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Abstract
In this paper, we study the following second-order periodic system:

x′′ + V ′(x) + p(t)|x|α = 0,

where V(x) has a singularity. Under some assumptions on the V(x) and p(t) by Ortega’s
small twist theorem, we obtain the existence of quasi-periodic solutions and
boundedness of all the solutions.
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1 Introduction andmain result
In , Levi [] considered the following equation:

x′′ +V ′(x, t) = , (.)

whereV (x, t) satisfies some growth conditions andV (x, t) = V (x, t+). The author reduced
the system to a normal form and then appliedMoser twist theorem to prove the existence
of quasi-periodic solution and the boundedness of all solutions. This result relies on the
fact that the nonlinearityV (x, t) can guarantee the twist condition of KAM theorem. Later,
several authors improved the Levi’s result; we refer to [–] and the references therein.
Recently, Capietto, Dambrosio and Liu [] studied the following equation:

x′′ +V ′(x) = F(x, t), (.)

with F(x, t) = p(t) is a π-periodic function and V (x) = 
x


+ + 

(–x–)ν
– , where x+ =

max{x, }, x– =max{–x, } and ν is a positive integer. Under the Lazer-Leach assumption
that

 +



∫ π


p(t + θ ) sin θ dθ > , ∀t ∈ R, (.)

they prove the boundedness of solutions and the existence of quasi-periodic solution by
KAM theorem. It is the first time that the equation of the boundedness of all solution is
treated in case of a singular potential.
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We observe that F(x, t) = p(t) in (.) is smooth and bounded, so a natural question is to
find sufficient conditions on F(x, t) such that all solutions of (.) are bounded when F(x, t)
is unbounded. The purpose of this paper is to deal with this problem.
Motivated by the papers [, , ], we consider the following equation:

x′′ +V ′(x) + p(t)|x|α = , (.)

where p(t) is a π-periodic function,

V (x) =


x+ +


 – x–

– ,  < α < ,x > –. (.)

We suppose Lazer-Leach assumption hold:

∫ π


p(t + θ )(sin θ )+α dθ > , ∀t ∈ R. (.)

Our main result is the following theorem.

Theorem  Under the assumptions (.) and (.), all the solutions of (.) are bounded.

The main idea of our proof is acquired from []. The proof of Theorem  is based on
a small twist theorem due to Ortega []. It mainly consists of two steps. The first one is
to transform (.) into a perturbation of integrable Hamilton system. The second one is
to show that Poincaré map of the equivalent system satisfies Ortega’s twist theorem, then
some desired result can be obtained.
Moreover, we have the following theorem on solutions of Aubry-Mather type.

Theorem  Assume that p(t) ∈ C(R) satisfies (.); then, there is an ε >  such that, for
any ω ∈ ( 

π
, 

π
+ ε), t equation (.) has a solution (xω(t),x′

ω(t)) of the Mather type with
rotation number ω.More precisely:
Case : ω = p

q is rational. The solutions (xω(t + iπ ),x′
ω(t + iπ )),  ≤ i ≤ q –  are inde-

pendent periodic solutions of periodic qπ ;moreover, in this case,

lim
q→∞min

t∈R
(∣∣xω(t)

∣∣ + ∣∣x′
ω(t)

∣∣) = +∞.

Case : ω is irrational. The solution (xω(t),x′
ω(t)) is either a usual quasi-periodic solution

or a generalized one.

We will apply Aubry-Mather theory, more precisely, the theorem in [], to prove this
theorem.

2 Proof of theorem
2.1 Action-angle variables and some estimates
Observe that (.) is equivalent to the following Hamiltonian system:

x′ =
∂H
∂y

, y′ = –
∂H
∂x

(.)

http://www.boundaryvalueproblems.com/content/2013/1/84
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with the Hamiltonian function

H(x, y, t) =


y +V (x) +

p(t)
(α + )

|x|αx.

In order to introduce action and angle variables, we first consider the auxiliary au-
tonomous equation:

x′ = y, y′ = –V ′(x), (.)

which is an integrable Hamiltonian system with Hamiltonian function

H(x, y, t) =


y +V (x).

The closed curves H(x, y, t) = h >  are just the integral curves of (.).
Denote by T(h) the time period of the integral curve 	h of (.) defined byH(x, y, t) = h

and by I the area enclosed by the closed curve 	h for every h > . Let – < –αh <  < βh be
such that V (–αh) = V (βh) = h. It is easy to see that

I(h) = 
∫ βh

–αh

√

(
h –V (s)

)
ds, ∀h > 

and

T(h) = I ′(h) = 
∫ βh

αh

√
(h –V (s))

ds, ∀h > .

By direct computation, we get

I(h) = 
∫ βh



√

(
h –V (s)

)
ds + 

∫ 

–αh

√

(
h –V (s)

)
ds

= πh + 
∫ αh



√

(
h –V (–s)

)
ds,

so

T(h) = π +
∫ αh



√
(h –V (–s))

ds.

We then have

I(h) = I–(h) + I+(h), T(h) = T–(h) + T+(h),

where

I–(h) = 
∫ –αh



√

(
h –V (s)

)
ds, I+(h) = πh,

T–(h) = 
∫ –αh



√
(h –V (–s))

ds, T+(h) = π .

Similar in estimating in [], we have the estimation of functions I– and T–.

http://www.boundaryvalueproblems.com/content/2013/1/84
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Lemma  We have

hn
∣∣∣∣dnT–(h)

dhn

∣∣∣∣ ≤ Ch–



and

hn
∣∣∣∣dnI–(h)

dhn

∣∣∣∣ ≤ Ch

 ,

where n = , , . . . , , h → +∞. Note that here and below we always use C, C or C′
 to

indicate some constants.

Remark  It follows from the definitions of T+(h), T–(h) and Lemma  that

lim
h→+∞

T–(h) = , lim
h→+∞

T+(h) = π .

Thus the time period T(h) is dominated by T+(h) when h is sufficiently large. From the
relation betweenT–(h) and I–(h), we know I(h) is dominated by I+(h) when h is sufficiently
large.

Remark  It also follow from the definition of I(h), I–(h), I+(h) and Remark  that
∣∣∣∣hn dnI(h)

dhn

∣∣∣∣ ≤ CI(h) for n≥ .

Remark  Note that h = h(I) is the inverse function of I. By Remark , we have
∣∣∣∣In dnh(I)

dIn

∣∣∣∣ ≤ Ch(I) for n≥ .

We now carry out the standard reduction to the action-angle variables. For this purpose,
we define the generating function S(x, I) =

∫
C

√
(h –V (s))ds, where C is the part of the

closed curve 	h connecting the point on the y-axis and point (x, y).
We define the well-know map (θ , I) → (x, y) by

y =
∂S
∂x

(x, I), θ =
∂S
∂I

(x, I),

which is symplectic since

dx∧ dy = dx∧ (Sxx dx + SxI dI) = SxI dx∧ dI,

dθ ∧ dI = (SIx dx + SII dI)∧ dI = SIx d ∧ dI.

From the above discussion, we can easily get

θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π
T(h(x,y))

(T–(h(x,y)) + arcsin x√
(h(x,y))

), if x > , y > ,

π
T(h(x,y))

(T–(h(x,y)) + π + arcsin x√
(h(x,y))

), if x > , y < ,

π
T(h(x,y))

(
∫ x
–αh

√
(h(x,y)+–(–s)–)

ds), if x < , y > ,

π
T(h(x,y))

(T(h(x, y)) –
∫ x
–αh

√
(h(x,y)+–(–s)–)

ds), if x < , y < 

(.)

http://www.boundaryvalueproblems.com/content/2013/1/84
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and

I(x, y) = I
(
h(x, y)

)
= 

∫ βh

–αh

√

(
h(x, y) –V (s)

)
ds. (.)

In the new variables (θ , I), the system (.) is

θ ′ =
∂H
∂I

, I ′ = –
∂H
∂θ

, (.)

where

H(θ , I, t) = πh(I) + π
p(t)

(α + )
∣∣x(I, θ )∣∣αx(I, θ ). (.)

In order to estimate π
p(t)
(α+) |x(I, θ )|αx(I, θ ), we need the following lemma.

Lemma  [, Lemma .] For I sufficient large and –αh ≤ x < , the following estimates
hold:

∣∣∣∣In ∂nx(I, θ )
∂In

∣∣∣∣ ≤ c
√
I,

∣∣∣∣In ∂ny(I, θ )
∂In

∣∣∣∣ ≤ c
√
I for  ≤ n≤ .

2.2 New action and angle variables
Now we are concerned with the Hamiltonian system (.) with Hamiltonian function
H(θ , I, t) given by (.). Note that

I dθ –H dt = –(H dt – I dθ ).

This means that if one can solve I from (.) as a function of H (θ and t as parameters),
then

dH
dθ

= –
∂I
∂t

(t,H , θ ),
dt
dθ

=
∂I
∂H

(t,H , θ ), (.)

is also a Hamiltonian system with Hamiltonian function I and now the action, angle and
time variables are H , t and θ .
From (.) and Lemma , we have

∂H
∂I

→  as I → +∞.

So, we assume that I can be written as

I = I
(
H
π

+ R(H , t, θ )
)
,

where R satisfies |R| < H
π
. Recalling that h is the inverse function of I, we have

H
π

+ R(H , t, θ ) = h(I),

http://www.boundaryvalueproblems.com/content/2013/1/84
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which implies that

R(H , t, θ ) =
p(t)

(α + )
∣∣x(I, θ )∣∣αx(I, θ ).

As a consequence, R is implicitly defined by

R(H , t, θ ) =
p(t)

(α + )
|x|αx

(
I

(
H
π

+ R(H , t, θ )
)
, θ

)
. (.)

Lemma  The function R(H , t, θ ) satisfies the following estimates:

∣∣∣∣∂mR(H , t, θ )
∂Hm

∣∣∣∣ ≤ H
α+
 for m + l ≤ .

Proof Casem = . By (.), Lemma  and noticing that H
I →  as I → +∞, we have

∣∣R(H , t, θ )
∣∣ = ∣∣∣∣π p(t)

(α + )
xα+

(
I

(
H
π

+ R(H , t, θ )
)
, θ

)∣∣∣∣
≤

∣∣∣∣I
(
H
π

+ R(H , t, θ )
)∣∣∣∣

+α

p(t)

=
∣∣I +α


∣∣p(t) ≤ C ·H +α

 .

Casem ≥ . Derivative both sides of (.) with respect to H , we have

∂R
∂H

=

π


– + 

∂x
∂I I

′
(

H
π +R)p(t)

.

By Remark , Lemma  and the estimate of R, we have

∣∣∣∣∂x∂I I ′
(
H
π

+ R
)
p(t)

∣∣∣∣ ≤ C ·H –+α
 .

Since
∣∣∣∣ 

∂x
∂I I

′
(

H
π
+ R)p(t)

∣∣∣∣ �  as H → +∞,

we have

H
∣∣∣∣ ∂R
∂H

∣∣∣∣ ≤ C ·H +α
 .

We suppose that

∣∣∣∣∂mR(H , t, θ )
∂Hm

∣∣∣∣ ≤ H
α+
 (.)

holds wherem = k – . We will prove (.) also holds wherem = k, k ≤ .

http://www.boundaryvalueproblems.com/content/2013/1/84
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By direct calculation, we have

∂kR
∂Hk =

∑
cnj · · · jn ∂nx

∂In
∂ j

∂Hj (
H
π
+ R) · · · ∂ jn

∂Hjn (
H
π
+ R)

 – ∂x
∂I I

′
(

H
π
+ R)p(t)

, (.)

where  ≤ n≤ k, j + · · · + jn = k,  ≤ j, . . . , jn < k.
Since

∂ jn I(Hπ + R)
∂Hjn

= I(n) ·
[(

H
π

+ R
)′]n

+ · · · + I ′ ·
(
H
π

+ R
)(n)

,

by Lemma  and (.), when jn ≥ , we have

∣∣∣∣∂ jn I(Hπ + R)
∂Hjn

∣∣∣∣ ≤ C ·
∣∣∣∣I ′ ·

(
H
π

+ R
)(n)∣∣∣∣

≤ C ·H α+
 ·H–jn

≤ C ·H ·H–jn . (.)

When jn = , we have

∣∣∣∣∂ jn I(Hπ + R)
∂Hjn

∣∣∣∣ ≤ C. (.)

By (.) and (.), we have

∣∣∣∣∂ jn I(Hπ + R)
∂Hjn

∣∣∣∣ ≤ C ·H–jn , (.)

where  ≤ jn < k.
By (.), we have

∣∣∣∣∂ jn I(Hπ + R)
∂Hjn

∣∣∣∣ · · ·
∣∣∣∣∂ jn I(Hπ + R)

∂Hjn

∣∣∣∣ ≤ C ·Hn–k . (.)

By (.), (.) and Lemma , we have (.) holds where m = k. Thus, we prove
Lemma . �

Analogously, one may obtain, by a direct but cumbersome commutation, the following
estimates.

Lemma  The function R(H , t, θ ) satisfies the following estimates:

∣∣∣∣∂m+lR(H , t, θ )
∂Hm∂tl

∣∣∣∣ ≤ H
α+
 for m + l ≤ .

Moreover, by the implicit function theorem, there exists a function R = R(t,H , θ ) such
that

R(H , t, θ ) =
p(t)

(α + )
∣∣x(H , θ )

∣∣αx(H , θ ) + R(H , t, θ ).

http://www.boundaryvalueproblems.com/content/2013/1/84
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Since

R(H , t, θ ) = R(H , t, θ ) –
p(t)

(α + )
∣∣x(H , θ )

∣∣αx(H , θ )

for x ≥ , we have

∣∣R(H , t, θ )
∣∣ = ∣∣∣∣ p(t)

(α + )
xα+

(
I

(
H
π

+ R(H , t, θ )
)
, θ

)
–

p(t)
(α + )

xα+(H , θ )
∣∣∣∣

=
∣∣∣∣
∫ 


xα

(
H + s(πR + I–)

) · ∂x
∂H

(
H + s(πR + I–)

) · (πR + I–)p(t)ds
∣∣∣∣.

For x < , we have

∣∣R(H , t, θ )
∣∣ = ∣∣∣∣ p(t)

(α + )
(–x)α+

(
I

(
H
π

+ R(H , t, θ )
)
, θ

)
–

p(t)
(α + )

(–x)α+(H , θ )
∣∣∣∣

=
∣∣∣∣
∫ 


(–x)α

(
H + s(πR + I–)

) · ∂x
∂H

(
H + s(πR + I–)

) · (πR + I–)p(t)ds
∣∣∣∣.

By Lemmas  and , we have the estimates on R(H , t, θ ).
For concision, in the estimates and the calculation below, we only consider the case

x ≥ , since the case x <  have the similar result.

Lemma  | ∂k+lR(H,t,θ )
∂kH ∂ l t | <H α

 for k + l ≤ .

For the estimates of I(H
π
+ R), we need the estimates on I–(Hπ + R). By Lemmas  and ,

noticing that |R| < H
π
, we have the following lemma.

Lemma  | ∂k+l I–(Hπ +R)
∂kH ∂ l t | <H 

 for k + l ≤ .

Now the new Hamiltonian function I = I(t,H , θ ) is written in the form

I = I
(
H
π

+ R
)
= I+

(
H
π

+ R
)
+ I–

(
H
π

+ R
)

= H + πR(H , t, θ ) + I–
(
H
π

+ R
)

= H + π
p(t)

(α + )
∣∣x(H , θ )

∣∣αx(H , θ ) + R(H , t, θ ) + I–
(
H
π

+ R
)
.

The system (.) is of the form

⎧⎨
⎩

dt
dθ

= ∂I
∂H =  + π ∂x

∂H (H , θ )|x(H , θ )|αp(t) + ∂R
∂H (H , t, θ ) + ∂I–

∂H (H , t, θ ),
dH
dθ

= – ∂I
∂t = –π

p′(t)
(α+) |x(θ ,H)|αx(θ ,H) – ∂R

∂t (t,H , θ ) – ∂I–
∂t (H , t, θ ).

(.)

Introduce a new action variable ρ ∈ [, ] and a parameter ε >  by H = ε–ρ . Then H �
 ⇔  < ε  . Under this transformation, the system (.) is changed into the form

⎧⎨
⎩

dt
dθ

= ∂I
∂H =  + π ∂x

∂H (H , θ )|x|α(H , θ )p(t) + ∂R
∂H (H , t, θ ) + ∂I–

∂H (H , t, θ ),
dρ

dθ
= – ∂I

∂t = –ε[π p′(t)
(α+) |x(θ ,H)|αx(θ ,H) + ∂R

∂t (t,H , θ ) + ∂I–
∂t (H , t, θ )],

(.)

http://www.boundaryvalueproblems.com/content/2013/1/84
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which is also Hamiltonian system with the new Hamiltonian function

	(t,ρ, θ ; ε) = ρ + πε–
p(t)
α + 

∣∣x(θ , ε–ρ)∣∣αx(θ , ε–ρ)
+ ε–R

(
t, ε–ρ, θ

)
+ ε–I–

(
t, ε–ρ, θ

)
.

Obviously, if ε  , the solution (t(θ , t,ρ),ρ(θ , t,ρ)) of (.) with the initial date
(t,ρ) ∈ R × [, ] is defined in the interval θ ∈ [, π ] and ρ(θ , t,ρ) ∈ [  , ]. So the
Poincaré map of (.) is well defined in the domain R× [, ].

Lemma  [, Lemma .] The Poincaré map of (.) has intersection property.

The proof is similar to the corresponding one in [].
For convenience, we introduce the notation Ok() and ok(). We say a function f (t,ρ, θ ,

ε) ∈Ok() if f is smooth in (t,ρ) and for k + k ≤ k,

∣∣∣∣ ∂k+k

∂tk ∂ρk
f (t,ρ, θ , ε)

∣∣∣∣ ≤ C

for some constant C >  which is independent of the arguments t, ρ , θ , ε.
Similarly, we say f (t,ρ, θ , ε) ∈ ok() if f is smooth in (t,ρ) and for k + k ≤ k,

lim
ε→

∣∣∣∣ ∂k+k

∂tk ∂ρk
f (t,ρ, θ , ε)

∣∣∣∣ = ,

uniformly in (t,ρ, θ ).

2.3 Poincaré map and twist theorems
Wewill useOrtega’s small twist theorem to prove that the Poincarémap P has an invariant
closed curve, if ε is sufficiently small. Let us first recall the theorem in [].

Lemma  (Ortega’s theorem) Let A = S
 × [a,b] be a finite cylinder with universal cover

A =R× [a,b]. The coordinate in A is denoted by (τ ,ν). Consider a map

f : A→ S×R.

We assume that the map has the intersection property. Suppose that f : A → R × R,
(τ,ν)→ (τ,ν) is a lift of f and it has the form

⎧⎨
⎩τ = τ + Nπ + δl(τ,ν) + δg̃(τ,ν),

ν = ν + δl(τ,ν) + δg̃(τ,ν),
(.)

where N is an integer, δ ∈ (, ) is a parameter. The functions l, l, g̃ and g̃ satisfy

l ∈ C(A), l(τ,ν) > ,
∂l
∂ν

(τ,ν) > , ∀(τ,ν) ∈ A,

l(·, ·), g̃(·, ·, ε), g̃(·, ·, ε) ∈ C(A).
(.)

http://www.boundaryvalueproblems.com/content/2013/1/84
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In addition, we assume that there is a function I : A→ R satisfying

I ∈ C(A),
∂I
∂ν

(τ,ν) > , ∀(τ,ν) ∈ A (.)

and

l(τ,ν) · ∂I
∂τo

(τ,ν) + l(τ,ν) · ∂I
∂ν

(τ,ν) = , ∀(τ,ν) ∈ A. (.)

Moreover, suppose that there are two numbers ã, and b̃ such that a < ã < b̃ < b and

IM(a) < Im(ã)≤ IM(ã) < Im(b̃) ≤ IM(b̃) < Im(b), (.)

where

IM(r) =max
ρ∈S

I(ρo, τo), Im(r) =min
ρ∈S

I(ρo, τo).

Then there exist ε >  and � >  such that, if δ < � and

∥∥g̃(·, ·, ε)∥∥C(A) +
∥∥g̃(·, ·, ε)∥∥C(A) < ε,

the mapping f has an invariant curve in 	A. The constant ε is independent of δ.

We make the ansatz that the solution of (.) with the initial condition (t(),ρ()) =
(t,ρ) is of the form

t = t + θ + ε–α�(t,ρ, θ ; ε), ρ = ρ + ε–α�(t,ρ, θ ; ε).

Then the Poincaré map of (.) is

P: t = t + π + ε–α�(t,ρ, π ; ε), ρ = ρ + ε–α�(t,ρ, π ; ε). (.)

The functions � and � satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� = πεα– ∫ θ


∂x
∂H (θ , ε

–ρ)|x|αp(t)dθ

+ εα– ∫ θ

 (
∂R
∂H (H , t, θ ) + ∂I–

∂H (H , t, θ ))dθ ,

� = –πεα+

α+
∫ θ

 |x(θ , ε–ρ)|αx(θ , ε–ρ)p′(t)dθ

– εα+

α+
∫ θ

 (
∂R
∂t (H , t, θ ) – ∂I–

∂t (H , t, θ ))dθ ,

(.)

where t = t + θ + ε–α�, ρ = ρ + ε–α�. By Lemmas ,  and , we know that

|�| + |�| ≤ C for θ ∈ [, π ]. (.)

Hence, for ρ ∈ [, ], we may choose ε sufficiently small such that

ρ + ε� ≥ ρ


≥ 


. (.)

http://www.boundaryvalueproblems.com/content/2013/1/84
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Moreover, we can prove that

�,� ∈ O(). (.)

Lemma  The following estimates hold:

xα+(θ , ε–ρ)
– xα+(θ , ε–ρ

) ∈ ε–αO(),

∂x
∂H

(
θ , ε–ρ

)
xα

(
θ , ε–ρ

)
–

∂x
∂H

(
θ , ε–ρ

)
xα

(
θ , ε–ρ

) ∈ ε–αO().

Proof Let

�(t,ρ, θ ) = xα+(θ , ε–ρ)
– xα+(θ , ε–ρ

)
=

∫ 


(α + )xα

(
θ , ε–ρ + sε–�

)

· ∂x
∂H

(
θ , ε–ρ + sε–�

)
ε–� ds.

By Lemma  and (.), we have

∣∣�(t,ρ, θ )
∣∣ ≤ C · (ε–ρ + sε–�

) α

(
ε–ρ + sε–�

)– 
 ε–�

≤ C · (ε–ρ + sε–�
) α–

 εα–ε–α

≤ C · ε–α .

Take the derivative with respect to ρ in the both sides of �(t,ρ, θ ), we have

∂�

∂ρ
=

∫ 



[
(α + )αxα– ∂x

∂H
 + sε ∂�

∂ρ

ε
∂x
∂H

�

ε
+ (α + )xα ∂x

∂H

 + sε ∂�
∂ρ

ε
�

ε

+ (α + )xα ∂x
∂H

∂�

∂ρ


ε

]
ds.

Using Lemma  and noticing |�| ≤ C · ε–α , we have

∣∣∣∣ ∂�

∂ρ

∣∣∣∣ ≤ C · ε–α .

Analogously, one may obtain, by a direct but cumbersome commutation that

∣∣∣∣ ∂k+l�

∂ρk
 ∂tl

∣∣∣∣ ≤ C · ε–α ,

which means that

xα+(θ , ε–ρ)
– xα+(θ , ε–ρ

) ∈ ε–αO().

The estimates for ∂x
∂H (θ , ε

–ρ)xα(θ , ε–ρ) – ∂x
∂H (θ , ε

–ρ)xα(θ , ε–ρ) follow from a similar
argument, we omit it here. Thus, Lemma  is proved. �

http://www.boundaryvalueproblems.com/content/2013/1/84
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Nowwe turn to give an asymptotic expression of Poincarémap of (.), that is, we study
the behavior of the functions � and � at θ = π as ε → . In order to estimate � and
�, we need introduce the following definition and lemma. Let

�+(I) =meas
{
θ ∈ [,π ],x(H, θ ) > 

}
, �–(I) = T –�+(I),

where H = ε–ρ.

Lemma 

�+(I) = π + εO(), �–(I) = εO().

Proof This lemma was proved in [], so we omit the details. �

For estimate � and �, we need the estimates of x and xH .
We recall that when x < , we have

∣∣x(H, θ )
∣∣ =O(),

∣∣xH(H, θ )
∣∣ = εO().

When x > , by the definition of θ , we have

arcsin
x(H, θ )√

h
=
T(h)

π
θ –

T–(h)


= θ + εO(),

which yields that

x(H, θ ) =
√
H

π
sin θ +O(), xH(H, θ ) =

√


Hπ
sin θ + εO().

Now we can give the estimates of � and �.

Lemma  The following estimates hold true:

�(t,ρ, π ; ε) =
(

π

ρ

) α–


∫ π


(sin θ )+αp(t + θ )dθ + o(),

�(t,ρ, π ; ε) = –


α + 
π

–α
 (ρ)

α+


∫ π


(sin θ )+αp′(t + θ )dθ + o()

for ε → .

Proof Firstly, we consider �. By Lemmas ,  and (.), we have

�(t,ρ, π ; ε) = πεα–
∫ π



∂x
∂H

(
θ , ε–ρ

)∣∣x(θ , ε–ρ)∣∣αp(t)dθ

+ εα–
∫ π



(
∂R

∂H
(
ε–ρ, t, θ

)
+

∂I–
∂H

(
ε–ρ, t, θ

))
dθ

= πεα–
∫ π



∂x
∂H

(
θ , ε–ρ

)∣∣x(θ , ε–ρ
)∣∣αp(t + θ )dθ + εαO()

http://www.boundaryvalueproblems.com/content/2013/1/84


Jiang Boundary Value Problems 2013, 2013:84 Page 13 of 15
http://www.boundaryvalueproblems.com/content/2013/1/84

= πεα–
(∫

�+

∂x
∂H

(
θ , ε–ρ

)|x|αp(t + θ )dθ

+
∫

�–

∂x
∂H

(
θ , ε–ρ

)|x|αp(t + θ )dθ

)
+ εαO()

= πεα–
∫

�+

∂x
∂H

(
θ , ε–ρ

)|x|αp(t + θ )dθ + εαO()

= πεα–
∫ π



∂x
∂H

(
θ , ε–ρ

)|x|αp(t + θ )dθ + εαO()

=
(

π

ρ

) –α


∫ π


(sin θ )α+p(t + θ )dθ + o().

Now we consider �.

�(t,ρ, π ; ε) = –
πεα+

α + 

∫ π



∣∣x(θ , ε–ρ)∣∣αx(θ , ε–ρ)
p′(t)dθ

–
εα+

α + 

∫ π



(
∂R

∂t
(
ε–ρ, t, θ

)
+

∂I–
∂t

(
ε–ρ, t, θ

))
dθ

= –
πεα+

α + 

∫ π



∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ

)
p′(t + θ )dθ + εαO()

= –
πεα+

α + 

(∫
�+

∣∣x(θ , ε–ρ)∣∣αx(θ , ε–ρ
)
p′(t + θ )dθ

+
∫

�–

∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ)

p′(t + θ )dθ

)
+ εαO()

= –
πεα+

α + 

∫
�+

∣∣x(θ , ε–ρ)∣∣αx(θ , ε–ρ
)
p′(t + θ )dθ + εαO()

= –
πεα+

α + 

∫ π



∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ)

p′(t + θ )dθ + εαO()

= –


α + 
π

–α
 (ρ)

α+


∫ π


(sin θ )+αp′(t + θ )dθ + o().

Thus, Lemma  is proved. �

2.4 Proof of Theorem 1
Let

�(t,ρ) =
(

π

ρ

) –α


∫ π


(sin θ )+αp(t + θ )dθ ,

�(t,ρ) = –


α + 
π

–α
 (ρ)

α+


∫ π


(sin θ )+αp′(t + θ )dθ .

Then there are two functions φ and φ such that the Poincaré map of (.), given by
(.), is of the form

P: t = t + π + ε–α�(t,ρ) + ε–αφ, ρ = ρ + ε–α�(t,ρ) + ε–αφ,

where φ,φ ∈ o().

http://www.boundaryvalueproblems.com/content/2013/1/84
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Since
∫ π

 p(t + θ ) sin θ dθ > , ∀t ∈ R, we have

� > ,
∂�

∂ρ
�= .

Let

L =
ρ
– α+


∫ π

 (sin θ )+αp(t + θ )dθ
.

Then

∂L
∂t

�(t,ρ) +
∂L
∂ρ

�(t,ρ) = .

The other assumptions of Ortega’s theorem are easily verified. Hence, there is an invari-
ant curve of P in the annulus (t,ρ) ∈ S × [, ] which imply that the boundedness of our
original equation (.). Then Theorem  is proved.

2.5 Proof of Theorem 2
We apply Aubry-Mather theory. By Theorem B in [] and the monotone twist property of
the Poincaré map P guaranteed by ∂�

∂ρ
< . It is straightforward to check that Theorem 

is correct.

Remark  In [], the authors study the multiplicity of positive periodic solutions of sin-
gular Duffing equations

x′′ + g(x) = p(t),

where g(x) satisfies the semilinear condition at infinity and the time map satisfies an os-
cillation condition, and prove that the given equation possesses infinitely many positive
π-periodic solutions by using the Poincaré-Birkhoff theorem. By the methods and tech-
niques in [], we can also prove the existence of π-periodic solutions of (.) where V (x)
satisfies the sublinear condition.
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