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Abstract

Let T > 1 be an integer, T = {1, 2, ...,T}. This article is concerned with the global
structure of the set of positive solutions to the discrete second-order boundary value
problems

�2u(t − 1) + rm(t)f (u(t)) = 0, t ∈ T,

u(0) = u(T + 1) = 0,

where r ≠ 0 is a parameter, m : T → R changes its sign, m(t) ≠ 0 for t ∈ T and f : ℝ
® ℝ is continuous. Also, we obtain the existence of two principal eigenvalues of the
corresponding linear eigenvalue problems.
MSC (2010): 39A12; 34B18.
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1 Introduction
Let T > 1 be an integer, T = {1, 2, ...,T}. This article is concerned with the global struc-

ture of the set of positive solutions to the discrete second-order boundary value pro-

blem (BVP)

�2u(t − 1) + rm(t)f (u(t)) = 0, t ∈ T, (1:1)

u(0) = u(T + 1) = 0, (1:2)

where r ≠ 0 is a parameter, f : ℝ ® ℝ is continuous, m(t) ≠ 0 for t ∈ T and

m : T → R changes its sign, i.e., there exists a proper subset T+ of T, such that m(t) > 0

for t ∈ T+ and m(t) < 0 for t ∈ T\T+.

BVPs with indefinite weight arise from a selection-migration model in population

genetics, see Fleming [1]. That an allele A1 holds an advantage over a rival allele A2 at

some points and holds an disadvantage over A2 at some other points can be presented

by changing signs of m. The parameter r corresponds to the reciprocal of the diffusion.

The existence and multiplicity of positive solutions of BVPs for second-order differen-

tial equations with indefinite weight has been studied by many authors, see, for exam-

ple [2-5] and the references therein. In [2], using Crandall-Rabinowitz’s Theorem and

Rabinowitz’s global bifurcation theorem, Delgado and Suárez obtained the existence
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and multiplicity of positive solutions under Dirichlet boundary value condition. In

2006, Afrouzi and Brown [3] also obtained the similar results by using the mountain

pass theorem. When f is concave-convex type, similar results were also obtained by

Ma and Han [4] and Ma et al. [5], and the main tool they used was the Rabinowitz’s

global bifurcation theorem.

For the discrete case, there is much literature dealing with different equations similar

to (1.1) subject to various boundary value conditions. We refer to [6-14] and the refer-

ence therein. In particular, when m(t) > 0 on T, fixed point theorems, the discrete Gel-

fand theorem and the bifurcation techniques have been used to discuss the existence

of positive solutions to the discrete problems, see, for example [6-8,12-14]. However,

there are few results on the existence of positive solutions of (1.1) and (1.2) when m(t)

changes its sign on T. Maybe the main reason is that the spectrum of the following lin-

ear eigenvalue problems

�2u(t − 1) + λm(t)u(t) = 0, t ∈ T, (1:3)

u(0) = u(T + 1) = 0 (1:4)

is not clear when m changes its sign on T.

It is another aim of our article to give some information of the spectrum of (1.3) and

(1.4). In this article, we will show that (1.3) and (1.4) has two principal eigenvalues lm,-

< 0 < lm,+, and the corresponding eigenfunctions which we denote by ψm,- and ψm,+

don’t change their signs on T. Based on this result, using Rabinowitz’s global bifurca-

tion theorem [15], we will discuss the global structure of the set of positive solutions

of (1.1), (1.2), and obtain the existence of positive solutions of (1.1) and (1.2). More-

over, we can also obtain the existence of negative solutions of (1.1) and (1.2).

Now, we give the definition of a positive solution and a negative solution of (1.1) and

(1.2).

Definition 1.1. A positive solution of problem (1.1) and (1.2) refers to a pair (r, u),

where r ≠ 0, u is a solution of (1.1) with u > 0 on Tand u satisfies (1.2). Meanwhilem

(r, u) is called a negative solution of (1.1) and (1.2), if (r, -u) is a positive solution of

(1.1) and (1.2).

The article is arranged as follows. In Section 2, we state the Rabinowitz’s global

bifurcation theorem. In Section 3, the existence of two principal eigenvalues of (1.3)

and (1.4) will be discussed. In Section 4, we state the main result and provide the

proof.

2 Preliminaries
For the readers’ convenience, we state the Rabinowitz’s global bifurcation theorem [15]

here.

Let E be a real Banach space. Consider the equation

u = λTu +H(λ, u), (2:1)

which possesses the line of solutions {(l,0)|l Î ℝ} henceforth referred to as the tri-

vial solutions, where T : E ® E is a bounded linear operator and H(l, u) is continuous
on ℝ × E with H(l, u) = o(༎ u ༎) near u = 0 uniformly on bounded l intervals.
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Moreover, we assume that T and H are compact on E and ℝ × E, respectively, i.e., are

continuous and they map bounded sets into relatively compact sets.

we will say μ is a characteristic value of T if there exists v Î E, v ≠ 0, such that v =

μTv, i.e., μ-1 is a nonzero eigenvalue of T. Let r(T) denote the set of real characteristic

values of T and Γ denote the closure of the set of nontrivial solutions of (2.1).

Theorem 2.1 ([15, Theorem 1.3]). If μ Î r(T) is of odd multiplicity, then Γ contains a

maximum subcontinuum Csuch that (μ, 0) ∈ Cand either

(i) meets ∞ in ℝ × E,

or

(ii) meets (μ̃, 0)where μ �= μ̃ ∈ r(T).

From [15], there exist two connected subsets, C+ and C−, of C such that C = C+ ∪ C−

and C+ ∩ C− = {(μ, 0)}. Furthermore, Rabinowitz also shows that

Theorem 2.2 ([15, Theorem 1.40]). Each of C+,C−meets (μ, 0) and either

(i) meets ∞ in ℝ × E,

or

(ii) meets (μ̃, 0)where μ �= μ̃ ∈ r(T).

3 Existence of two principal eigenvalues to (1.3) and (1.4)

Recall that T = {1, 2, ...,T}. Let T̂ = {0, 1, ...,T + 1}. Let

X =
{
u : T̂ → R|u(0) = u(T + 1) = 0

}
. Then X is a Banach space under the norm

‖u‖X = maxt∈T̂
∣∣u(t)∣∣. Let Y = {u|u : T → R}. Then Y is a Banach space under the norm

‖u‖Y = maxt∈T
∣∣u(t)∣∣.

Define the operator L : X ® Y by

Lu(t) = −�2u(t − 1), t ∈ T.

In this section, we will discuss the existence of principal eigenvalues for the BVP

(1.3) and (1.4). At first, we give the definition of principal eigenvalue of (1.3) and (1.4).

Definition 3.1. An eigenvalue l for (1.3) and (1.4) is called principal if there exists a

nonnegative eigenfunction corresponding to l, i.e., if there exists a nonnegative u Î X \

{0} such that (l, u) is a solution of (1.3) and (1.4).

The main idea we will use arises from [16,17]. For the reader’s convenience, we state

them here. At first, it is necessary to provide the definition of simple eigenvalue.

Definition 3.2. An eigenvalue l of (1.3) and (1.4) is called simple if dim⋃∞
n=1

ker
(
I − λL−1)n = 1, where kerA denotes the kernel of A.

Theorem 3.1. (1.3) and (1.4) has two simple principal eigenvalues.

Proof. Consider, for fixed l, the eigenvalue problems

Lu − λm(t)u(t) = μu(t), t ∈ T, (3:1)

Gao et al. Advances in Difference Equations 2012, 2012:3
http://www.advancesindifferenceequations.com/content/2012/1/3

Page 3 of 10



u(0) = u(T + 1) = 0. (3:2)

By Kelley and Peterson [18, Theorem 7.6], for fixed l, (3.1), and (3.2) has T simple

eigenvalues

μm,1(λ) < μm,2(λ) < · · · < μm,T(λ),

and the corresponding eigenfunction ψm, k(l, t) has exactly k - 1 simple generalized

zeros.

Thus, l is a principal eigenvalue of (1.3) and (1.4), if and only if μm,1(l) = 0.

On the other hand, let

Sm,λ =

{
T∑
t=0

|�φ(t)|2 − λ

T∑
t=1

m(t)φ(t)2 : φ ∈ X,
T∑
t=1

φ(t)2 = 1

}
.

Clearly, Sm,l is bounded below and μm,1(l) = infjÎX Sm,l, see [18, Theorem 7.7].

For fixed φ ∈ X,λ → ∑T
t=0 |�φ(t)|2 − λ

∑T
t=1 m(t)φ2(t) is an affine function and so a

concave function. As the infimum of any collection of concave functions is concave, it

follows that l ® μm,1(l) is a concave function. Also, by considering test functions j1,

j2 Î X such that
∑T

t=1 m(t)φ2
1(t) < 0 and

∑T
t=1 m(t)φ2

2(t) > 0, it is easy to see that

μm,1(l) ® -∞ as l ® ±∞. Thus, l ® μm,1(l) is an increasing function until it attains

its maximum, and is a decreasing function thereafter.

Since μm,1(0) > 0, l ® μm,1(l) must have exactly two zeros. Thus, (1.3) and (1.4) has

exactly two principal eigenvalues, lm,+ > 0 and lm,- < 0, and the corresponding eigen-

functions don’t change sign on T̂.

Now, we give a property for the above two principal eigenvalues.

Theorem 3.2. If m,m1 : T → Rchange their signs, and m(t) ≤ m1(t) for t ∈ T, then
λm1,− ≤ λm,−,λm1 ,+ ≤ λm,+.

Proof. It can be seen that for l < 0, Sm,λ ≥ Sm1,λ, which implies μm,1(λ) ≥ μm1,1(λ)

and consequently, λm,+ ≥ λm1,+.

On the other hand, for l < 0, Sm,λ ≤ Sm1,λ, which indicates μm,1(λ) ≤ μm1,1(λ) and

consequently, λm,− ≥ λm1,−.

4 Main result
We make the following assumptions.

(H1) f : ℝ ® ℝ is continuous and sf(s) > 0 for s ≠ 0.

(H2) f0 = lim|s|→0
f (s)
s ∈ (0,∞), f∞ = lim|s|→+∞

f (s)
s ∈ (0,∞).

Theorem 4.1. Suppose that (H1) and (H2) hold Assume that

r ∈
(

λm,+

f∞
,
λm,+

f0

)
∪

(
λm,−
f0

,
λm,−
f∞

)
, (4:1)

or

r ∈
(

λm,+

f0
,
λm,+

f∞

)
∪

(
λm,−
f∞

,
λm,−
f0

)
. (4:2)
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Then (1.1) and (1.2) has two solutions u+ and u- such that u+ is positive on Tand u-

is negative on T.

Obviously, we can get the following lemma with ease.

Lemma 4.1. Suppose that u Î X and u �≡ 0on Tsatisfies (1.1) (or (1.3)) and there

exists t0 ∈ Tsuch that u(t0) = 0, then u(t0 - 1)u(t0 + 1) < 0.

Proof of Theorem 4.1. First, we deal with the case r > 0.

Let ζ, ξ Î C(ℝ, ℝ) such that

f (u) = f0u + ζ (u), f (u) = f∞u + ξ(u).

Clearly

lim
|u|→0

ζ (u)
u

= 0, lim
|u|→∞

ξ(u)
u

= 0. (4:3)

Let

ξ̃(u) = max
0≤|s|≤u

|ξ(s)|.

Then ξ̃ is nondecreasing and

lim
|u|→∞

ξ̃(u)
u

= 0. (4:4)

Let us consider

Lu − λm(t)rf0u − λm(t)rζ (u) = 0, (4:5)

as a bifurcation problem from the trivial solution u ≡ 0.

Equation (4.5) can be converted to the equivalent equation

u(t) = λL−1 [
m(·)rf0u(·) +m(·)rζ (u(·))] (t)

:= λTu +H(λ, u).
(4:6)

It is easy to see that T : X ® X is compact. Further we note that H(l, u) = lL-1[m
(·)ζ( u (·))] = o(༎u༎) near l = 0 uniformly on bounded l intervals, since

||L−1[m(·)ζ (u(·))]|| = max
t∈T

∣∣∣∣∣
T∑
s=1

G(t, s)m(s)ζ (u(s))

∣∣∣∣∣
≤ C · max

s∈T
|m(s)|||ζ (u(·))||,

where C = maxt∈T̂
∑T

s=1 G(t, s) and

G(t, s) =
1

T + 1

{
(T + 1 − t)s, 0 ≤ s ≤ t ≤ T + 1,
(T + 1 − t)t, 0 ≤ t ≤ s ≤ T + 1.

Let E = R × X under the product topology. Let S+ := {u ∈ X|u(t) > 0 for t ∈ T}. Set S-
= -S+, S = S+ ∪ S-. Then S+ and S- are disjoint in X. Finally let Ψ± = ℝ × S± and Ψ = ℝ

× S. Let Σ be the closure of the set of nontrivial solutions of (1.1) and (1.2).

It is easy to see that
λm,+

rf0
∈ r(T) is simple. Now applying Theorems 2.1 and 2.2, we

get the result as follows: Σ contains a maximum subcontinuum C+ which is composed

of two distinct connected set C+
+ and C−

+ such that C+ = C+
+ ∪ C−

+ and
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C+
+ ∩ C−

+ =
{(

λm,+

rf0
, 0

)}
. Moreover, Lemma 4.1 guarantees the second case in Theo-

rems 2.1 and 2.2 cannot happen. Otherwise, there will exist (η, y) ∈ Cv
+, such that y has

a multiple zero point t0, (i.e., t0 satisfies y(t0) = 0 and y(t0 - 1)y(t0 + 1) > 0). However,

this contradicts Lemma 4.1. Thus, for each ν ∈ {+,−},Cν
+ joins

(
λm,+

rf0
, 0

)
to infinity in

Ψv and Cν
+\

{(
λm,+

rf0
, 0

)}
⊂ 	ν.

It is obvious that any solution to (4.5) of the form (1, u) yields a solution u to (1.1)

and (1.2). We will show that Cν
+ crosses the hyperplane {1} × X in ℝ × X. To achieve

this goal, it will be enough to show that

(
λm,+

rf∞
,
λm,+

rf0

)
⊆ ProjRCν

+, (4:7)

or (
λm,+

rf0
,
λm,+

rf∞

)
⊆ ProjRCν

+, (4:8)

where ProjRCν
+ denotes the projection of Cν

+ on ℝ.

Let
(
μn, yn

) ∈ Cν
+ satisfy

μn + ||yn||X → ∞.

We note that μn > 0 for all n Î N since (0,0) is the only solution of (4.5) for l = 0

and Cν
+ ∩ ({0} × X) = ∅.

Case 1.
λm,+

rf∞
< 1 <

λm,+

rf0
.

We divide the proof into two steps.

Step 1. We show that if there exists a constant number M > 0 such that

μn ∈ (0,M] , (4:9)

then (4.7) holds.

In this case it follows that

||yn||X → ∞. (4:10)

We divide the equation

Lyn − μnm(t)rf∞yn − μnm(t)rξ(yn) = 0 (4:11)

by ༎yn༎x and set ȳn = yn
||yn||X. Since ȳn is bounded in X and μn is bounded in ℝ, after

taking the subsequence if necessary, we have that ȳn → ȳ for some ȳ ∈ X with ||ȳ||X = 1

and μn → μ̄ for some μ Î ℝ. Moreover, from (4.4) and the fact that ξ̃ is nondecreas-

ing, we have that

lim
n→∞

|ξ(yn(t))|
‖ yn‖X = 0, (4:12)
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since
|ξ(yn(t))|
‖ yn‖X ≤ ξ̃(|yn(t)|)

‖ yn‖X ≤ ξ(‖ yn‖X)
‖ yn‖X

. Thus,

ȳ(t) =
T∑
s=1

G(t, s)μ̄m(s)rf∞ȳ(s),

which implies that

Lȳ − μ̄m(t)rf∞ȳ = 0. (4:13)

We claim that

(μ̄, ȳ) ∈ Cν
+.

We only prove that if yn ∈ C+
+, then ȳn ∈ C+

+. The other case that if yn ∈ C−
+ , then

ȳn ∈ C−
+ can be treated similarly.

Obviously when yn ∈ C+
+, then ȳ(t) ≥ 0 on T̂. Furthermore, ȳ(t) > 0 on T. In fact, if

there exists a t0 ∈ T such that ȳ(t0) = 0, then, by Lemma 4.1, we obtain

ȳ(t0 − 1)ȳ(t0 + 1) < 0 which contradicts the fact that ȳ(t) ≥ 0 on T̂. Thus, ȳ(t) > 0 on

T. This together with the fact C+ is a closed set in E implies that ȳ ∈ C+
+. Moreover,

μ̄rf∞ = λm,+, so that

μ̄ =
λm,+

rf∞
.

Thus, (4.7) holds.

Step 2. We show that there exists a constant M > 0 such that μn Î (0, M] for all n.

Since {(μn, yn)} are the solutions to (4.5), they follow that

Lyn = μnrm(t)
n(t)yn, (4:14)

where 
n(t) :=
f (yn(t))
yn(t)

. From (H1) and (H2), there exist two positive constants r1 and

r2, such that

ρ1 <
f (yn)
yn

< ρ2. (4:15)

Let h* > 0 be the positive principal eigenvalue of the following linear eigenvalue pro-

blem

Lv = ηχ1(t)m(t)v (4:16)

and h* > 0 the positive principal eigenvalue of the following linear eigenvalue pro-

blem

Lv = ηχ2(t)m(t)v, (4:17)

where

χ1(t) =
{

ρ1 if m(t) > 0, t ∈ T,
ρ2 if m(t) < 0, t ∈ T,

χ2(t) =
{

ρ2 if m(t) > 0, t ∈ T,
ρ1 if m(t) < 0, t ∈ T.
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By Theorem 3.2, (4.14), (4.15), (4.16), and (4.17), we get

η∗

r
< μn <

η∗
r
.

Case 2. λm,+

rf0
< 1 <

λm,+

rf∞ .

From Step 2 of Case 1, there exists M > 0 such that for all n Î N,

μn ∈ (0,M].

Applying a similar argument to that used in Step 1 of Case 1 (after taking a subse-

quence and relabeling, if necessary), we get

μn → λm,+

rf∞
, yn → ∞ as n → ∞,

which implies that (4.8) holds.

At last, we deal with the case r < 0.

Let us consider

Lu − λrm(t)f0u − λrm(t)ζ (u) = 0, (4:18)

as a bifurcation problem from the trivial solution u ≡ 0. Now, applying Theorems 2.1

and 2.2, we get the following results: Σ contains a maximum subcontinuum C− which

is composed of two distinct connected set C+
− and C−

− such that C− = C+
− ∪ C−

− and

C−
+ ∩ C−

− =
{(

λm,−
−rf0

, 0
)}
. Moreover, by Lemma 4.1, for each ν ∈ {+,−},Cν

− joins
(

λm,−
−rf0

, 0
)

to infinity in Ψv and Cν
−\

{(
λm,−
−rf0

, 0
)}

⊂ 	ν, where Σ and Ψv are defined as in the case

r > 0.

It is clear that any solution to (4.18) of the form (-1, u) yields a solutions u of (1.1)

and (1.2). We will show Cν
− crosses the hyperplane {-1} × X in ℝ × X. To achieve this

goal, it will be enough to show that(
λm,−
−rf∞

,
λm,−
−rf0

)
⊆ ProjRCν

−, (4:19)

or (
λm,−
−rf0

,
λm,−
−rf∞

)
⊆ ProjRCv

−. (4:20)

Let (μn, yn) ∈ Cν
− satisfy

|μn|+ ‖ yn‖X → ∞.

We note that μn < 0 for all n Î N since (0, 0) is the only solution to (4.18) for l = 0

and Cν
− ∩ ({0} × X) = ∅.

The rest of the proof is similar to the proof of the case r > 0, so we omit it.

5 Example
Let T = 5, then T = {1, 2, 3, 4, 5}. Consider the following discrete second-order BVPs

�2u(t − 1) + λm(t)f (u(t)) = 0, t ∈ T, (5:1)
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u(0) = u(6) = 0, (5:2)

where m : T → R which is defined by

m(1) = 1, m(2) = 2, m(3) = 1, m(4) = −1, m(5) = −3,

and

f (s) =
s3 + s
s2 + 2

.

By using Matlab 7.0, we get the following eigenvalue problem

�2u(t − 1) + λm(t)u(t) = 0, t ∈ T, (5:3)

u(0) = u(6) = 0 (5:4)

has two principal eigenvalues lm,- = -0.5099 and lm,+ = 0.2867. The corresponding

eigenfunctions

ψm,-(t) and ψm,+ (t) satisfy

ψm,−(0) = 0, ψm,−(1) = 0.0471, ψm,−(2) = 0.1182,

ψm,−(3) = 0.3099, ψm,−(4) = 0.6595, ψm,−(5) = 0.6729, ψm,−(6) = 0,

and

ψm,+(0) = 0, ψm,+(1) = 0.3867, ψm,+(2) = 0.6626,

ψm,+(3) = 0.5584, ψm,+(4) = 0.2942, ψm,+(5) = 0.1143, ψm,+(6) = 0.

Moreover,

sf (s) =
s4 + s2

s2 + 2
> 0, for s �= 0,

f0 = lim
|s|→0

f (s)
s

= lim
s→0

s3 + s
s3 + 2s

=
1
2

∈ (0,∞), f∞ = lim
|s|→∞

f (s)
s

= lim
s→∞

s3 + s
s3 + 2s

= 1 ∈ (0,∞).

Obviously, f(s) satisfies (H1) and (H2). Thus, for

r ∈ (λm,+, 2λm,+)

or

r ∈ (2λm,−,λm,−, ),

(5.1) and (5.2) has a positive solution u+ and a negative solution u-.
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