
Nonblocking k-compare-single-swap

Victor Luchangco
Sun Microsystems Laboratories

1 Network Drive
Burlington, MA 01803, USA

victor.luchangco@sun.com

Mark Moir
Sun Microsystems Laboratories

1 Network Drive
Burlington, MA 01803, USA

mark.moir@sun.com

Nir Shavit
Tel Aviv University

Tel Aviv 69978, Israel

shanir@cs.tau.ac.il

ABSTRACT
The current literature offers two extremes of nonblocking
software synchronization support for concurrent data struc-
ture design: intricate designs of specific structures based on
single-location operations such as compare-and-swap (CAS),
and general-purpose multilocation transactional memory im-
plementations. While the former are sometimes efficient,
they are invariably hard to extend and generalize. The lat-
ter are flexible and general, but costly. This paper aims at a
middle ground: reasonably efficient multilocation operations
that are general enough to reduce the design difficulties of
algorithms based on CAS alone.
We present an obstruction-free implementation of an

atomic k-location-compare single-swap (KCSS) operation.
KCSS allows for simple nonblocking manipulation of linked
data structures by overcoming the key algorithmic difficulty
in their design: making sure that while a pointer is be-
ing manipulated, neighboring parts of the data structure
remain unchanged. Our algorithm is efficient in the com-
mon uncontended case: A successful k-location KCSS oper-
ation requires only two CAS operations, two stores, and 2k
noncached loads when there is no contention. We therefore
believe our results lend themselves to efficient and flexible
nonblocking manipulation of list-based data structures in
today’s architectures.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Algorithms, Theory

Keywords
Multiprocessors, nonblocking synchronization, concurrent
data structures, linked lists, obstruction-freedom

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’03, June 7–9, 2003, San Diego, California, USA.
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
ACM 1-58113-661-7/03/0006 ...$5.00.

1. INTRODUCTION
The implementation of concurrent data structures is much

easier if one can apply atomic operations to multiple memory
locations [7]. Current architectures, however, support ato-
mic operations only on small, contiguous regions of memory
(such as a single or double word) [6, 18, 27, 29].
The question of supporting multilocation operations in

hardware has in recent years been a subject of debate in
both industrial and academic circles. Until this question is
resolved, and to a large extent to aid in its resolution, there is
an urgent need to develop efficient software implementations
of atomic multilocation operations.
The current literature (see the survey in Section 5) offers

two extremes of software support for concurrent data struc-
ture design. On one hand, there are intricate designs of
specific constructs based on single-location synchronization
primitives such as compare-and-swap (CAS). On the other
hand, there are general-purpose implementations of multi-
location software transactional memory. While the former
lead to efficient designs that are hard to extend and gener-
alize, the latter are very general but costly. This paper aims
at the middle ground: reasonably efficient multilocation op-
erations that offer enough generality to reduce the design
difficulties of algorithms based on CAS alone.

1.1 K-compare single-swap
We present a simple and efficient nonblocking1 implemen-

tation of an atomic k-location-compare single-swap (KCSS)
operation. KCSS verifies the contents of k locations and
modifies one of them, all as a single atomic operation. Our
KCSS implementation, when executed without contention,
requires only two CAS operations, two stores, and 2k non-
cached loads. It requires no memory barriers under the TSO
memory model [29]. As we show, this compares favorably
with all implementations in the literature.
The nonblocking progress condition our implementation

meets is obstruction-freedom. Obstruction-freedom is a new
progress condition, proposed by Herlihy, Luchangco, and
Moir [14] to simplify the design of nonblocking algorithms
by removing the need to provide strong progress guarantees
in the algorithm itself (as required by wait-freedom or lock-
freedom [11]). Simply put, obstruction-freedom guarantees
a thread’s progress if other threads do not actively interfere
for a sufficient period. The definition is thus geared towards

1We use “nonblocking” broadly to include all progress condi-
tions requiring that the failure or indefinite delay of a thread
not prevent other threads from making progress, rather than
as a synonym for “lock-free”, as some authors prefer.

314

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193614886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

P: delete(b)
...CAS(&a.next,b,c)...

Q: delete(c)
...CAS(&b.next,c,d)...

b d

c

a

b c da

P: delete(b)
...CAS(&a.next,b,d)...

Q: insert(c)
...CAS(&b.next,d,c)...

Problem: node c not inserted

Problem: node c not deleted

Figure 1: CAS-based list manipulation is hard (the
examples slightly abuse CAS notation). In both ex-
amples, P is deleting b from the list. In the upper
example, Q is trying to insert c into the list, and in
the lower example, Q is trying to delete c from the
list. Circled locations indicate the target addresses
of the CAS operations; crossed out pointers are the
values before the CAS succeeds.

the uncontended case, handling contended cases through or-
thogonal contention management mechanisms. (Contention
management mechanisms similar in spirit to the ones dis-
cussed in [15] are applicable to the algorithms presented
here; we do not discuss contention management further in
this paper.) Lock-based algorithms are not obstruction-free
because a thread trying to acquire a lock can be blocked
indefinitely by another thread that holds the lock. On the
other hand, any lock-free algorithm is also obstruction-free
because lock-freedom guarantees progress by some thread if
some thread continuously take steps.

1.2 Manipulating linked data structures
KCSS is a natural tool for linked data structure manip-

ulation; it allows a thread, while modifying a pointer, to
check atomically that related nodes and pointers have not
changed. An application of immediate importance is the
implementation of nonblocking linked data structures with
arbitrary insertions and deletions. As Figure 1 shows, naive
approaches to implementing nonblocking insertion and dele-
tion operations for a linked list using single-location CAS do
not work. Although there exist effective (and rather inge-
nious) nonblocking algorithms for ordered list-based sets [8,
21], these algorithms do not generalize easily to arbitrary
linked data structures. For example, it is not clear how to
modify these algorithms to implement multisets.
By employing KCSS instead of CAS, we can simplify the

design of arbitrary nonblocking linked-list operations. For
example, Figure 2 illustrates how the use of KCSS can sig-
nificantly simplify the design of a linked-list construct to
support multiset operations (details of the illustrated algo-
rithms are beyond the scope of this paper). For simplic-
ity, the illustrated implementation uses a 4CSS operation
to make sure the adjacent nodes have not changed during
node removal; we can achieve the same purpose using KCSS
operations that access only two locations at the cost of a
slightly more intricate algorithm. However, adding a small
number of additional locations to a KCSS operation is not
prohibitive because the cost of verifying each additional lo-
cation is only two noncached loads, a worthwhile tradeoff in
many cases.
Toward building our KCSS algorithm, we provide a simple

3b1a 6d3c

3b 4e3c1a

1d

1a 3b 0c 6d

remove node with count = 0 using 4CSS

insert node with count = 1 using 2CSS

if count > 0, increment or decrement using CAS

Figure 2: Illustration of a KCSS-based multiset im-
plementation. Each element in the multiset (i.e., an
element with nonzero multiplicity) is represented by
a node in the list, which stores the element’s mul-
tiplicity in a count field. Inserts or deletes of such
elements respectively increment or decrement the
count (top figure). Two- and four-location KCSS op-
erations are used to add and remove nodes by swap-
ping one pointer, while confirming nearby nodes
have not changed (middle and bottom).

and novel implementation of load-linked/store-conditional
(LL/SC) using CAS; this implementation improves on pre-
vious results in that it can accommodate pointer values on
all common architectures. We believe this algorithm is of
independent value: it extends the applicability of LL/SC-
based algorithms to all common architectures that support
CAS. This answers a question that remained open following
the work of Moir [24].

Section 2 defines the semantics of the operations for which
we present implementations in Section 3. In Section 4, we
discuss various optimizations, generalizations, and exten-
sions that are possible. In Section 5, we survey previous
work on multilocation synchronization. We conclude in Sec-
tion 6. A correctness proof appears in the appendix.

2. PRELIMINARIES
A k-location-compare single-swap (KCSS) operation takes

k locations a1..ak, k expected values e1..ek, and a new value
n1. If the locations all contain the expected values, the
KCSS operation atomically changes the first location a1

from e1 to n1 and returns true; in this case, we say that
the KCSS succeeds. Otherwise, the KCSS returns false and
does not modify any memory location; in this case we say
that it fails. In the next section, we present an implemen-
tation for KCSS using special read, load-linked (LL), store-
conditional (SC) and snapshot operations that we have also
implemented. In this section, we describe more precisely
the interface and semantics of the various operations, the
correctness requirements, and our assumptions about the
system.

2.1 Semantics of operations
We now describe the semantics of the operations for which

we provide implementations in the next section. We consider
a collection of locations. At any point in time, each location
has an abstract value from a set of application values. (As
explained in the next section, our implementation requires
some mild restrictions on this set.)

315

A KCSS(k, a[1..k], expvals[1..k],newval) operation returns
false iff for some i ∈ [1, k], the abstract value of location a[i]
differs from expvals[i]. If this operation returns true, then
it also changes the abstract value of location a[1] to newval.
The locations specified by a must all be distinct.
READ(a) and LL(a) operations return the abstract value

of location a. An LL operation of thread p is said to be
outstanding until p invokes an SC operation on the same
location. The behaviour of all operations is undefined if LL
or KCSS is invoked by process p while p has an outstanding LL
operation on any location. (It is straightforward to remove
this restriction, but retaining it simplifies our presentation.)
The behaviour of an SC(a) operation S by process p is un-

defined if it is invoked before any LL(a) operation by process
p has completed, or if there is not a previous LL(a) opera-
tion L by process p such that there is no LL, SC or KCSS

operation invoked by process p between L and S.2 Other-
wise, an SC(a) operation by process p returns true only if
no other operation that changes the abstract value of loca-
tion a has occurred since the preceding LL(a) operation by
process p. (We say that a SC operation succeeds if it returns
true, and fails otherwise.) To ensure that this operation
is useful for implementing obstruction-free data structures,
we further require that an SC(a) operation succeeds if no
other operation that accesses location a takes a step be-
tween the invocation of p’s preceding LL(a) operation and
the completion of the SC(a) operation. (Observe that this
specification allows a concurrent READ(a) operation to cause
a SC(a) operation to fail; in fact, it would do so in our im-
plementation. Although this possibility does not jeopardize
obstruction-freedom, eliminating it would allow some con-
current operations to succeed that would otherwise fail, and
thus, may be desirable. Our implementation can easily be
modified to come close to this goal; see Section 4.)
A SNAPSHOT(m, a[1..m]) operation returns an array V [1..m]

such that, for each i ∈ [1,m], V [i] is the abstract value of
location a[i]. The locations specified by a must be distinct.

2.2 Correctness condition
We present obstruction-free, linearizable implementations

of the operations described above in the next section. Lin-
earizability [17] implies that each operation appears to take
effect instantaneously at some point between its invocation
and its response; this point is the operation’s linearization
point. Obstruction-freedom [14] requires that if a thread p
executes an operation, and after some point p runs with-
out interference for long enough, then that operation will
terminate.

2.3 Interoperability with dynamic data struc-
tures and memory management

In our implementations of the above operations, each lo-
cation initially holds its initial abstract value. Thus, lo-
cations can be dynamically allocated and initialized by a
single thread, which is important for dynamic-sized data
structures. Our implementations also allow a location to be
freed if no operation that specifies this location as an ar-

2This means that LL and SC should be used in pairs on the
same location. Moir presents an efficient technique for gen-
eralizing LL/SC implementations so that LL/SC sequences
can be executed concurrently on different locations [24]; this
technique can be applied to the results presented here, so we
do not address this restriction further in this paper.

gument is executing or will be invoked. Furthermore, they
guarantee that there will always be a pointer to an object
that could be accessed in the future. Thus, our operations
do not affect memory management, and in particular, data
structures based on our implementations “play nicely” with
garbage collection3 and nonblocking memory management
techniques such as those in [13, 22].

2.4 System model
We assume a machine architecture that supports lineariz-

able load, store, and CAS operations. It is straightforward
to transform these algorithms to work in systems that pro-
vide LL and SC instead of CAS [24].4

The semantics of CAS is equivalent to the following atomic
code fragment:

bool CAS(loc *a, value expval, value newval){

atomically{

if (*a != expval)

return false;

*a = newval;

return true;

}

}

Although we assume linearizability, our algorithms are
correct on multiprocessors that provide only the TSO mem-
ory model [29], without adding memory barrier instructions;
this is a side effect of the way we use CAS.

3. OUR IMPLEMENTATIONS
We now describe our implementations of the READ, LL, SC,

SNAPSHOT, and KCSS operations. We begin by explaining a
restricted version of the LL, SC, and READ operations, which
is correct if we need only these operations. We then ex-
plain how LL can be modified slightly to support a simple
SNAPSHOT operation. Finally we explain how we implement
KCSS using LL, SC, and SNAPSHOT.
Recall that an SC(a, v) operation by process p should suc-

ceed only if no other operation that modifies location a is
linearized between the linearization points of p’s preceding
LL(a) operation and p’s SC(a, v) operation. To overcome
the ABA problem [23], previous implementations of LL/SC
from CAS (e.g., [24]) have required special “tags” or “version
numbers” to be stored together with the application value
in a location that can be accessed by CAS. This requirement
severely restricts the range of values that can be stored by
those SC implementations, and in particular, makes these
implementations inapplicable for storing pointers in many
architectures.
Our goal is to design implementations that place much

milder restrictions on the set of application values, in par-
ticular so that our implementations can access pointers on
all common multiprocessor architectures. Below we specify
these restrictions, which are too weak to allow tag/version

3The garbage collector would need to be modified slightly
to distinguish between pointers and tagged ids, which are
described in the next section.
4In this case, LL and SC should be directly used to replace
the use of CAS in our implementations; native LL and SC
cannot replace our implementations of the LL and SC oper-
ations because our implementations of these operations are
designed to be compatible with the SNAPSHOT operation.

316

number techniques, and then explain how we can achieve
our implementations despite these weaker restrictions.
Each location can store either an application value or a

tagged process id. The abstract value of a location that con-
tains an application value is always that value; when the
location contains a tagged id, it is a little more complicated,
as we explain below. A tagged process id (tagged id for
short) contains a process id and a tag.
The only restriction we place on application values is that

we have some way to distinguish them from tagged ids. One
simple way to achieve this when the application value of in-
terest is a pointer is to “steal” the low-order bit to mark
tagged ids: we can arrange that all locations are aligned
on even byte boundaries so that the low-order bit of every
pointer is zero (locations that will be targets of CAS instruc-
tions are usually required to be word-aligned anyway).
For convenience, we treat tags as if they were unbounded

integers. In today’s 64-bit architectures, we can use one bit
to distinguish tagged ids, 15 bits for the process id and 48
bits for the tag, which, as discussed elsewhere [24], is more
than enough to avoid the ABA problem that potentially
arises as the result of tags wrapping around.

3.1 LL and SC
We now explain a simplified version of our implementa-

tions of the LL and SC operations. The code is shown in Fig-
ure 3. For the purposes of this simplified version, the reader
should ignore the tid field of the location record (i.e., a lo-
cation record is simply a memory location that contains an
application value or a tagged id), and any code that accesses
it, namely line 9.
In order to implement LL(a) and SC(a, v) operations for

process p, we need a way to determine whether the abstract
value of location a has changed since the LL(a) operation
was linearized. Our approach is to have p’s LL(a) operation
store a previously unused tagged id in location a (line 8).
We ensure that the tagged id is new by having p maintain
a local tag, which it increments each time it needs a new
tagged id (line 5). As explained below, we do not allow
any operation that changes the abstract value of location
a to be linearized while the tagged id of another process
is in that location. Thus, if the SC(a, v) operation changes
the contents of location a from the tagged id stored by the
preceding LL(a) of the same process to v (i.e., the CAS in line
11 succeeds), then it changes the abstract value of location a
to v while ensuring that the abstract value of location a has
not changed since the previous LL(a) operation, as required.
Of course, to guarantee obstruction-freedom, it is not suf-

ficient to prevent other operations from being linearized be-
tween the linearization points of p’s LL(a) and SC(a, v) oper-
ations: we must guarantee that a thread that runs without
interference will make progress. Therefore, it must be possi-
ble for a concurrent operation to remove p’s tagged id from
location a (thereby causing p’s SC to fail), without changing
the abstract value of location a; this is achieved by the aux-
iliary RESET operation, which is explained below. To make
this possible, before attempting to store a new tagged id
in location a, p’s LL(a) operation first stores the application
value it intends to replace with its tagged id (line 6) in a spe-
cial location VAL SAVE[p] (line 7). (Recall that p can have
at most one outstanding LL operation, so a single location
is sufficient.) For now, we can consider the abstract value
of a location that contains a tagged id of process p to be

typedef struct loc_s {
taggedid_t tid; // used for SNAPSHOT
value_t val; // atomically CASable

} loc_t;

void RESET(loc_t *a){
1: value_t oldval = a->val;
2: if(TAGGED_ID(oldval))
3: CAS(&a->val, oldval, VAL_SAVE[ID(oldval)]); }

value_t LL(loc_t *a){
4: while (true) {
5: INC_MY_TAGGED_ID; // increment local tag
6: value_t val = READ(a);
7: VAL_SAVE[MY_ID] = val;
8: if (CAS(&a->val, val, MY_TAGGED_ID)) {
9: a->tid = MY_TAGGED_ID; // needed for SNAPSHOT
10: return val;

}
}

}

bool SC(loc_t *a, value_t newval){
11: return CAS(&a->val, MY_TAGGED_ID, newval);
}

value_t READ (loc_t *a){
12: while (true) {
13: value_t val = a->val;
14: if (!TAGGED_ID(val)) return val;
15: RESET(a);

}
}

Figure 3: The code for LL and SC.

VAL SAVE[p].5 Thus, it is easy to see that when p’s LL(a)
operation replaces the application value in location a with
a tagged id (line 8), the abstract value of location a does
not change. Similarly, another operation that uses CAS to
remove p’s tagged id can correctly determine the abstract
value of location a in order to replace p’s tagged id with
the correct abstract value by reading VAL SAVE[p] (line 3).
(Process p does not change VAL SAVE[p] while any location
contains its tagged id. Also, there is no ABA problem when
either p or another process removes p’s tagged id from loca-
tion a, because p uses a fresh tagged id each time it stores
a tagged id in location a and only process p stores a tagged
id with p’s process id.)
This completes the description of the LL(a) and SC(a, v)

operations, except that we have not explained the READ(a)
operation, which is used by LL(a) (line 6).

3.2 READ
The READ operation must determine the abstract value of

location a. It first reads location a (line 13). If the value
read is an application value, then this was the abstract value
of location a when line 13 was executed, so it can be re-
turned (line 14). Otherwise, the abstract value of location
a when line 13 was executed was VAL SAVE[p] where p is the
process whose id is in the tagged id read at line 13. Sim-
ply reading that location would not necessarily provide the
correct abstract value of location a because p might have
changed the contents of this location since the READ(a) op-
eration executed line 13. However, because there can be no
ABA problem on tagged ids, the READ(a) operation could

5We later change this interpretation slightly to accommo-
date the KCSS operation, as described in Section 3.4.

317

read VAL SAVE[p] and then reread location a to confirm that
the same tagged id is still in location a. In this case, it
could correctly linearize a read of the abstract value of lo-
cation a at any point between the two reads of location a.
If we wanted to support only LL, SC, and READ operations,
this would be correct and would allow a location to be read
without causing a concurrent LL/SC sequence on the same
location to fail. However, in Figure 3, if a READ operation
encounters a tagged id, it calls RESET in order to attempt
to set location a back to its abstract value. As explained
later, this is necessary to support the SNAPSHOT and KCSS

operations that are presented next.

3.3 SNAPSHOT
A well-known nonblocking technique, originally suggested

by Afek et al. [1], for obtaining an atomic snapshot of a
number of locations is the following: We repeatedly “collect”
(i.e., read each location individually and record the values
read) the values from the set of locations until we encounter
a collect in which none of the values collected has changed
since it was read in the previous collect. In this case, it
is easy to see that, when the first value is read in the last
collect, all of the values read during the previous collect are
still in their respective locations. The only tricky detail is
how to determine that a value has not changed since the
last time it was read. Because of the ABA problem, it is
not sufficient to simply determine that the two values read
were the same: the location’s value may have changed to a
different value and then changed back again between these
two reads. As explained below, we can determine a value has
not changed using the tid field (which we have been ignoring
until now) associated with each location. This field serves
the same purpose as the tags (or version numbers) discussed
earlier. However, our implementation does not require them
to be modified atomically with the val field, and therefore
does not restrict applicability, as discussed earlier.
The code for SNAPSHOT is presented in Figure 4. First,

observe that the basic structure (if we ignore tags for a mo-
ment longer) is essentially as described above: we collect
the set of values twice (lines S7 and S8) and retry if any of
the values changed between the first read and the second
(line S10). Observe further that COLLECT VALUES uses READ
to read the value of each location. Thus, it ensures that the
abstract value it reads from a location a is stored in loca-
tion a itself. As described earlier, for the abstract value of a
location to change, some process must install a fresh tagged
id in that location and subsequently change that tagged id
to the new abstract value. This entire sequence must occur
between the READ in the first collect and the READ in the
second. Therefore, line 9 of the LL operation, which stores
the fresh tagged id in the tid field of the location, must be
executed between the first and second reads of the tid field
by the SNAPSHOT operation, which will therefore retry (see
lines S6 and S9). This argument is simple, but it depends on
the fact that READ resets a location that contains a tagged
id. In Section 4, we explain how our implementation can be
modified to avoid this requirement.

3.4 KCSS
Our KCSS implementation, shown in Figure 5, is built us-

ing the operations described above. The implementation
itself is very simple, but the linearization argument is trick-
ier. The basic idea is to use LL and SC to change the value

value_t[1..m] COLLECT_VALUES(int m, (loc_t *) a[1..m]){
value_t V[1..m];

S1: for (i = 1; i <= m; i++) V[i] = READ(a[i]);
S2: return V;
}

tag_t[1..m] COLLECT_TAGGED_IDS(int m, (loc_t *) a[1..m]){
taggedid_t T[1..m];

S3: for (i = 1; i <= m; i++) T[i] = a[i]->tid;
S4: return T;
}

value_t[1..m] SNAPSHOT(int m, (loc_t *)[1..m] a){
taggedid_t TA[1..m], TB[1..m];
value_t VA[1..m], VB[1..m];

S5: while (true) {
S6: TA[1..m] = COLLECT_TAGGED_IDS(m,a);
S7: VA[1..m] = COLLECT_VALUES(m,a);
S8: VB[1..m] = COLLECT_VALUES(m,a);
S9: TB[1..m] = COLLECT_TAGGED_IDS(m,a);
S10: if (for all i, (TA[i] == TB[i]) &&

(VA[i] == VB[i]))
S11: return VA;
}

}
Figure 4: The SNAPSHOT code.

bool KCSS(int k, (loc_t *) a[1..k],
value_t expvals[1..k], value_t newval){

value_t oldvals[1..k];
K1: while (true) {
K2: oldvals[1] = LL(a[1]);
K3: oldvals[2..k] = SNAPSHOT(k-1,a[2..k]);
K4: if (for some i, oldvals[i] != expvals[i])
K5: SC(a[1], oldvals[1]);
K6: return false;

// try to commit the transaction
K7: if (SC(a[1], newval)) return true;

} // end while
}

Figure 5: The KCSS code.

of location a[1] from expvals[1] to newval (lines K2 and
K7), and to use SNAPSHOT to confirm that the values in lo-
cations a[2..k] match expvals[2..k] (lines K3 and K4). If
any of the k values is observed to differ from its expected
value (line K4), then the KCSS and returns false, as required
(line K6). However, before returning, it attempts to restore
a[1] to expvals[1] using SC (line K5), so that the previous
LL operation is no longer outstanding, and thus, the process
may subsequently invoke another LL or KCSS operation.
If the SC in line K7 succeeds, then we know that the ab-

stract value of location a[1] is expvals[1] for the entire in-
terval between the linearization point of the LL in line K2
and the linearization point of the SC in line K7. In partic-
ular, this holds at the linearization point of the SNAPSHOT

called in line K3, when the abstract values of a[2..k] match
expvals[2..k]. Thus, we can linearize the successful KCSS
operation at that point. This is where the linearization ar-
gument becomes slightly tricky: The actual value in location
a[1] does not change to newval until the SC in line K7 is lin-
earized. However, the abstract value of that location changes
at the linearization point of the KCSS operation, which occurs
earlier. Therefore, if any other operation observes the ab-
stract value of that location between the linearization points
of the SNAPSHOT in line K3 and the SC in line K7, it will see
the wrong abstract value and the implementation will not
be linearizable. To prevent this problem, we require READ

318

to reset a location, rather than simply reading the VAL SAVE

entry of the process whose tagged id is in the location, and
then confirming that the tagged id is still in the location (as
described earlier). This ensures that no process observes the
wrong abstract value in the interval between the SNAPSHOT

and the successful SC. As described in the next section, we
can relax this requirement somewhat; we have presented
our implementations without these modifications in order
to keep the presentation simple and clear.

4. OPTIMIZATIONS, EXTENSIONS, AND
GENERALIZATIONS

From the basic ideas we have presented in this paper,
numerous possible optimizations, extensions, and general-
izations are possible. We describe a few of them here.

4.1 Optimizing READ
Our READ operation can be optimized by observing that if

the CAS in line 3 of Figure 3 succeeds, then we have already
determined the abstract value of the location being accessed,
which can be returned immediately without rereading.

4.2 Improving concurrency
As stated earlier, we can modify our implementation so

that READ does not always have to reset a location that con-
tains a tagged id: in some cases, reading a value from the
VAL SAVE location of the process whose tagged id is encoun-
tered, and then confirming that the tagged id is still in the
location is sufficient to determine the correct abstract value.
This does not work, however, in cases in which we linearize
a modification to the location accessed by a LL/SC pair at a
point other than the linearization point of the SC operation.
In the operations we have presented, this is the case only
for LL/SC sequences that are part of a higher-level KCSS op-
eration. Therefore, if we extend the interface of LL so that
the invoker can specify whether or not this is a “dangerous”
use of LL/SC, then this information could be stored in the
tagged id. Thus, READ could reset only when it encounters
such LL/SC sequences, while allowing other, simpler uses of
LL/SC to proceed concurrently.
This modification would complicate the SNAPSHOT imple-

mentation slightly. Recall that the argument given earlier
for the linearizability of SNAPSHOT operations depends on
READ always resetting a location if it contains a tagged id.
This can be overcome by having SNAPSHOT also collect the
tagged ids from locations for which it has determined values
without resetting the location. As this would be done only if
the tagged id is in the location on behalf of a nondangerous
LL/SC sequence, the abstract value of the location does not
change before that tagged id is removed from the location,
so it is sufficient for SNAPSHOT to confirm that it has not.

4.3 DCSS and CAS
To implement a double-compare single-swap (DCSS) oper-

ation (i.e., KCSS with k = 2), we can replace the SNAPSHOT

of k − 1 = 1 location in our KCSS implementation with a
simple READ. Similarly, for a CAS on these locations, which
is simply a KCSS operation with k = 1, the snapshot can
be eliminated entirely.
In some cases, such as the multiset example mentioned

earlier, locations that support only read, CAS and DCSS
operations are sufficient. In these cases, we can eliminate

the tid field (and the code that accesses it), as this field is
necessary only for the SNAPSHOT operation. We can also im-
plement CAS by using the native CAS instruction, resetting
the location if it contains a tagged id.

4.4 Optimizations to SNAPSHOT and KCSS
The implementation of SNAPSHOT can be improved at the

cost of muddying the presentation. For example, the tags
collected at line S9 can be used for the first set of tags in the
next iteration (we collect the tags again in the next iteration
at line S6). Also, Harris [9] has noted that one can elimi-
nate a complete sequence of reads from the snapshot, at the
cost of a slightly more complex proof. We can also improve
the performance of the KCSS by breaking the snapshot ab-
straction (for example, there is no need to take an entire
snapshot if one of the early values read does not match the
expected value).

4.5 Single-modification transactions
We chose the KCSS API to demonstrate our ideas because

its semantics is easy to state and understand. However, as
we will show in the full paper, the ideas presented here can
easily be extended to support transactions that modify only
a single location. The basic idea is to have transactional
loads record the information collected in the first half of
the snapshot in our KCSS implementation, and transactional
commit do the second half of the snapshot to determine if
any of the values read had been modified by a concurrent
operation since being read by the transactional load. In-
terestingly, the implementation of this stronger semantics
would actually be somewhat more efficient than using READ

and KCSS for the same purpose, because the READs and the
first half of the snapshot in KCSS are collapsed together into
the transactional load. It would also be straightforward to
provide a transactional “validate” operation that rechecks
the values read so far in the transaction.
We believe that the ability provided by KCSS to “confirm”

the abstract value of some locations, while modifying an-
other, will significantly reduce the impact of ABA issues on
algorithm designers. However, such issues may still arise in
some cases, and implementing the transactions as discussed
above would completely relieve designers of the burden of
dealing with this problem.

5. RELATED WORK ON MULTILOCATION
SYNCHRONIZATION

The idea to support atomic multilocation synchronization
operations dates at least back to the Motorola MC68030
chip [25], which supported a double-compare-and-swap op-
eration (DCAS); this operation generalizes CAS to allow
atomic access to two locations. DCAS has also been the sub-
ject of recent research [2, 5, 7]. In a seminal paper [16], Her-
lihy and Moss suggested transactional memory, a broader
transactional approach where synchronization operations are
executed as optimistic atomic transactions in hardware.
Barnes was the first to introduce a software implementa-

tion of a k-location read-modify-write [4]. His implemen-
tation, as well as those of Turek, Shasha and Prakash [28],
and Israeli and Rappoport [19], is based on the cooperative
method : threads recursively help all other threads until the
operation completes. Unfortunately, this introduced signif-
icant redundant “helping”: threads do the work of other

319

threads on unrelated locations because a chain of depen-
dencies among operations exists. As shown by Attiya and
Dagan [3], this kind of “helping” overhead for lock-free mul-
tilocation operations is, in the worst case, unavoidable.
Shavit and Touitou [26] coined the term software trans-

actional memory (STM) and presented the first lock-free
implementation of an atomic multilocation transaction that
avoided redundant “helping” in the common case, and thus
significantly outperformed other lock-free algorithms [4, 19,
28]. However, their STM was restricted to “static” transac-
tions, in which the set of memory locations to be accessed
is known in advance, and its correctness proof was signifi-
cantly complicated by the need to argue about the lock-free
properties of the helping mechanism.
Recently, Herlihy, Luchangco, Moir and Scherer intro-

duced an obstruction-free implementation of a general STM
that supports “dynamic” transactions [15]. Their imple-
mentation avoids helping altogether, thereby reducing the
complexity of the algorithm and eliminating the overhead
of redundant helping. As explained earlier, the design of
obstruction-free operations is geared towards being simple
and efficient in the uncontended case, where helping would
not be needed, while allowing contended cases to be handled
through orthogonal contention management mechanisms in-
stead of helping mechanisms. While KCSS can be imple-
mented using [15] with only slightly higher time complexity
and twice the memory overhead of our KCSS implementa-
tion, the resulting algorithm would be a complex software
application that would require that fresh memory be allo-
cated per executed transaction or that a specialized built-in
memory management scheme be introduced with the algo-
rithm.
Nonblocking implementations of a simpler KCAS operation,

that is, k-location compare-and-swap on nonadjacent loca-
tions, were presented by Herlihy et al. [12] and by Harris
et al. [10]. However, implementing KCSS using these algo-
rithms requires at least 2k+1 CAS operations, making them
prohibitively expensive.
Our KCSS implementation exploits the weaker semantics

of KCSS and the weaker progress requirement of obstruction
freedom to achieve an algorithm that provides the simplicity
of [10, 12] at a significantly lower cost.

6. CONCLUDING REMARKS
We have presented a simple and efficient nonblocking im-

plementation of a dynamic collection of locations that sup-
ports READ, LL, SC, SNAPSHOT and KCSS operations. We have
also explained a simple extension by which we can sup-
port transactions that modify at most one location. These
operations form a powerful set of tools for designing rela-
tively simple obstruction-free implementations of important
shared data structures such as linked lists.
Because of the novel way in which we solve the ABA prob-

lem, our implementation is more efficient, more flexible, and
more widely applicable for implementing linked data struc-
tures than the techniques used in recent direct implementa-
tions of lock-free linked lists. That we were able to achieve
this implementation with relatively simple algorithms fur-
thers our belief that the introduction of obstruction-freedom
is an important development in the search for simple, effi-
cient and scalable nonblocking shared data structures.
As stated earlier, contention control mechanisms are re-

quired to ensure progress with obstruction-free algorithms;

future work includes evaluating contention control mecha-
nisms specifically for the implementations presented here.

Acknowledgments: We thank Paul Martin for valuable
comments on initial versions of our algorithm, and Tim Har-
ris for his many comments and for suggesting optimizations
to the snapshot algorithm. This work was done while Nir
Shavit was visiting Sun Labs.

7. REFERENCES
[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt,

and N. Shavit. Atomic snapshots of shared memory.
Journal of the ACM (JACM), 40(4):873–890, 1993.

[2] O. Agesen, D. Detlefs, C. Flood, A. Garthwaite,
P. Martin, M. Moir, N. Shavit, and G. Steele.
DCAS-based concurrent deques. Theory of Computing
Systems, 35:349–386, 2002. A preliminary version
appeared in the Proc. 12th ACM Symposium on
Parallel Algorithms and Architectures.

[3] H. Attiya and E. Dagan. Universal operations: Unary
versus binary. In Proc. 15th Annual ACM Symposium
on Principles of Distributed Computing, May 1996.

[4] G. Barnes. A method for implementing lock-free
shared data structures. In Proc. 5th ACM Symposium
on Parallel Algorithms and Architectures, pages
261–270, June 1993.

[5] D. Detlefs, P. Martin, M. Moir, and G. Steele.
Lock-free reference counting. Distributed Computing,
15(4):255–271, 2002. A preliminary version appeared
in the Proc. 20th Annual ACM Symposium on
Principles of Distributed Computing, 2001.

[6] A. Glew and W. Hwu. A feature taxonomy and survey
of synchronization primitive implementations.
Technical Report CRHC-91-7, University of Illinois at
Urbana-Champaign, Dec. 1990.

[7] M. Greenwald. Non-Blocking Synchronization and
System Design. PhD thesis, Stanford University
Technical Report STAN-CS-TR-99-1624, Aug. 1999.

[8] T. Harris. A pragmatic implementation of
non-blocking linked lists. In Proc. 15th International
Symposium on Distributed Computing, 2001.

[9] T. Harris. Personal communication, Dec. 2002.

[10] T. Harris, K. Fraser, and I. Pratt. A practical
multi-word compare-and-swap operation. In Proc.
16th International Symposium on Distributed
Computing, 2002.

[11] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):124–149, 1991.

[12] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free software NCAS and transactional
memory. Unpublished manuscript, 2002.

[13] M. Herlihy, V. Luchangco, and M. Moir. The repeat
offender problem: A mechanism for supporting
dynamic-sized, lock-free data structures. In Proc. 16th
International Symposium on Distributed Computing,
2002.

[14] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In Proc. 23rd International
Conference on Distributed Computing Systems, 2003.

320

[15] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer.
Software transactional memory for supporting
dynamic-sized data structures. In Proc. 22th Annual
ACM Symposium on Principles of Distributed
Computing, 2003. To appear.

[16] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proc. 20th Annual International Symposium on
Computer Architecture, 1993.

[17] M. Herlihy and J. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions
on Programming Languages and Systems,
12(3):463–492, 1990.

[18] Intel. Pentium processor family user’s manual: Vol 3,
architecture and programming manual, 1994.

[19] A. Israeli and L. Rappoport. Disjoint-access-parallel
implementations of strong shared memory primitives.
In Proc. 13th Annual ACM Symposium on Principles
of Distributed Computing, pages 151–160, 1994.

[20] N. Lynch and F. Vaandrager. Forward and backward
simulations – part I: Untimed systems. Information
and Computation, 121(2):214–233, 1995.

[21] M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In Proc. 14th Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 73–82, 2002.

[22] M. Michael. Safe memory reclamation for dynamic
lock-free objects using atomic reads and writes. In
Proc. 21st Annual ACM Symposium on the Principles
of Distributed Computing, 2002.

[23] M. Michael and M. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared
memory multiprocessors. Journal of Parallel and
Distributed Computing, 51(1):1–26, 1998.

[24] M. Moir. Practical implementations of non-blocking
synchronization primitives. In Proc. 16th Annual
ACM Symposium on Principles of Distributed
Computing, pages 219–228, 1997.

[25] Motorola. MC68030 User’s Manual. Prentice-Hall,
1989.

[26] N. Shavit and D. Touitou. Software transactional
memory. Distributed Computing, 10(2):99–116, 1997.

[27] R. Sites. Alpha architecture reference manual, 1992.

[28] J. Turek, D. Shasha, and S. Prakash. Locking without
blocking: Making lock-based concurrent data
structure algorithms nonblocking. In Proc. 11th ACM
Symposium on Principles of Database Systems, pages
212–222, 1992.

[29] D. Weaver and T. Germond. The SPARC Architecture
Manual Version 9. PTR Prentice Hall, 1994.

APPENDIX

A. CORRECTNESS PROOF
In this appendix, we argue that the operations in Section 3

have the correct semantics (as defined in Section 2). We
first argue that they are linearizable, and then that they
are obstruction-free. Our proof is intended to be informal
enough to avoid undue burden on the reader, but precise
enough that it can be easily translated to a more formal
and detailed proof.

A.1 Linearizability proof
For each operation, we define its linearization point, that

is, a point during the operation’s execution at which it ap-
pears to take effect. The linearization points are as follows:

• A READ operation linearizes to its last execution of line
13.

• An LL operation linearizes to its last (and only) suc-
cessful CAS operation.

• An SC operation linearizes to its CAS operation.

• A SNAPSHOT operation linearizes to an arbitrary point
between the two COLLECT VALUES operations invoked in
the SNAPSHOT’s last iteration of the loop.

• A KCSS operation that succeeds linearizes to the lin-
earization point of its last SNAPSHOT operation. A KCSS

operation that fails because the comparison in state-
ment K4 of Figure 5 fails with i = 1 is linearized to the
linearization point of the last LL operation in statement
K2. A KCSS operation that fails because the comparison
in statement K4 of Figure 5 fails with i �= 1 is linearized
to the linearization point of the KCSS operation’s last
SNAPSHOT operation.

Each READ, LL, SNAPSHOT or KCSS operation consists of a
while loop containing an attempt to complete the operation.
An attempt is conclusive if the operation returns in that
attempt; otherwise, the attempt is inconclusive and another
attempt is made. Each completed operation has exactly one
conclusive attempt (its last attempt), and the linearization
of the operation occurs in that attempt. Note that each
attempt of an LL or KCSS operation is associated with a
unique tagged id.
For SNAPSHOT and KCSS operations, it is not possible to de-

termine the linearization point at the time of the lineariza-
tion point: whether the attempt is conclusive depends on
later events. To simplify the proof and avoid the need for
backward simulation style arguments [20], we consider only
complete execution histories, that is, ones in which all ab-
stract operations have completed.
Based on the linearization points defined above, it is easy

to determine the abstract value of any location a at any
point in a complete execution history:

• If the value field of a contains an application value, then
the abstract value of a is that application value.

• If the value field of a is a tagged id that corresponds to
a successful KCSS operation whose linearization point is
past (i.e., after the linearization point of the SNAPSHOT

invocation in its last attempt), then the abstract value
of a is the newval argument passed to that KCSS oper-
ation.

• Otherwise, the abstract value of a is VAL SAVE[p], where
p is the process whose tagged id is in the value field of
a.

Before arguing that every operation is linearizable, we recall
the restriction that a thread may not invoke LL or KCSS while
it has any outstanding LL operation. Given this restriction,
it is easy to prove the following claim.

Claim 1. For any thread p executing an LL operation, if
p has not yet successfully CAS’d its tagged id into the value
field of a, or if p is executing a KCSS operation whose LL has
not done so, then no location’s value field contains a tagged
id of p.

321

We now argue that the auxiliary RESET operation does not
change the abstract value of any location.

Lemma 1. RESET does not change the abstract value of
any location.

Proof. If, after line 1, oldvals is an application value,
or if the RESET’s CAS operation fails, then RESET does not
change the value field of the location, so the abstract value
is unchanged.
If the value is a tagged id and the RESET successfully

changes the value field, then the tagged id cannot be associ-
ated with the conclusive attempt of a successful KCSS opera-
tion because the SC of that attempt will fail. Thus, immedi-
ately preceding the CAS operation, the abstract value of the
location is VAL SAVE[ID(oldvals)], so it is not changed by
the CAS operation. (Because statement 3 of the RESET oper-
ation first reads VAL SAVE[ID(oldvals)] and then attempts
the CAS, it is conceivable that VAL SAVE[ID(oldvals)]

changes between the read and the successful CAS. However,
this is not possible, because once a process has installed a
tagged id into a location, it does not modify its VAL SAVE

entry again until after it has ensured that the tagged id has
been removed. If the tagged id has been removed, then the
CAS under consideration fails.)

For READ and LL operations, we must verify that they
return, and do not change, the abstract value of the location.

Lemma 2. The READ(a) operation returns the abstract
value of a at its linearization point, and does not change
the abstract value of any location.

Proof. A READ operation is linearized at the load (of the
value field) of its conclusive attempt. At that time, the field
contained an application value, so its value was the abstract
value for that location. The only operation within a READ

operation that may write a location is the RESET operation,
which by Lemma 1, does not change the abstract value of
any location.

Lemma 3. The LL(a) operation returns the abstract value
of a at its linearization point, and does not change the ab-
stract value of any location.

Proof. An LL operation is linearized at the CAS op-
eration of its conclusive attempt. Immediately before the
CAS, the value field of a contains the application value val
(returned by the preceding READ operation), so its abstract
value is val, which the LL operation will return.
To see that an LL operation does not change the abstract

value of any location, note that, by Lemma 2, the READ oper-
ation does not change the abstract value of any location. By
Claim 1, no location has a tagged id of the thread executing
the LL operation, so changing the corresponding entry in the
VAL SAVE array does not change the abstract value of any lo-
cation. Finally, immediately after the CAS, the value field
of a contains the tagged id corresponding to this attempt,
and the corresponding entry in the VAL SAVE array contains
val (written on the previous line), so the abstract value of
a does not change.

Lemma 4. Suppose process p executes LL(a), and its next
LL, SC or KCSS operation is SC(a, newval). If the SC operation
returns false, then it does not change the abstract value of the
location. If the SC operation returns true then the abstract

value of a has not changed since the linearization point of
the LL operation, and at the linearization point of the SC

operation, the abstract value becomes newval.

Proof. If the SC operation returns false then no memory
location is changed, so the abstract value of a is unchanged.
If the SC operation returns true, then immediately before

the CAS operation, the value field of a contains the current
tagged id of p, which is the tagged id written by the pre-
ceding LL operation. Because a tagged id is written into a
location only once, the value field must have been unchanged
since it was written by the LL operation. Thus, during that
entire interval, the abstract value of a was the value stored
in VAL SAVE[p]. Because VAL SAVE[p] is changed only by LL

operations of p, the abstract value of a did not change in the
interval. Immediately after the CAS, the value field contains
the application value newval, as required.

Lemma 5. A SNAPSHOT operation returns an array of the
abstract values of the specified locations at its linearization
point, and does not change the abstract value of any location.

Proof. Consider any conclusive attempt of the SNAPSHOT
operation. Because the attempt is conclusive, the values
returned for all locations by the two COLLECT VALUES op-
erations of this attempt are the same. We argue that in
the interval between these COLLECT VALUES operations, the
abstract values of all these locations was always the value
returned by these operations.
Consider any location a read by the SNAPSHOT operation.

Let the value returned by the COLLECT VALUES operations
be v. Because COLLECT VALUES uses READ, Lemma 2 implies
that the abstract value of a was v at some point during
each COLLECT VALUES operation. Note also that, at the lin-
earization point of each READ(a) operation, the value field
of a contains its abstract value. Suppose, towards a contra-
diction, that the abstract value of a changed between the
linearization points of the two READ(a) operations that read
from location a in the two COLLECT VALUES operations. Then
some successful SC or KCSS operation that changed the ab-
stract value of a must be linearized at some point between
the two READ operations. Before the linearization point of
such an SC or KCSS operation, an LL(a) operation must have
been linearized, leaving its tagged id in the value field of a.
This LL operation must be linearized after the first READ(a),
and it must terminate before the second READ(a). Thus, it
must store its tagged id into the tag field of a between the
two READ operations. Therefore, the tag field of a changed
between the two COLLECT TAGGED IDS operations. Because
a tag field is never written more than once with the same
tagged id, the two COLLECT TAGGED IDS operations must re-
turn different tags for a, contradicting the assumption that
this attempt is conclusive.

Lemma 6. If a KCSS(a[1..k], expvals[1..k],newval) opera-
tion fails, then for some i ∈ [1, k], the abstract value of a[i]
was not expvals[i] at the linearization point of the operation.

Proof. If the KCSS operation fails, then for some i ∈
[1, k], oldvals[i] �= expvals[i].
If i = 1 then the linearization point of this operation is

the preceding LL operation, which returned oldvals[1]. By
Lemma 3, this value is the abstract value of a[1] at that
point, which therefore is not expvals[1].
If i ∈ [2, k] then the linearization point of this opera-

tion is the preceding SNAPSHOT operation, which returned

322

oldvals[i]. By Lemma 5, this value is the abstract value of
a[i] at that point, which therefore is not expvals[i].

Lemma 7. Immediately before the linearization point of
a successful KCSS(a[1..k], expvals[1..k],newval) operation, the
abstract value of each specified location had the correspond-
ing value from the expvals array, and the abstract value of
a[1] becomes newval at the linearization point.

Proof. The definition of the KCSS operation implies that
the abstract value of a[1] becomes newval at the linearization
point of a successful KCSS operation.
Because the KCSS linearizes at the linearization point of

its last SNAPSHOT, we know that at that point, the abstract
values of locations a[2]..a[k] are the values returned by the
SNAPSHOT, which we check in the loop at line K4 are equal to
the corresponding values in the expvals array. Because the
subsequent SC operation succeeds, by Lemma 4, we know
the abstract value of a[1] is the value returned by the pre-
ceding LL operation—which we also check is expvals[1]—for
the entire interval between the LL and SC operations.

A.2 Obstruction-freedom proof
We now argue that all the operations are obstruction-free.

We also argue that an SC(a) operation by thread p succeeds
whenever no other operations that access the location take
any steps between p’s invocation of the preceding LL(a) op-
eration and the completion of the SC operation. This latter
property is required so that these operations are useful for
implementing obstruction-free data structures.
That RESET and SC are obstruction-free is straightforward

to see, as they have no loops.

Lemma 8. If a RESET(a) operation executes without any
other threads accessing location a then immediately after the
RESET operation, the value field of a contains an application
value.

Proof. If the value field of a contains an application
value before the RESET operation, then the RESET operation
does not change it. If the value field of a contains a tagged
id, then the RESET operation CAS’s that field from its old
value to the value in the corresponding entry of the VAL SAVE

array, which always contains an application value. Because
no other thread changes the value field of a, this CAS always
succeeds, so after the RESET operation, the value field of a
contains an application value.

Lemma 9. READ is obstruction-free.

Proof. Suppose thread p executes a READ(a) operation,
and that after some point in that operation execution, only
thread p takes steps. If p’s current attempt at that point is
inconclusive then it executes another attempt, during which
no other thread takes steps. If p sees an application value in
the value field of a then this new attempt will be conclusive.
Otherwise, p invokes RESET(a), after which, the value field
of a contains an application value. Thus, p’s next attempt
will succeed as long as no other thread accesses a.

Lemma 10. If a READ(a) operation executes without any
other threads accessing location a then immediately after the
READ operation, the value field of a contains the value re-
turned by the READ operation, which is an application value.

Proof. The READ(a) operation returns only if the value
it read in the value field of a was an application value, which
it returns. Because no other thread accesses a, immediately
after the READ operation, the value field of a still contains
that application value.

Lemma 11. LL is obstruction-free.

Proof. Suppose that thread p executes an LL(a) oper-
ation, and that after some point during the execution of
this operation, only thread p takes steps. If p’s current
attempt at that point is inconclusive then it executes an-
other attempt, during which no other thread takes steps. By
Lemma 10, immediately after the READ operation on line 6 of
this attempt, the value field of a contains the value returned
by that READ. Therefore, the CAS in line 8 succeeds, and LL

operation terminates.

Lemma 12. SNAPSHOT is obstruction-free.

Proof. Suppose that thread p executes a SNAPSHOT op-
eration, and that after some point during the execution of
that operation, only thread p takes steps. If p’s current
attempt at that point is inconclusive then it executes an-
other attempt, during which no other thread takes steps.
By Lemma 10 and inspection of the code, after the first
COLLECT TAGGED IDS and COLLECT VALUES operations of this
attempt, the tag and value fields contain the values returned
by those operations. Thus, the second COLLECT TAGGED IDS

and COLLECT VALUES operations will return the same values
and this attempt will be conclusive.

Lemma 13. If p executes an LL(a) operation without any
other threads accessing location a then immediately after the
LL operation, the value field of a contains p’s MY TAGGED ID

value.

Proof. This is straightforward because the LL operation
terminates only if p successfully CAS’s the value field of a
to its MY TAGGED ID value.

Lemma 14. If a thread p invokes LL(a) and then SC(a)
with no intervening LL, SC or KCSS operations (but possi-
bly other operations), and no thread (including p) takes any
steps for any operation that accesses a in the interval be-
tween p’s LL(a) and SC(a) operations, then the SC operation
succeeds.

Proof. By Lemma 13, immediately after the LL(a) op-
eration, the value field of a contains p’s MY TAGGED ID value.
Because no thread accesses a until p’s subsequent SC opera-
tion, this field does not change in that interval, and because
p does not invoke LL, SC or KCSS, p’s MY TAGGED ID value also
does not change in that interval. Thus, the CAS in the SC

operation succeeds.

Lemma 15. KCSS is obstruction-free.

Proof. Suppose only thread p executing a KCSS opera-
tion takes steps after some point. If its current attempt is
inconclusive then it executes another attempt, during which
no other thread takes steps. Thus, the only abstract oper-
ation that takes steps between the LL and SC operations of
this attempt is the SNAPSHOT of this attempt, which does
not access the location of the LL and SC operations. So, by
Lemma 14, the SC operation succeeds, and the KCSS opera-
tion terminates.

323

