addsub_2(5:0)

rdy_fp_addsub_1

rdy_fp_addsub_2

rdy_fp_div_1

rdy_fp_div_2

res_fp_addsub_1(31:0)

res_fp_addsub_2(31:0)

res_fp_div_1(31:0)

res_fp_div_2(31:0)

xm(31:0) xm(31:0)

rdy_fp_addsub_1

rdy_fp_addsub_2

rdy_fp_div_1

rdy_fp_div_2

B_fp_mul(31:0)

fx(31:0) fx(31:0)

x(31:0)

w(31:0)

res_fp_mul(31:0)
res_fp_mul(31:0)

w(31:0)

x(31:0)

op_fp_comp(5:0)

pv_rdy(0:0)

nd_fp_addsub_1

nd_fp_addsub_2

nd_fp_div_1

nd_fp_div_2

im(31:0) im(31:0)

rdy_fp_mul

rdy_fp_comp

pv_start
pv_startpv_start

clk
clkclk

pV controller

nd_fp_comp
nd_fp_comp

nd_fp_mul
nd_fp_mul

rdy_fp_comp

rdy_fp_mul

rdy_fp_comp

A_fp_comp(31:0)
A_fp_comp(31:0)

A_fp_mul(31:0)
A_fp_mul(31:0)

B_fp_comp(31:0)
B_fp_comp(31:0)

B_fp_mul(31:0)

op_fp_comp(5:0)

pv_rdy

nd_fp_addsub_1

nd_fp_addsub_2

nd_fp_div_1

nd_fp_div_2

A_fp_addsub_1(31:0)

eta(31:0)

res_fp_comp

eta(31:0)

A_fp_addsub_2(31:0)

A_fp_addsub_1(31:0)

A_fp_addsub_2(31:0)

A_fp_div_1(31:0)

A_fp_div_2(31:0)

B_fp_addsub_1(31:0)

B_fp_addsub_2(31:0)

B_fp_div_1(31:0)

B_fp_div_2(31:0)

op_fp_addsub_1(5:0)

op_fp_addsub_2(5:0)

fp_comp
A_fp_comp(31:0)

B_fp_comp(31:0)

op_fp_comp(5:0)

nd_fp_comp

clk

clk

a(31:0)

b(31:0)

operation(5:0)

operation_nd

result(0:0)

rdy

res_fp_comp

rdy_fp_comp

(a)

clk
clk

a(31:0)

b(31:0)

operation(5:0)

operation_nd

result(31:0)
res_fp_addsub_1(31:0)

rdy_fp_addsub_1
rdy

fp_addsub

A_fp_addsub_1(31:0)

B_fp_addsub_1(31:0)

A_fp_addsub_2(31:0)

B_fp_addsub_2(31:0)
a(31:0)

b(31:0)

operation(5:0)

operation_nd

op_fp_addsub_2(5:0)

nd_fp_addsub_2

result(31:0)

rdy

res_fp_addsub_2(31:0)

rdy_fp_addsub_2

clk

clk

a(31:0)

b(31:0)

operation_nd

clk
clk

result(31:0)

rdy

res_fp_div_1(31:0)

rdy_fp_div_1

fp_div
A_fp_div_1(31:0)

B_fp_div_1(31:0)

nd_fp_div_1

A_fp_div_2(31:0)

B_fp_div_2(31:0)

nd_fp_div_2

a(31:0)

b(31:0)

operation_nd

clk

clk

result(31:0)

rdy

res_fp_div_2(31:0)

rdy_fp_div_2

fp_mul
A_fp_mul(31:0)

B_fp_mul(31:0)

nd_fp_mul

a(31:0)

b(31:0)

operation_nd

clk
clk

res_fp_mul(31:0)

rdy_fp_mul

fp_addsub

op_fp_addsub_1(5:0)

nd_fp_addsub_1

result(31:0)

rdy

fp_div

(b)

Figure 4: Architecture of the pseudo-Voigt arithmetic unit.

been included: the controller can run parallel operations,
with an increase in the final efficiency. The duplication of
some of these modules has a low-occupation cost for the
FPGA. The pV controller drives the necessary operations of
the pV arithmetic unit. It controls the calculus sequence of
the operations described in (3) in a parallel way, thanks to
the duplicated floating-point units. In Figure 5, the parallel
operations are shown. The operations corresponding to the
exponential part in (3) (step 5b in Figure 5) have been
computed by means of an iterative algorithm, with parallel
operations too. Finally, the calculated value of the figure of
merit is read from the output of the pV controller by the
merit controller.

3.4. Design Tools and Prototyping Platform

The processor has been designed with Xilinx ISE 9 envi-
ronment [14]. The merit controller and the pV controller
are described by means of the Handel-C hardware design

language [15]. The floating-point arithmetic units and the
memory were generated from the Xilinx IP CoreGenerator
tool. In order to test the system in a real hardware platform,
the Enterpoint (http://www.enterpoint.co.uk/), Broadown2
board has been used. This board ships a Xilinx Spartan 3
2000 FPGA [16]. For this device, the designed processor uses
the 28% of the FPGA resources. Finally, we have checked that
the processor results in the prototyping board match with the
simulated results in the developed software.

3.5. Performance

In general terms, one can say that the performance of the
processor is its computation time in comparison with that
of a software application running on a computer. To get
the maximum potential performance of the processor, it
is necessary to optimize its internal architecture. For this
reason, two aspects have been considered: the influence of
the parallel operations in the arithmetic calculus of the

http://www.enterpoint.co.uk/

6 X-Ray Optics and Instrumentation

f x = I0
η

1+
x − x0

w

+ 1− η e
2

− ln 2
x − x0

w

2

Parallel
operations

1 2 3 4a 5a 7 8

4b1 5b 6b

4b2

Sequential operations

4a
5a

1

2 3

4b1 5b
6b

4b2

7
8

Figure 5: Parallel operations in the the pseudo-Voigt function.
The calculus sequence is divided into 8 steps, numbered in yellow
boxes. The steps #4 and #5 consist of 3 and 2 parallel operations,
respectively.

pseudo-Voigt function and the agreement between precision
and performance of the exponential function in the hardware
implementation.

Increasing to the maximum the number of parallel
operations in the arithmetic calculus of the pseudo-Voigt
function, it has been possible to pass from 108 MHz to
112 MHz the operation frequency, that which means to
pass from 11 microseconds to 9 microseconds the run time
of the processor. These quantities are measured for the
FPGA device above-mentioned. In conclusion, it can be
said that the increase of the parallelism allows obtaining a
higher-operation frequency, when decreasing the number of
sequential operations. The result of the value of the figure of
merit is unchanged.

The pseudo-Voigt function has an exponential term
(labelled as 5b in Figure 5) whose hardware implementation
has a strong influence in the overall performance. This term
is computed by means of an iterative algorithm with a prede-
fined number of iterations. For more iterations, the precision
is higher, although starting from certain number of iterations
the precision does not improve significantly. For example, if
30 iterations are used, the value of the figure of merit is 135
598.06 and it is reached in 19 microseconds. But if only 10
iterations are considered, its value is 135,593.52 and the time
consumption is reduced to 11 microseconds. A compromise
must be made between precision and performance.

If the figure of merit is evaluated by means of software
running on an Intel Core2 Duo 2 GHz-based personal
computer (PC), the time used is 1 microsecond. If the figure
of merit is evaluated with a custom processor implemented
on an FPGA Xilinx XC3S2000-5-fg456 device running at
110 MHz, the used time is 9 microseconds. Although a single
processor is not competitive, the ease of using reconfigurable
hardware as distributed processors working in parallel
increases the final performance vastly. This can be observed
in Figure 6, where a comparison of performances is shown.

37332925211713951

FPGA devices on the board

PC time = evaluations = parallel
processors in the FPGA board

FPGA board time

0

20

40

60

80

100

120

T
im

e
(m

s)

Time required to compute the same number of
evaluations of the figure of merit

Figure 6: Time comparison between an FPGA board (with a
number of FPGA devices implementing parallel processing of the
figure of merit) and one PC.

The processor occupies the 28% of the considered FPGA.
Therefore, a lot of parallel processors cannot be used in
the same FPGA in order to multiply the performance. The
hardware solution based on FPGA would be interesting in
case massive computations are required in order to release
the host computer to dedicate itself to other tasks. But the
best strategy consists in using several FPGA devices in the
same board implementing many processors that can make
parallel computations for the optimization algorithm. In this
case, the advantage on the software is assured. It should be
kept in mind that the evolutionary algorithms work with
populations, which consist of individuals whose values of
the figure of merit should be evaluated in parallel. For this
reason, the use of parallel processors adapts perfectly to the
features of the optimization problem, besides increasing the
performance notably. But a cost study is necessary in order
to see the viability of the reconfigurable solution.

For example, as we can see in Figure 6, the performance
of the reconfigurable solution is equal to the obtained one
in the considered PC when three FPGAs (implementing 9
parallel processors) are used. Assuming that the price of
the design and fabrication of a simple custom board is
around $200, and that the price of only one XC3S2000 FPGA
device is $58, the cost of the hardware solution ($374) is
almost equal to the compared computer ($350) for the same
result. Increasing the number of FPGAs starting from here,
the performance increases notably (Figure 6) and the cost
reduces more and more in comparison with a cluster solution

X-Ray Optics and Instrumentation 7

2442141841541249464344

FPGA devices on the board

FPGA board cost
Cluster cost

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

30000

C
os

t
($

)

Cost of the hardware solutions giving the same efficiency

Figure 7: Cost comparison between the FPGA board and a cluster
with as many nodes as necessary to reach the same efficiency as the
FPGA board.

offering the same performance, as we can see in Figure 7.
Nowadays, a code running on a multiprocessor cluster is an
alternative solution, but with a much bigger cost. Supposing
we want the evaluation of 246 figures of merit, we can build a
custom board with 82 FPGAs obtaining 9 microseconds and
with a price of $4,956. In the opposite case, a multiprocessor
cluster with 28 of those PCs as nodes working in parallel and
evaluating, 9 figures of merit each can give the same time, but
it has a price around $10 100.

4. Conclusions and Future Works

We can conclude, with the obtained results shown in Figures
6 and 7, that the more complex the massive computation
is required, the more effective the solution based on recon-
figurable hardware is together with its cost advantage. The
complexity of the considered diffraction profiles determines
the computational complexity.

On the other hand, since minimizing the figure of merit
is the first goal of this research, it would be interesting in the
future to introduce multiobjective optimization [17]. This
is a technique that permits to reach several optimization
objectives at the same time. For example, multiobjective
optimization can minimize the figure of merit, search the
optimal number of peaks if the number of overlapped peaks
in a determined region of the profile is not known, and
maintain the problem parameters within predefined ranges.
Also, another important step in our next research is to know
if it is possible to determine the number of peaks using a
computational tool.

Acknowledgment

This work has been supported in part by the Spanish
Government under grant TIN2005-08818-C04-03 (project
OPLINK).

References

[1] P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld
refinement of Debye-Scherrer synchrotron X-ray data from
Al2O3,” Journal of Applied Crystallography, vol. 20, part 2, pp.
79–83, 1987.

[2] Th. de Keijser, E. J. Mittemeijer, and H. C. F. Rozendaal, “The
determination of crystallite-size and lattice-strain parameters
in conjunction with the profile-refinement method for the
determination of crystal structures,” Journal of Applied Crys-
tallography, vol. 16, part 3, pp. 309–316, 1983.

[3] S. Enzo, G. Fagherazzi, A. Benedetti, and S. Polizzi, “A profile-
fitting procedure for analysis of broadened X-ray diffraction
peaks. I. Methodology,” Journal of Applied Crystallography,
vol. 21, part 5, pp. 536–542, 1988.

[4] F. Sánchez-Bajo and F. L. Cumbrera, “The use of the
Pseudo-Voigt function in the variance method of X-ray
line-broadening analysis,” Journal of Applied Crystallography,
vol. 30, part 4, pp. 427–430, 1997.

[5] D. B. Fogel, Evolutionary Computation. Toward a New Philos-
ophy of Machine Intelligence, IEEE Press, Piscataway, NJ, USA,
1995.

[6] Th. Bäck and H.-P. Schwefel, “An overview of evolutionary
algorithms for parameter optimization,” Evolutionary Compu-
tation, vol. 1, no. 1, pp. 1–23, 1993.

[7] E. Alba and M. Tomassini, “Parallelism and evolutionary
algorithms,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 5, pp. 443–462, 2002.

[8] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, Boston, Mass, USA, 1989.

[9] J. R. Koza, Genetic Programming: On the Programming of Com-
puters by means of Natural Evolution, MIT Press, Cambridge,
Mass, USA, 1992.

[10] K. Price and R. Storn, “Differential evolution: numerical
optimization made easy,” Doctor Dobb’s Journal, vol. 22, no. 4,
pp. 18–24, 1997.

[11] H. A. Abbasse and R. Sarker, “The pareto differential evolution
algorithm,” International Journal on Artificial Intelligence Tools,
vol. 11, no. 4, pp. 531–552, 2002.

[12] B. Zeidman, Designing with FPGAs and CPLDs, CMP Books,
Gilroy, Calif, USA, 2002.

[13] M. A. Vega-Rodriguez, J. M. Sánchez-Perez, and J. A. Gómez-
Pulido, “Guest editors’ introduction—special issue on FPGAs:
applications and designs,” Microprocessors and Microsystems,
vol. 28, no. 5-6, pp. 193–196, 1994.

[14] Xilinx ISE 9.2i software manuals, http://www.xilinx.com/.

[15] K. Ramamritham, K. Arya, and G. Fohler, “System software
for embedded applications,” in Proceedings of the 17th Interna-
tional Conference on VLSI Design (VLSID ’04), pp. 12–14, IEEE
Computer Society, Mumbai, India, January 2004.

[16] Spartan-3 FPGA family: complete data sheet, http://www
.xilinx.com/.

[17] Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiob-
jective Optimization, Academic Press, Orlando, Fla, USA, 1985.

http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/

	Introduction
	The Optimization Problem
	Generation of the Tiffraction Profile
	The Figure of Merit
	Using Evolutionary Algorithms
	Difficulties

	Hardware Custom Processor
	Reconfigurable Computing
	Goal
	Designed Processor
	Design Tools and Prototyping Platform
	Performance

	Conclusions and Future Works
	Acknowledgment
	References

