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Abstract

A perturbation formula for the two-phase membrane problem is considered. We
perturb the data in the right-hand side of the two-phase equation. The stability of
the solution and the free boundary with respect to perturbation in the coefficients
and boundary value is shown. Furthermore, continuity and differentiability of the
solution with respect to the coefficients are proved.
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Introduction
Let l± :Ω ® ℝ be non-negative Lipschitz continuous functions, where Ω is a bounded

open subset of ℝn with smooth boundary. Assume further that g Î W1,2(Ω)∩ L∞(Ω)

and g changes sign on ∂Ω. Let K = {v ∈ W1,2(�) : v − g ∈ W1,2
0 (�)}. Consider the

functional

I(v) =
∫

�

(
1
2

|∇v|2 + λ+ max(v, 0) − λ− min(v, 0)
)
dx, (1:1)

which is convex, weakly lower semi-continuous and hence attains its infimum at

some point u Î K. The Euler-Lagrange equation corresponding to the minimizer u is

given by Weiss [1] and is called the two-phase membrane problem:{
�u = λ+χ{u>0} − λ−χ{u>0} in �,
u = g on ∂�,

(1:2)

where cA denotes the characteristic function of the set A, and

�(u) = ∂{x ∈ � : u(x) > 0} ∪ ∂{x ∈ � : u(x) < 0} ∩ �

is called the free boundary. The free boundary consists of two parts:

�′(u) = �(u) ∩ {x ∈ � : ∇u(x) = 0}

and

�′′(u) = �(u) ∩ {∇u(x) �= 0}.

By Ω+(u) and Ω- (u) we denote the sets {x Î Ω: u(x) >0} and {x Î Ω: u(x) <0},

respectively. Also, Λ(u) denotes the set {x Î Ω: u(x) = 0}.
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The regularity of the solution, the Hausdorff dimension and the regularity of the free

boundary are discussed in [2-5]. In [5], on the basis of the monotonicity formula due

to Alt, Caffarelli, and Friedman, the boundedness of the second-order derivatives D2u

of solutions to the two-phase membrane problem is proved. Moreover, in [3], a com-

plete characterization of the global two-phase solution satisfying a quadratic growth at

a two-phase free boundary point and at infinity is given. In [4] it has been shown that

if l+ and l- are Lipschitz, then, in two dimensions, the free boundary in a neighbor-

hood of each branch point is the union of two C1-graphs. Also, in higher dimensions,

the free boundary has finite (n - 1)-dimensional Hausdorff measure. Numerical approx-

imation for the two-phase problem is discussed in [6].

In this article, by perturbation we mean the perturbation of the coefficients l+ and l-

and the perturbation of the boundary values g. The case of the one phase obstacle pro-

blem has been studied in [7].

For given (l+,l- ) Î C0,1(Ω) × C0,1(Ω), Equation 1.2 has a unique solution

u ∈ W2,p
loc(�) for

1 < p <∞ (see [8]). Define the map

T : (λ+,λ−) �→ u, (1:3)

where u is the solution of (1.2) corresponding to the coefficients l+ and l-. The main

results in this paper are the following:

1. The stability of solution with respect to boundary value and coefficients is

shown.

2. Let λ̄ = (λ+,λ−), h̄ = (h1, h2). By uλ̄+εh̄, we mean the solution of problem (1.2)

with coefficients (l+ + εh1) and (l- + εh2). If we Consider the map T : (l+, l-) ↦ u,

for given parameters l+ and l+ and a fixed Dirichlet condition, then the Gateaux

derivative of this map is characterized in H1
0. More precisely, it is shown in Theo-

rem 3.4 that

uλ̄+εh̄ − uλ̄

ε
⇀ wλ̄,h̄ in H1

0(�) as ε → 0,

where

�wλ̄,h̄ = h1χ{uλ̄>0} − h2χ{uλ̄<0} +
(λ+ + λ−)

|∇uλ̄| wλ̄,h̄Hn−1
�′′(uλ̄).

3. (Theorem 3.5) Assuming that all free boundary points are one-phase points

(points such that ∇u = 0), a stability result for the free boundary in the flavor of [7]

is proved which says that

χ{uλ̄+εh̄>0} − χ{uλ̄>0}
ε

⇀ − 1
λ+

∂δ

∂v1
d�+, in H−1(�) as ε → 0,

χ{uλ̄+εh̄<0} − χ{uλ̄<0}
ε

⇀
1
λ−

∂δ

∂v2
d�−, in H−1(�) as ε → 0.
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Were Γ± = ∂ {±u(x) >0} ∩ Ω. The function δ is constructed as a solution of certain

Dirichlet problem in {uλ̄ > 0}. The vector v1 stands for the exterior unit normal vector

to ∂{uλ̄ > 0}.
The structure of article is organized as follows. In the next section, stability of solu-

tion with respect to boundary value and coefficients is studied. In Section 3, we prove

that the map T is Lipschitz continuous (Theorem 3.1) and differentiable (Theorem

3.4).

Preliminary analysis and stability results
In this section, we state some lemmas which have been proved in the case of one-

phase obstacle problem (see [9]). The following proposition shows the stability in L∞-

norm. In what follows, we will denote by Br(x0) the ball of radius r centered at x0 and,

for simplicity, we use the notation Br = Br(0).

Proposition 2.1. Let ui for i = 1, 2 be the solution of the following problem{
�ui = λ+χ{ui<0} − λ−χ{ui<0} in �,
ui = gi on ∂ �.

(1:4)

If g1 ≤ g2 ≤ g1 + ε, then u1 ≤ u2 ≤ u1 + ε. In particular,

||u2 − u1||L∞ ≤ ||g1 − g2||L∞ .

Proof. First, we show that u1 ≤ u2. Denote �̃ = {x ∈ �|u1(x) > u2(x)}; then, for all

x ∈ �̃ the following inequalities hold.

χ{u1>0} ≥ χ{u2>0},

and

χ{u1<0} ≤ χ{u2<0}.

These inequalities imply that

�u1 = λ+χ{u1>0} − λ−χ{u1<0} ≥ λ+χ{u2>0} − λ−χ{u2<0} = �u2, in �̃,

which shows that

�(u1 − u2) ≥ 0, ∀x ∈ �̃.

One can see that on the boundary of �̃, the following holds:

(u1 − u2)|∂�̃ =
{
0 x ∈ ∂�̃\∂�,
g1 − g2 x ∈ ∂�\∂�̃.

Note that by assumptions on g1 and g2, the inequality u1 - u2 ≤ 0 will hold on the

∂�̃. Thus, we have,{
�(u1 − u2) ≥ 0 in �̃,
(u1 − u2) ≤ 0 on ∂�̃.

(1:5)

By maximum principle, we obtain that

u1 − u2 ≤ 0 ∀x ∈ �̃,

which is impossible. Therefore, �̃ = ∅.
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Let u3 be the solution to the following problem:{
�u3 = λ+χ{u3>0} − λ−χ{u3<0} in �,
u3 = g1 + ε on ∂�.

(1:6)

An analysis similar to the one above shows that if v = u1 + ε - u3, then v ≥ 0, which

implies

u1 ≤ u2 ≤ u3 ≤ u1 + ε.

□

Lemma 2.2. Assume that inf
B1(0)

λ− > ε > 0. Let u be a solution to

�u = λ+χ{u>0} − λ−χ{u<0} in B1,

and let uε solve

�uε = (λ+ + ε)χ{uε>0} − (λ− − ε)χ{uε<0} in B1,

with u = uε = g on ∂ B1. Then

|uε − u| ≤ Cε.

Proof. Let ε >0,; we will show that uε ≤ u. Set D = {x Î B1 : uε (x) > u(x)}. If uε ≤ 0,

on D, then u <0 on D and Δu = - l- ≤ - (l- - ε) ≤ Δuε: On the other hand, if uε >0;

then Δuε = l+ + ε ≥ Δu. Therefore, Δuε ≥ Δu and, by maximum principle, D = ∅.

Now we claim that also u + εv ≤ uε in B1, where v is the solution to Δv = 1 with zero

Dirichlet boundary data in B1. Assume that

�̃ = {x ∈ B1 : u + εv > uε(x)}.

Note that v(x) ≤ 0 in B1, and so we have

uε < u + εv ≤ u in �̃.

Then, for all x ∈ �̃, the following inequalities hold:

χ{u>0} ≥ χ{uε>0},

and

χ{u<0} ≤ χ{uε<0}.

In �̃, we have

�(u + εv) = �u + ε = λ+χ{u>0} − λ−χ{u<0} + ε ≥ λ+χ{uε>0} − λ−χ{uε<0} + ε

≥ (λ+ + ε)χ{uε>0} − (λ− − ε)χ{uε<0} = �uε.

Therefore, we have{
�(u + εv − uε) ≥ 0 in �̃,
u + εv − uε = 0 on ∂�̃.

This shows that u + εv ≤ uε in �̃, which is impossible. Since

v(x) =
|x|2 − 1

2n
,
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this implies that uε ≥ -Cε + u. Note that in the case when ε <0, with the assumption

inf
B1(0)

λ+ > −ε > 0 one can prove that

u ≤ uε ≤ u + εv.

□
Remark 1. An analysis similar to Lemma 2.2 shows that if the coefficients l± be per-

turbed by ±ε, then |uε - u| ≤ Cε.

Remark 2. The proofs of Proposition 2.1 and Lemma 2.2 show that if u and v solve

the following problems, respectively:{
�u = λ+

1χ{u>0} − λ−
1 χ{u<0} in B1,

u = g1 on ∂B1,

and {
�v = λ+

2χ{v>0} − λ−
2 χ{v<0} in B1,

v = g2 on ∂B1,

with λ+
2 ≥ λ+

1, λ−
2 ≤ λ−

1 , g2 ≤ g1, then u ≥ v. In particular,

�(u) ⊆ �(v), �+(v) ⊆ �+(u) and �−(v) ⊆ �−(u).

Theorem 2.3. Let uk be a sequence of minimizer to (1.1), respectively with data gk

and λ±
k , such that

gk → g in H
1
2 (∂�),

and

λ±
k → λ± in C0(�).

Then,

uk → u in H1(�),

where u is the minimizer of (1.1) with data g and potential l±.
Proof. First, one can see that g is an admissible boundary data, i.e., g changes sign on

the boundary by the strong convergence of gk in H
1
2 (∂�). We denote by u* the solu-

tion to minimization problem (1.1) with data g and l±. Consider the minimum levels

ck = Ik(uk) and c* = I(u*). Also the convergence of the boundary traces gk and of the

λ±
k , ensures a bound on the sequence ck. Since the sequence of functionals {Ik} is uni-

formly coercive, from the fact that Ik(uk) ≤ C, we infer a bound on the sequence
||uk||H1(�); therefore, we can assume, up to a subsequence, that

ck → c0 and uk ⇀ u weakly in H1(�).

Furthermore, by the weak continuity of the trace operator, we obtain

u|∂� = g.
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The weak lower semi-continuity of the norm implies∫
�

1
2

|∇u|2dx ≤ Lim inf
∫

�

1
2

|∇uk|2dx,

and we also have∫
�

(λ+ max(u, 0)−λ− min(u, 0))dx ≤ Lim inf
∫

�

(λ+
k max(uk, 0)−λ−

k min(uk, 0)) dx.

Note that the level

c =
∫

�

(
1
2

|∇u|2 + λ+ max(u, 0) − λ− min(u, 0)
)
dx,

is not necessarily a minimum, but, by the previous discussion it satisfies the inequal-

ities

c0 ≥ c ≥ c∗.

We shall prove that c0 = c*. Suppose, by contradiction, that c* < c0. Consider the

harmonic extensions (denoted with the same notations) on Ω of gi’s and of g and

introduce

hk = gk − g.

Then, by construction{
hk → 0 in H1(�),

hk |∂� → 0 in H
1
2 (∂�).

(1:7)

We define wk = u* + hk, and observe that wk|∂Ω = gk. Moreover, by (1.7),

wk → u∗ inH1(�). (1:8)

Hence, it follows from the definition of ck that∫
�

(
1
2

|∇wk|2 + λ+
k max(wk, 0) − λ−

k min(wk, 0)
)
dx ≥ ck.

On the other hand, (1.8) gives∫
�

(
1
2

|∇wk|2 + λ+
k max(wk, 0) − λ−

k min(wk, 0)
)
dx → c∗,

which implies that c* ≥ c0. Finally, from the equality of the minima c0 = c = c*, we

also deduce the strong convergence of uk in H1(Ω). □

Perturbation formula for the free boundary
In this section, we prove the continuity and differentiability of the map T. The case of

one-phase obstacle problem was studied by Stojanovic [7].

Theorem 3.1. Assume l+, l- Î Lp(Ω) for p > n
2. The map (l+, l-) ↦ u is Lipschitz

continuous in the following sense. If ui for i = 1, 2 solves{
�ui = λ+

i χ{ui>0} − λ−
i χ{ui<0} in �,

ui = g on ∂�,
(1:9)
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then

||u2 − u1||H1(�) ≤ C(||λ+
1 − λ+

2||H−1(�) + ||λ−
1 − λ−

2 ||H−1(�)),

and for p > n
2

||u2 − u1||L∞(�) ≤ C(||λ+
1 − λ+

2||Lp(�) + ||λ−
1 − λ−

2 ||Lp(�)).

We first prove the following lemma:

Lemma 3.2. If

(λ+
1 − λ+

2) ≤ ε ∈ Lp, p > n
/
2, ε ≥ 0, and λ−

1 = λ−
2 , (1:10)

then

u2 − u1 ≤ δ ∈ L∞(�),

where δ >0, δ ∈ W2,p ∩ H1
0solves

�δ = −ε. (1:11)

Moreover, the same argument can be applied with

(λ−
2 − λ−

1 ) ≤ ε and λ+
2 = λ+

1. (1:12)

Proof. Let

λ+
3 = λ+

1χ{u1>0}, λ−
3 = λ−

1 χ{u1<0}, (1:13)

λ+
4 = min {λ+

2,λ
+
3}, λ−

4 = λ−
3 . (1:14)

Then, by the same proof as in the first part of Lemma 2.2, one gets

u3 = u1, u4 ≥ u2,

where u3 and u4 solve Equation 1.2 with coefficients λ±
3 , λ±

4 , respectively. Relation

(1.10) gives

(λ+
3 − λ+

4)χ{u1>0} ≤ ε. (1:15)

Also, by the choice of λ+
4, we have

λ+
4χ{u1≤0} = 0, λ−

4 χ{u1≥0} = 0. (1:16)

We will show that

(u4 − (u3 + δ))+ = 0.

First, note that

�u4 = λ+
4χ{u4>0} − λ−

4 χ{u4<0},
�(u3 + δ) = λ+

3χ{u3>0} − λ−
3 χ{u3<0} − ε.

Therefore,

�(u4 − (u3 + δ)) = λ+
4χ{u4>0} − λ−

4 χ{u4<0} − λ+
3χ{u3>0} + λ−

3 χ{u3<0} + ε.
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Rearranging the above terms gives

�(u4 − (u3 + δ)) − λ+
4χ{u4>0} + λ+

4χ{u3>0} + λ−
4 χ{u4<0} − λ−

3 χ{u3<0}
= (λ+

4 − λ+
3)χ{u3>0} + ε ≥ 0.

Multiplying by (u4 -(u3 + δ))+ and integrating by parts gives

0 ≤
∫

�

[(u4 − (u3 + δ))+�(u4 − (u3 + δ))] dx

−
∫

�

[λ+
4(χ{u4>0} − χ{u3>0}) − λ−

4 χ{u4<0} + λ−
3 χ{u3<0}] (u4 − (u3 + δ))+dx.

(1:17)

Then,

−
∫

�

|∇((u4 − (u3 + δ))+|2dx

−
∫

�

[λ+
4(χ{u4>0} − χ{u3>0}) − λ−

4 χ{u4<0} + λ−
3 χ{u3<0}] (u4 − (u3 + δ))+dx ≥ 0.

It follows that∫
�

|∇((u4 − (u3 + δ))+|2dx

+
∫

{u4−(u3+δ)>0}
[λ+

4χ{u4>0} − χ{u3>0} − λ−
4 χ{u4<0} + λ−

3 χ{u3<0}] (u4 − (u3 + δ)) dx ≤ 0.

Note that

[λ+
4(χ{u4>0} − χ{u3>0}) − λ−

4 χ{u4<0} + λ−
3 χ{u3<0}](u4 − u3) ≥ 0.

Then, we have∫
�

|∇((u4 − (u3 + δ))+|2dx

−
∫

{u4−(u3+δ)>0}
[λ+

4χ{u4>0} − χ{u3>0} − λ−
3 (χ{u4<0} − χ{u3<0}] δ dx ≤ 0.

However,∫
{u4−(u3+δ)>0}

[λ+
4(χ{u4>0} − χ{u3>0}) − λ−

4 (χ{u4<0} − χ{u3<0})]δ dx

=
∫

{u4−(u3+δ)>0}
λ+
4(χu4>0χu3≤0)δ dx−

∫
{u4−(u3+δ)>0}

λ−
4 (χ{u4<0}χ{u3≥0})δ dx = 0.

In the last equation, we have used (1.16).

□
Thus we completed the proof of Theorem 3.1.

Proof of Theorem 3.1. By elliptic regularity and Lemma 3.2, we have

δ ∈ W2,p
1oc(�) ∩ H1

0(�),

and, consequently, the Sobolev embedding W2,p
loc ↪→ C

0, n2p
loc

for p > n
2, implies

δ ∈ C0,α(�), with 0 < α < 1.
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Therefore,

||δ||L∞ ≤ C||ε||Lp .

Now if we assume |λ+
1 − λ+

2| ≤ ε, then it will follows that |u2 - u1| <δ. To complete

the proof, assume that

(λ+
1 − λ+

2) ≤ ε and (λ−
2 − λ−

1 ) ≤ ε.

Set �u′ = λ+
2χ{u′>0} − λ−

1 χ{u′<0}. Then, we have

u2 − u1 = u2 − u′ + u′ − u1 ≤ 2δ,

and

||u2 − u1||L∞ ≤ ||u2 − u′||L∞ + ||u′ − u1||L∞ .

By Equation 1.11, we obtain

||u2 − u1||L∞ ≤ C(||λ+
1 − λ+

2||Lp + ||λ−
1 − λ−

2 ||Lp).

□
The proof of Theorem 3.4 uses the following theorem, proved by I. Blank in [9].

Theorem 3.3. (Linear Stability of the Free Boundary in the one phase case). Suppose

that the free boundary is locally uniformly C1, a regular in B1. Let w, w
ε be the solutions

of the following one-phase problems, respectively,{
�w = λ+χ{w>0} in B1,
w = g on ∂B1,

and {
�wε = (λ+ + ε)χ{wε>0} in B1,
wε = g on ∂B1.

Then, for ε small enough, we have

dist(�(w),�(wε)) ≤ Cε, on B 1
2
. (1:18)

Remark 3. The analogue of Theorem 3.3 can be proved for the two-phase membrane

problem in the following cases:

(1) When all the points are regular one-phase points (cf. Theorem 3.3).

(2) When all the points are two-phase points with |∇u| = 0 (branching points).

(3) When |∇u| is uniformly bounded from below (cf. Estimate 1.19).

Although we could not prove this theorem for the two-phase case in general, there

are grounds, however, to suggest that it holds true in this case as well.

The proof of part (3) is as follows. Suppose ε > 0, h1 >0, h2 <0 and inf
�

λ− > −εh2.

Then Lemma 2.2 implies that

−Cε + uλ̄ ≤ uλ̄+εh̄ ≤ uλ̄.
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Also, uλ̄ ≥ C′ dist(x, �′′(uλ̄)) for x Î Ω+ ∩ Br where r is small enough, which gives

uλ̄+εh̄ ≥ −Cε + C′ dist (x,�′′(uλ̄)).

Thus, uλ̄+εh̄ is positive provided that dist(x,�′′(uλ̄)) ≥ C′′ε, which shows

dist(�′′(uλ̄),�′′(uλ̄+εh̄)) ≤ C1ε. (1:19)

Now we shall prove that the map (λ+,λ−) �→ uλ̄ is differentiable in the following

sense:

Theorem 3.4. The mapping

T : C0,1(�) × C0,1(�) → W2,p(�),

defined by u = T(l+, l-) is differentiable. Furthermore, if λ̄, h̄ ∈ C0,1(�) × C0,1(�).

Then, there exists wλ̄,h̄ ∈ H1
0, such that

uλ̄+εh̄ − uλ̄

ε
⇀ wλ̄,h̄ in H1

0(�) as ε → 0,

where

�wλ,h = h1χ{uλ>0} − h2χ{uλ<0} +
(λ+ + λ−)

|∇uλ| wλ,hHn−1
�′′(uλ). (1:20)

In Equation 1.20, Hn−1denotes the (n - 1)-dimensional Hausdorff measure.

Proof. We have

�uλ̄ = λ+χ{uλ̄>0} − λ−χ{uλ̄<0},

and

�uλ̄+εh̄ = (λ+ + εh1)χ{uλ̄+εh̄>0} − (λ− + εh2)χ{uλ̄+εh̄<0}.

Therefor,

�(uλ̄+εh̄ − uλ̄) = λ+(χ{uλ̄+εh̄>0} − χ{uλ̄>0}) + λ−(χ{uλ̄<0}
−χ{uλ̄+εh̄<0}) + εh1χ{uλ̄+εh̄>0} − εh2χ{uλ̄+εh̄<0}.

(1:21)

We multiply both sides of (1.21) by (uλ̄+εh̄ − uλ̄) and integrate by parts and we obtain∫
�

|∇(uλ̄+εh̄ − uλ̄)|2dx = −
∫

�

λ+(χ{uλ̄+εh̄>0} − χ{uλ̄>0})(u
λ̄+εh̄ − uλ̄) dx

+
∫

�

λ−(χ{uλ̄+εh̄<0} − χ{uλ̄<0})(u
λ̄+εh̄ − uλ̄) dx

−
∫

�

ε(h1χ{uλ̄+εh̄>0} − h2χ{uλ̄+εh̄<0})(u
λ̄+εh̄ − uλ̄) dx.

Note that

(χ{uλ̄+εh̄>0} − χ{uλ̄>0})(u
λ̄+εh̄ − uλ̄) ≥ 0,
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and

(χ{uλ̄+εh̄<0} − χ{uλ̄<0})(u
λ̄+εh̄ − uλ̄) ≤ 0.

Therefore,∫
�

|∇(uλ̄+εh̄ − uλ̄)|2dx ≤
∫

�

ε(h1χ{uλ̄+εh̄>0} − h2χ{uλ̄+εh̄<0})(u
λ̄+εh̄ − uλ̄) dx.

The Hölder inequality implies

||∇(uλ̄+εh̄ − uλ̄)||2L2(�) ≤ ε||h1χ{uλ̄+εh̄>0} − h2χ{uλ̄+εh̄<0}||L2(�)||uλ̄+εh̄ − uλ̄||L2(�)

≤ ε(||h1||L2(�) + ||h2||L2(�))||uλ̄+εh̄ − uλ̄||L2(�).

Moreover, by the Poincaré inequality, we have

||∇(
uλ̄+εh̄ − uλ̄

ε
)||L2(�) ≤ C(||h1||L2(�) + ||h2||L2(�)). (1:22)

From (1.22), the weak convergence to a limit, denoted by wλ̄,h̄, follows (for a subse-

quence). Here, we show that wλ̄,h̄ satisfies (1.20). Multiply (1.21) by a test function j,
where j has compact support in {uλ̄ > 0}, and then divide by ε,

−
∫

�

∇(
uλ̄+εh̄ − uλ̄

ε
) · ∇φdx =

∫
�

λ+

ε
(χ{uλ̄+εh̄>0} − χ{uλ̄>0})φdx +

∫
�

h1χ{uλ̄>0}φ dx.(1:23)

Assume that d is the distance between supp(j) and �+(uλ̄). If uλ̄(x) ≥ cd2, then,

(since uλ̄+εh̄ → uλ̄) for ε small enough, we have

|uλ̄+εh̄(x) − uλ̄(x)| ≤ cd2

2
,

and so uλ̄+εh̄(x) ≥ cd2
2 > 0. This means that, for each j, one can chose ε small

enough such that

(χ{uλ̄+εh̄>0} − χ{uλ̄>0}) = 0 in supp φ.

In particular, passing to the limit in (1.23), we obtain that in the set {uλ̄ > 0}, equa-
tion

�wλ̄,h̄ = h1,

holds. Similarly, in the set {uλ̄ > 0}, one has

�wλ̄,h̄ = −h2.

Now let x0 be a one-phase regular point for uλ̄ and xε ∈ �(uλ̄+εh̄) where xε has mini-

mal distance to x0.

Assumption In what follows, we assume that the estimate (1.18) in Theorem 3.3 also

holds for one-phase points in our case. A straightforward calculation gives
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lim
ε→0

uλ̄+εh̄(x0) − uλ̄(x0)
ε

= lim
ε→0

uλ̄+εh̄(xε) + (xε − x0)
T · ∇uλ̄+εh̄(xε) +O((xε − x0)

2) − uλ̄(x0)
ε

= lim
ε→0

(xε − x0)
T · ∇uλ̄+εh̄(xε)

ε
= 0,

which shows that wλ̄,h̄ = 0 at one-phase regular points.

To complete the proof, let us assume that x0 ∈ �′′(uλ̄). Let ν denote the normal to

the free boundary �′′(uλ̄) at x0, that is ν = ∇u(x0)
|∇u(x0)|. Assume that Br(x0) is a ball centered

at x0 where r is small enough. Since ∇u(x0) ≠ 0, then �′′(uλ̄) can be represented as (x’,

f(x’)) where f is a C1, a graph. We have

ν = en +O(rα). (1:24)

Let Ωε be the region between �′′(uλ̄) and �′′(uλ̄+εh̄). From (1.21) we obtain

�(
uλ̄+εh̄ − uλ̄

ε
) =

λ+ + λ−

ε
χ�ε + h1χ{uλ̄+εh̄>0} − h2χ{uλ̄+εh̄<0}.

The term
1
ε
χ�ε

converges weakly as ε ® 0, to a measure μ with support on Γ"(u).

For any ball Br(x0) with x0 Î Γ"(u), set

μ(Br) = lim
ε→0

∫
Br

1
ε
χ�ε

dx.

Estimate (1.19) shows that μ is a finite measure, since

μ(Br) = lim
ε→0

∫
Br∩�ε

1
ε
dx = lim

ε→0

|Br ∩ �ε|
ε

≤ C.

We want to prove that

lim
r→0

μ(Br(x0))
Hn−1
�′′(u)(Br(x0))

=
wλ,h(x0)

|∇uλ(x0)|
. (1:25)

Then, μ can be written as (see [10], Chapter I)

μ = lim
r→0

μ(Br)
Hn−1
�′′(uλ)(Br)

· Hn−1.

Let d be the distance of x0 to �′′(uλ̄+εh̄) in direction of v, using Taylor expansion, we

get

d =
uλ̄+εh̄(x0)

|∇uλ̄+εh̄(xε)|
+O(ε). (1:26)
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In order to show (1.25), we have

μ(Br) = lim
ε→0

∫
Br

1
ε
χ�ε

dx = lim
ε→0

1
ε
d |B′

r | +O(rn−1) = by (1.26)

= lim
ε→0

uλ+εh(x0) − uλ(x0)
ε

1

|∇uλ+εh(xε)|
|B′

r| +O(rn−1)

=
wλ,h(x0)

|∇uλ(x0)|
|B′

r| +O(rn−1),

where |B′
r| is the measure of B′

r = Br ∩ {xn = 0}. In addition, we have∫
Br

dHn−1
�′′(uλ)=
∫
B′
r

√
1 + |∇f |2 = |B′

r| + rn−1O(r2α).

Therefore,

lim
r→0

μ(Br)∫
Br
dHn−1
�′′(uλ)

= lim
r→0

wλ,h(x0)

|∇uλ(x0)|
|B′

r|

|B′
r|

=
wλ,h(x0)

|∇uλ(x0)|
.

We deduce that, wλ̄,h̄ ∈ H1
0(�) satisfies (1.20).

□
Remark 4. If for all free boundary points ∇u = 0, which means that Γ(u) = Γ’(u), then

wλ̄,h̄ =

⎧⎪⎨⎪⎩
δλ̄,h̄ in {uλ̄ > 0},
0 in {uλ̄ = 0},
δλ̄,h̄ in {uλ̄ < 0},

where δλ̄,h̄ is the unique solution of the elliptic equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
�δ = h1 in {uλ̄ > 0},
δ = 0 on ∂{uλ̄ > 0},
�δ = −h2 in {uλ̄ < 0},
δ = 0 on ∂{uλ̄ < 0}.

Remark 5. Consider the following two-phase problem in dimension one (n = 1),

where l1, l2 are constants.{
u′′ = λ1χ{u>0} − λ2χ{u<0} in(−1, +1),
u(−1) = a < 0, u(+1) = b > 0.

Straightforward calculations show that if
√

b−a
λ1

+
√

b−a
λ2

≤ 2, then the set {x Î Ω: u(x)

= 0} has a positive measure. In this setting, an interesting question is which conditions

in higher dimensions will imply that the zero set has positive measure in B1.

Example 1 Let λ̄ = (4, 2), h̄ = (1, 1). Consider the equation{
u′′ = 4χ{u>0} − 2χ{u<0},
u(+1) = +1, u(−1) = −1.
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One can obtain

uλ+εh =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 + ε
2)x

2 − (4 + ε)(1 −
√

2
4+ε

)x 1 −
√

2
4+ε

≤ x ≤ 1,

−(1 + ε
2 ) + (4 + ε)(1 −

√
2

4+ε
)

0 −1 +
√

2
2+ε

≤ x ≤ 1 −
√

2
4+ε

,

(−1 − ε
2 )x

2 − (2 + ε)(−1 +
√

2
2+ε

)x −1 ≤ x ≤ −1 +
√

2
2+ε

.

+( ε
2) +

√
2

2+ε
+ (2 + ε)(−1 +

√
2

2+ε
)

Consequently, one computes

lim
ε→0

uλ+εh − uλ

ε
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x2

2
− 1

2
1 −

√
2
2

≤ x ≤ 1,

0 0 ≤ x ≤ 1 −
√
2
2

,

−(
x2

2
+
x
2
) −1 ≤ x ≤ 0.

By Weiss [1], we know that the Hausdorff dimension of Γ = ∂{u >0} ∪ ∂{u <0} is less

than or equal to n - 1 and by Edquist et al. [2] the regularity of the free boundary is

C1. Let dΓ denote the measure d� = Hn−1��; the restriction of the (n - 1)-dimensional

Hausdorff measure Hn−1 on the set Γ. Moreover, let v1 be the unit normal exterior to

∂{u >0} and v2 be the unit normal to ∂{u <0} exterior to {u <0}.

Theorem 3.5. Assume that the free boundary points are one-phase points, and let δ

be the same as defined in Remark 4. Then, we have

χ{uλ̄+εh̄>0} − χ{uλ̄>0}
ε

⇀ − 1
λ+

∂δ

∂v1
d�+,

weakly in H-1(Ω) as ε ® 0. In addition

χ{uλ̄+εh̄<0} − χ{uλ̄<0}
ε

⇀
1
λ−

∂δ

∂v2
d�−.

Proof. To begin with, observe that

�uλ̄ = λ+χ{uλ̄>0} − λ−χ{uλ̄<0},

�uλ̄+εh̄ = (λ+ + εh1)χ{uλ̄+εh̄>0} − (λ− + εh2)χ{uλ̄+εh̄<0}.

Then, for a test function φ ∈ H1
0(�) one obtains∫

�

�(
uλ̄+εh̄ − uλ̄

ε
)φ dx =

∫
�

h1χ{uλ̄+εh̄>0}φ dx −
∫

�

h2χ{uλ̄+εh̄<0}φ dx

+
∫

�

λ+

ε
(χ{uλ̄+εh̄>0} − χ{uλ̄>0})φ dx −

∫
�

λ−

ε
(χ{uλ̄+εh̄<0} − χ{uλ̄<0})φ dx.

(1:27)

The left-hand side of Equation 1.27 is∫
�

�(
uλ̄+εh̄ − uλ̄

ε
)φ dx = −

∫
�

∇(
uλ̄+εh̄ − uλ̄

ε
)∇φ dx.
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Let ε ® 0, in (1.27); then, by the notations introduced in Remark 4, one has

−
∫

�

∇δ∇φ dx =
∫

�

h1χ{uλ̄>0}φ dx −
∫

�

h2χ{uλ̄<0}φ dx

+ lim
ε→0

∫
�

λ+

ε
(χ{uλ̄+εh̄>0} − χ{uλ̄>0})φ dx − lim

ε→0

∫
�

λ−

ε
(χ{uλ̄+εh̄<0} − χ{uλ̄<0})φ dx.

Integrating by parts gives

−
∫

�

∇δ∇φ dx =
∫

{uλ̄>0}
�δ φ dx −

∫
∂{uλ̄>0}

∂δ

∂v1
φ dσ

+
∫

{uλ̄<0}
�δ φ dx −

∫
∂{uλ̄<0}

∂δ

∂v2
φ dσ

=
∫

�

h1χ{uλ̄>0}φ dx −
∫

�

h2χ{uλ̄<0}ϕ dx

+ lim
ε→0

∫
�

λ+

ε
(χ{uλ̄+εh̄>0} − χ{uλ̄>0})φ dx

− lim
ε→0

∫
�

λ−

ε
(χ{uλ̄+εh̄<0} − χ{uλ̄<0})φ dx.

In the view of Remark 4, we have

lim
ε→0

[
∫
�

λ+

ε
(χ{uλ̄+εh̄>0} − χ{uλ̄>0})φ dx −

∫
�

λ−

ε
(χ{uλ̄+εh̄<0} − χ{uλ̄<0})φ dx]

= −
∫

∂{u>0}
φ

∂δ

∂v1
dσ +

∫
∂{u>0}

φ
∂δ

∂v2
dσ .

Finally, we conclude that

lim
ε→0

∫
�

λ+

ε
(χ{uλ̄+εh̄>0} − χ{uλ̄>0})φ dx = −

∫
∂{u>0}

φ
∂δ

∂v1
dσ ,

and

lim
ε→0

∫
�

λ−

ε
(χ{uλ̄+εh̄<0} − χ{uλ̄<0})φ dx =

∫
∂{u<0}

φ
∂δ

∂v2
dσ .
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