RESEARCH

Open Access

On the property of T-distributivity

Mücahide Nesibe Kesicioğlu*

*Correspondence: m.nesibe@gmail.com Department of Mathematics, Recep Tayyip Erdoğan University, Rize, 53100, Turkey

Abstract

In this paper, we introduce the notion of *T*-distributivity for any *t*-norm on a bounded lattice. We determine a relation between the *t*-norms *T* and *T'*, where *T'* is a *T*-distributive *t*-norm. Also, for an arbitrary *t*-norm *T*, we give a necessary and sufficient condition for T_D to be *T*-distributive and for *T* to be T_A -distributive. Moreover, we investigate the relation between the *T*-distributivity and the concepts of the *T*-partial order, the divisibility of *t*-norms. We also determine that the *T*-distributivity is preserved under the isomorphism. Finally, we construct a family of *t*-norms which are not distributive over each other with the help of incomparable elements in a bounded lattice.

Keywords: triangular norm; bounded lattice; T-partial order; divisibility; distributivity

1 Introduction

Triangular norms based on a notion used by Menger [1] were introduced by Schweizer and Sklar [2] in the framework of probabilistic metric spaces, and they play a fundamental role in several branches of mathematics like in fuzzy logics and their applications [3, 4], the games theory [5], the non-additive measures and integral theory [6–8].

A triangular norm (*t*-norm for short) $T : [0,1]^2 \rightarrow [0,1]$ is a commutative, associative, non-decreasing operation on [0,1] with a neutral element 1. The four basic *t*-norms on [0,1] are the minimum T_M , the product T_P , the Łukasiewicz *t*-norm T_L and the drastic product T_D given by, respectively, $T_M(x,y) = \min(x,y)$, $T_P(x,y) = xy$, $T_L(x,y) = \max(0, x + y - 1)$ and

$$T_D(x, y) = \begin{cases} x, & \text{if } y = 1, \\ y, & \text{if } x = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Recall that for any *t*-norms T_1 and T_2 , T_1 is called weaker than T_2 if for every $(x, y) \in [0, 1]^2$, $T_1(x, y) \le T_2(x, y)$.

T-norms are defined on a bounded lattice $(L, \leq, 0, 1)$ in a similar way, and then extremal *t*-norms T_D as well as T_{\wedge} on *L* are defined similarly T_D and T_M on [0,1]. For more details on *t*-norms on bounded lattices, we refer to [9–17]. Also, the order between *t*-norms on a bounded lattice is defined similarly.

In the present paper, we introduce the notion of *T*-distributivity for any *t*-norms on a bounded lattice $(L, \leq, 0, 1)$. The aim of this study is to discuss the properties of

© 2013 Kesicioğlu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

T-distributivity. The paper is organized as follows. Firstly, we recall some basic notions in Section 2. In Section 3, we define the *T*-distributivity for any *t*-norm on a bounded lattice. For any two *t*-norms T_1 and T_2 , where T_1 is T_2 -distributive, we show that T_1 is weaker than T_2 and give an example illustrating the converse of this need not be true. Also, we prove that the only *t*-norm *T*, where every *t*-norm is *T*-distributive, is the infimum *t*-norm T_{\wedge} when the lattice *L* is especially a chain. If *L* is not a chain, we give an example illustrating any *t*-norm need not be T_{\wedge} . Also, we show that for any *t*-norm *T* on a bounded lattice, T_D is *T*-distributive. Moreover, we show that the *T*-distributivity is preserved under the isomorphism. For any two *t*-norms T_1 and T_2 such that T_1 is T_2 -distributive, we prove that the divisibility of *t*-norm T_1 requires the divisibility of *t*-norm T_2 . Also, we obtain that for any two *t*-norms T_1 and T_2 , where T_1 is T_2 -distributive, the T_1 -partial order implies T_2 -partial order. Finally, we construct a family of *t*-norms which are not distributive over each other with the help of incomparable elements in a bounded lattice.

2 Notations, definitions and a review of previous results

Definition 1 [14] Let $(L, \leq, 0, 1)$ be a bounded lattice. A triangular norm *T* (*t*-norm for short) is a binary operation on *L* which is commutative, associative, monotone and has a neutral element 1.

Let

$$T_D(x, y) = \begin{cases} x, & \text{if } y = 1, \\ y, & \text{if } x = 1, \\ 0, & \text{otherwise} \end{cases}$$

Then T_D is a *t*-norm on *L*. Since it holds that $T_D \leq T$ for any *t*-norm *T* on *L*, T_D is the smallest *t*-norm on *L*.

The largest *t*-norm on a bounded lattice (L, \leq , 0, 1) is given by $T_{\wedge}(x, y) = x \wedge y$.

Definition 2 [18] A *t*-norm *T* on *L* is divisible if the following condition holds:

 $\forall x, y \in L \text{ with } x \leq y, \text{ there is a } z \in L \text{ such that } x = T(y, z).$

A basic example of a non-divisible *t*-norm on any bounded lattice (*i.e.*, card L > 2) is the weakest *t*-norm T_D . Trivially, the infimum T_{\wedge} is divisible: $x \le y$ is equivalent to $x \land y = x$.

Definition 3 [12] Let L be a bounded lattice, T be a t-norm on L. The order defined as follows is called a T-partial order (triangular order) for a t-norm T.

 $x \leq_T y$: \Leftrightarrow $T(\ell, y) = x$ for some $\ell \in L$.

Definition 4 [19]

(i) A *t*-norm *T* on a lattice *L* is called \land -distributive if

$$T(a, b_1 \wedge b_2) = T(a, b_1) \wedge T(a, b_2)$$

for every $a, b_1, b_2 \in L$.

(ii) A *t*-norm *T* on a complete lattice $(L, \leq, 0, 1)$ is called *infinitely* \land -*distributive* if

$$T(a, \wedge_I b_{\tau}) = \wedge_I T(a, b_{\tau})$$

for every subset $\{a, b_{\tau} \in L, \tau \in I\}$ of *L*.

3 T-distributivity

Definition 5 Let $(L, \leq, 0, 1)$ be a bounded lattice and T_1 and T_2 be two *t*-norms on *L*. For every $x, y, z \in L$ such that at least one of the elements y, z is not 1, if the condition

$$T_1(x, T_2(y, z)) = T_2(T_1(x, y), T_1(x, z))$$

is satisfied, then T_1 is called T_2 -distributive or we say that T_1 is distributive over T_2 .

Example 1 Let $(L = \{0, a, b, c, 1\}, \le, 0, 1)$ be a bounded lattice whose lattice diagram is displayed in Figure 1.

The functions T_1 and T_2 on the lattice *L* defined by

$$T_1(x,y) = \begin{cases} 0, & \text{if } x = a, y = a, \\ b, & \text{if } x = c, y = c, \\ x \land y, & \text{otherwise} \end{cases}$$

and

$$T_2(x, y) = \begin{cases} b, & \text{if } x = c, y = c, \\ x \land y, & \text{otherwise} \end{cases}$$

are obviously *t*-norms on *L* such that T_1 is T_2 -distributive.

Proposition 1 Let $(L, \leq, 0, 1)$ be a bounded lattice and T_1 and T_2 be two t-norms on L. If T_1 is T_2 -distributive, then T_1 is weaker than T_2 .

Proof Since all *t*-norms coincide on the boundary of L^2 , it is sufficient to show that $T_1 \le T_2$ for all $x, y, z \in L \setminus \{0, 1\}$. By the T_2 -distributivity of T_1 , it is obtained that

$$T_1(x,y) = T_1(T_2(x,1),y) = T_2(T_1(x,y),T_1(1,y)) = T_2(T_1(x,y),y) \le T_2(x,y).$$

Thus, $T_1 \leq T_2$, *i.e.*, T_1 is weaker than T_2 .

Remark 1 The converse of Proposition 1 need not be true. Namely, for any two *t*-norms T_1 and T_2 , even if T_1 is weaker than T_2 , T_1 may not be T_2 -distributive. Now, let us investigate the following example.

Example 2 Consider the product T_P and the Łukasiewicz *t*-norm T_L . It is clear that $T_L < T_P$. Since

$$T_L\left(\frac{3}{4}, T_P\left(\frac{5}{8}, \frac{1}{2}\right)\right) = T_L\left(\frac{3}{4}, \frac{5}{16}\right) = \frac{1}{16}$$

and

$$T_P\left(T_L\left(\frac{3}{4}, \frac{5}{8}\right), T_L\left(\frac{3}{4}, \frac{1}{2}\right)\right) = T_P\left(\frac{3}{8}, \frac{1}{4}\right) = \frac{3}{32}$$

 T_L is not T_P -distributive.

Corollary 1 Let *L* be a bounded lattice and T_1 and T_2 be any two *t*-norms on *L*. If both T_1 is T_2 -distributive and T_2 is T_1 -distributive, then $T_1 = T_2$.

Proposition 2 Let *L* be a bounded chain and *T'* be a *t*-norm on *L*. For every *t*-norm *T*, *T* is *T'*-distributive if and only if $T' = T_{\wedge}$.

Proof :=> Let *T* be an arbitrary *t*-norm on *L* such that *T'*-distributive. By Proposition 1, it is obvious that $T \le T'$ for any *t*-norm *T*. Thus, $T' = T_{\wedge}$.

⇐: Since *L* is a chain, for any $y, z \in L$, either $y \le z$ or $z \le y$. Suppose that $y \le z$. By using the monotonicity of any *t*-norm *T*, it is obtained that for any $x \in L$, $T(x, y) \le T(x, z)$. Then

 $T(x, y) = T(x, y) \wedge T(x, z)$

holds. Thus, for any $x, y, z \in L$,

$$T(x, T_{\wedge}(y, z)) = T(x, y)$$
$$= T(x, y) \wedge T(x, z)$$
$$= T_{\wedge}(T(x, y), T(x, z))$$

is satisfied, which shows that any *t*-norm *T* is T_{\wedge} -distributive.

Remark 2 In Proposition 2, if *L* is not a chain, then the left-hand side of Proposition 2 may not be satisfied. Namely, if *L* is not a chain, then any *t*-norm *T* need not be T_{\wedge} -distributive. Moreover, even if *L* is a distributive lattice, any *t*-norm on *L* may not be T_{\wedge} -distributive. Now, let us investigate the following example.

Example 3 Consider the lattice ($L = \{0, x, y, z, a, 1\}, \leq$) as displayed in Figure 2. Obviously, *L* is a distributive lattice. Define the function *T* on *L* as shown in Table 1. One can easily check that *T* is a *t*-norm. Since

$$T(a,T_{\wedge}(y,z))=T(a,x)=0$$

Table 1 *T*-norm on the lattice $(L = \{0, x, y, z, a, 1\}, \leq)$

Τ	0	x	у	z	а	1
0	0	0	0	0	0	0
Х	0	0	0	0	0	Х
у	0	0	у	0	у	у
Ζ	0	0	0	Ζ	Ζ	Ζ
а	0	0	у	Ζ	а	а
1	0	Х	у	Ζ	а	1

and

$$T_{\wedge}(T(a,y),T(a,z)) = T_{\wedge}(y,z) = x,$$

T is not $T_\wedge\text{-distributive}.$

Remark 3 The fact that any *t*-norm *T* is T_{\wedge} -distributive means that *T* is \wedge -distributive.

Theorem 1 Let $(L, \leq, 0, 1)$ be a bounded lattice. For any t-norm T on L, T_D is T-distributive.

Proof Let *T* be an arbitrary *t*-norm on *L*. We must show that the equality

 $T_D(x, T(y, z)) = T(T_D(x, y), T_D(x, z))$

holds for every element x, y, z of L with $y \neq 1$ or $z \neq 1$. Suppose that $z \neq 1$. If x = 1, the desired equality holds since $T_D(x, T(y, z)) = T(y, z)$ and $T(T_D(x, y), T_D(x, z)) = T(y, z)$. Let $x \neq 1$. Then y = 1 or $y \neq 1$. If y = 1, since $T_D(x, T(y, z)) = T_D(x, z) = 0$ and $T(T_D(x, y), T_D(x, z)) = T(x, 0) = 0$, the equality holds again. Now, let $y \neq 1$. Since $T(y, z) \leq y \leq 1$ and $y \neq 1$, $T(y, z) \neq 1$. Then $T_D(x, T(y, z)) = 0$ and $T(T_D(x, y), T_D(x, z)) = T(y, z) \neq 1$. Then $T_D(x, T(y, z)) = 0$ and $T(T_D(x, y), T_D(x, z)) = T(0, 0) = 0$, whence the equality holds. Thus, T_D is T-distributive for any t-norm T on L.

Proposition 3 [20] If T is a t-norm and $\varphi : [0,1] \to [0,1]$ is a strictly increasing bijection, then the operation $T_{\varphi} : [0,1]^2 \to [0,1]$ given by

$$T_{\varphi}(x,y) = \varphi^{-1} \big(T \big(\varphi(x), \varphi(y) \big) \big)$$

is a t-norm which is isomorphic to T. This t-norm is called φ -transform of T.

Let T_1 and T_2 be any two *t*-norms on [0,1] and let φ be a strictly increasing bijection from [0,1] to [0,1]. Denote the φ -transforms of the *t*-norms T_1 and T_2 by T_{φ}^1 and T_{φ}^2 , respectively.

Theorem 2 Let T_1 and T_2 be any t-norms on [0,1] and let φ be a strictly increasing bijection from [0,1] to [0,1]. T_1 is T_2 -distributive if and only if T_{φ}^1 is T_{φ}^2 -distributive.

Proof Let T_1 be T_2 -distributive. We must show that for every $x, y, z \in [0, 1]$ with $y \neq 1$ or $z \neq 1$,

$$T^1_{\varphi}(x,T^2_{\varphi}(y,z)) = T^2_{\varphi}(T^1_{\varphi}(x,y),T^1_{\varphi}(x,z)).$$

Since $\varphi : [0,1] \to [0,1]$ is a strictly increasing bijection, for every element $y, z \in [0,1]$ with $y \neq 1$ or $z \neq 1$, it must be $\varphi(y) \neq 1$ or $\varphi(z) \neq 1$. By using T_2 -distributivity of T_1 , we obtain that the equality

$$\begin{split} T_{\varphi}^{1}(x,T_{\varphi}^{2}(y,z)) &= \varphi^{-1}\big(T_{1}\big(\varphi(x),\varphi\big(T_{\varphi}^{2}(y,z)\big)\big)\big) \\ &= \varphi^{-1}\big(T_{1}\big(\varphi(x),\varphi\big(\varphi^{-1}\big(T_{2}\big(\varphi(y),\varphi(z)\big)\big)\big)\big) \\ &= \varphi^{-1}\big(T_{1}\big(\varphi(x),T_{2}\big(\varphi(y),\varphi(z)\big)\big)\big) \\ &= \varphi^{-1}\big(T_{2}\big(T_{1}\big(\varphi(x),\varphi(y)\big),T_{1}\big(\varphi(x),\varphi(z)\big)\big)\big) \\ &= \varphi^{-1}\big(T_{2}\big(\big(\varphi\circ\varphi^{-1}\big)T_{1}\big(\varphi(x),\varphi(y)\big),\big(\varphi\circ\varphi^{-1}\big)T_{1}\big(\varphi(x),\varphi(z)\big)\big)\big) \\ &= \varphi^{-1}\big(T_{2}\big(\varphi\big(\varphi^{-1}\big(T_{1}\big(\varphi(x),\varphi(y)\big)\big),\varphi\big(\varphi^{-1}\big(T_{1}\big(\varphi(x),\varphi(z)\big)\big)\big)\big) \\ &= \varphi^{-1}\big(T_{2}\big(\varphi\big(T_{\varphi}^{1}(x,y)\big),\varphi\big(T_{\varphi}^{1}(x,z)\big)\big)\big) \\ &= T_{\varphi}^{2}\big(T_{\varphi}^{1}(x,y),T_{\varphi}^{1}(x,z)\big) \end{split}$$

holds. Thus, T_{φ}^1 is T_{φ}^2 -distributive.

Conversely, let T_{φ}^1 be T_{φ}^2 -distributive. We will show that $T_1(x, T_2(y, z)) = T_2(T_1(x, y), T_1(x, z))$ for every element $x, y, z \in [0, 1]$ with $y \neq 1$ or $z \neq 1$. Since T_{φ}^1 is the φ -transform of the *t*-norm T_1 , for every $x, y \in [0, 1]$, $T_{\varphi}^1(x, y) = \varphi^{-1}(T_1(\varphi(x), \varphi(y)))$. Since φ is a bijection, it is clear that

$$T_1(\varphi(x),\varphi(y)) = \varphi(T_{\varphi}^1(x,y))$$
(1)

holds. Also, by using (1), it is obtained that

$$T_{1}(x,y) = T_{1}(\varphi(\varphi^{-1}(x)),\varphi(\varphi^{-1}(y))) = \varphi(T_{\varphi}^{1}(\varphi^{-1}(x),\varphi^{-1}(y)))$$
(2)

From (2), it follows

$$T^{1}_{\varphi}(\varphi^{-1}(x),\varphi^{-1}(y)) = \varphi^{-1}(T_{1}(x,y)).$$
(3)

Also, the similar equalities for *t*-norm T_2 can be written. Since $\varphi^{-1}(y) \neq 1$ or $\varphi^{-1}(z) \neq 1$ for every $y, z \in [0,1]$ with $y \neq 1$ or $z \neq 1$, by using T_{φ}^2 -distributivity of T_{φ}^1 , it is obtained that the

following equalities:

$$\begin{split} T_{1}(x,T_{2}(y,z)) &\stackrel{(2)}{=} T_{1}(x,\varphi\big(T_{\varphi}^{2}\big(\varphi^{-1}(y),\varphi^{-1}(z)\big)\big)) \\ &\stackrel{(2)}{=} \varphi\big(T_{\varphi}^{1}\big(\varphi^{-1}(x),\varphi^{-1}\big(\varphi\big(T_{\varphi}^{2}\big(\varphi^{-1}(y),\varphi^{-1}(z)\big)\big)\big)) \\ &= \varphi\big(T_{\varphi}^{1}\big(\varphi^{-1}(x),T_{\varphi}^{2}\big(\varphi^{-1}(y),\varphi^{-1}(z)\big)\big)\big) \\ &= \varphi\big(T_{\varphi}^{2}\big(T_{\varphi}^{1}\big(\varphi^{-1}(x),\varphi^{-1}(y)\big),T_{\varphi}^{1}\big(\varphi^{-1}(x),\varphi^{-1}(z)\big)\big)\big) \\ &\stackrel{(3)}{=} \varphi\big(T_{\varphi}^{2}\big(\varphi^{-1}\big(T_{1}(x,y)\big),\varphi^{-1}\big(T_{1}(x,z)\big)\big)\big) \\ &\stackrel{(2)}{=} \varphi\big(\varphi^{-1}\big(T_{2}\big(T_{1}(x,y),T_{1}(x,z)\big)\big)\big) \\ &= T_{2}\big(T_{1}(x,y),T_{1}(x,z)\big) \end{split}$$

hold. Thus, T_1 is T_2 -distributive.

Proposition 4 Let $(L, \leq, 0, 1)$ be a bounded lattice and T_1 and T_2 be two t-norms on L such that T_1 is T_2 -distributive. If T_1 is divisible, then T_2 is also divisible.

Proof Consider two elements x, y of L with $x \le y$. If x = y, then T_2 would be always a divisible t-norm since $T_2(y, 1) = y = x$. Let $x \ne y$. Since T_1 is divisible, there exists an element $1 \ne z$ of L such that $T_1(y, z) = x$. Then, by using T_2 -distributivity of T_1 , it is obtained that

$$\begin{aligned} x &= T_1(y, z) = T_1(y, T_2(z, 1)) \\ &= T_2(T_1(y, z), T_1(y, 1)) \\ &= T_2(T_1(y, z), y). \end{aligned}$$

Thus, for any elements x, y of L with $x \le y$ and $x \ne y$, since there exists an element $T_1(y, z) \in L$ such that $x = T_2(T_1(y, z), y)$, T_2 is a divisible t-norm.

Corollary 2 Let $(L, \leq, 0, 1)$ be a bounded lattice and T_1 and T_2 be two t-norms on L. If T_1 is T_2 -distributive, then the T_1 -partial order implies the T_2 -partial order.

Proof Let $a \leq_{T_1} b$ for any $a, b \in L$. If a = b, then it would be $a \leq_{T_2} b$ since $T_2(b, 1) = b = a$ for the element $1 \in L$. Now, suppose that $a \leq_{T_1} b$ but $a \neq b$. Then there exists an element $\ell \in L$ such that $T_1(b, \ell) = a$. Since $a \neq b$, it must be $\ell \neq 1$. Then $T_1(b, T_2(\ell, 1)) = T_1(b, \ell) = a$. Since T_1 is T_2 -distributive, it is obtained that

$$a = T_1(b, T_2(\ell, 1)) = T_2(T_1(b, \ell), T_1(b, 1))$$

= $T_2(a, b).$

for elements $b, \ell, 1 \in L$ with $\ell \neq 1$, whence $a \leq_{T_2} b$. So, we obtain that $\leq_{T_1} \subseteq \leq_{T_2}$.

Remark 4 For any *t*-norms T_1 and T_2 , if T_1 is T_2 -distributive, then we show that T_1 is weaker than T_2 in Proposition 1 and the T_1 -partial order implies the T_2 -partial order in Proposition 2. Although T_1 is weaker than T_2 , that does not require the T_1 -partial order to imply the T_2 -partial order. Let us investigate the following example illustrating this case.

Example 4 Consider the drastic product T_P and the function defined as follows:

$$T^{*}(x,y) = \begin{cases} xy, & \text{if } (x,y) \in [0,\frac{1}{2}]^{2}, \\ \min(x,y), & \text{otherwise.} \end{cases}$$

It is clear that the function T^* is a *t*-norm such that $T_P \leq T^*$, but $\leq_{T_P} \not\subseteq \leq_{T^*}$. Indeed. First, let us show that $\frac{3}{8} \not\leq_{T^*} \frac{1}{2}$. Suppose that $\frac{3}{8} \leq_{T^*} \frac{1}{2}$. Then, for some $\ell \in [0, 1]$,

$$T^*\left(\ell,\frac{1}{2}\right)=\frac{3}{8}.$$

For $\ell \in [0,1]$, either $\ell \leq \frac{1}{2}$ or $\ell > \frac{1}{2}$. Let $\ell \leq \frac{1}{2}$. Since $\frac{3}{8} = T^*(\ell, \frac{1}{2}) = \frac{1}{2}\ell$, it is obtained that $\ell = \frac{3}{4}$, which contradicts $\ell \leq \frac{1}{2}$. Then it must be $\ell > \frac{1}{2}$. Since $\frac{3}{8} = T^*(\ell, \frac{1}{2}) = \min(\ell, \frac{1}{2}) = \frac{1}{2}$, which is a contradiction. Thus, it is obtained that $\frac{3}{8} \not\leq_{T^*} \frac{1}{2}$. On the other hand, since $x \leq_{T_P} y$ means that there exists an element ℓ of L such that $T_p(\ell, y) = \ell y = x$ and $T_p(\frac{1}{2}, \frac{3}{4}) = \frac{3}{8}$, we have that $\frac{3}{8} \leq_{T_P} \frac{1}{2}$. So, it is obtained that $\leq_{T_P} \not\subseteq \leq_{T^*}$.

Now, let us construct a family of *t*-norms which are not distributive over each other with the help of incomparable elements in a bounded lattice.

Theorem 3 Let *L* be a complete lattice and $\{S_{\alpha} | \alpha \in I\}$ be a nonempty family of nonempty sets consisting of the elements in *L* which are all incomparable to each other with respect to the order on *L*. If for any element $u \in S_{\alpha}$, $\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\}$ is comparable to every element in *L*, then the family $(T_u)_{u \in S_{\alpha}}$ defined by

$$T_{u}(x,y) = \begin{cases} \inf\{u \land \mu_{i} | \mu_{i} \in S_{\alpha}\}, & if(x,y) \in [\inf\{u \land \mu_{i} | \mu_{i} \in S_{\alpha}\}, u]^{2}, \\ x \land y, & otherwise \end{cases}$$

is a family of t-norms which are not distributive over each other. Namely, for any $\ell, q \in S_{\alpha}$, neither T_{ℓ} is T_{q} -distributive nor T_{q} is T_{ℓ} -distributive.

Proof Firstly, let us show that for every $u \in S_{\alpha}$, each function T_u is a *t*-norm.

(i) Since $x \le 1$, for every element $x \in L$, $1 \notin S_{\alpha}$. Then it follows $T_u(x, 1) = x \land 1 = x$ from $(x, 1) \notin [\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\}, u]^2$, that is, the boundary condition is satisfied.

(ii) It can be easily shown that the commutativity holds.

(iii) Considering the monotonicity, suppose that $x \le y$ for $x, y \in L$. Let $z \in L$ be arbitrary. Then there are the following possible conditions for the couples (x, z), (y, z).

- Let $(x, z), (y, z) \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$. Then we get clearly the equality

 $T_u(x,z) = \inf\{u \land \mu_i | \mu_i \in S_\alpha\} = T_u(y,z).$

- Let $(x, z) \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$ and $(y, z) \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$. Then $y \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]$. Clearly, $T_u(x, z) = \inf\{u \land \mu_i | \mu_i \in S_\alpha\}$ and $T_u(y, z) = y \land z$. Since $x \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]$ and $x \le y$, we obtain $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} \le y$. By $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} \le z$, we get $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} \le y \land z$, whence $T_u(x, z) \le T_u(y, z)$.

- Let $(x, z) \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$ and $(y, z) \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$. Then it is clear that $x \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]$. In this case,

$$T_u(x,z) = x \wedge z$$
 and $T_u(y,z) = \inf\{u \wedge \mu_i | \mu_i \in S_\alpha\}.$

By $x \le y$ and $y \le u$, it is clear that $x \le u$. Since $\inf\{u \land \mu_i | \mu_i \in S_\alpha\}$ is comparable to every element in *L*, either $x \le \inf\{u \land \mu_i | \mu_i \in S_\alpha\}$ or $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} \le x$. If $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} \le x$, it would be $x \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]$ from $x \le u$, a contradiction. Thus, it must be $x \le \inf\{u \land \mu_i | \mu_i \in S_\alpha\}$. Since $z \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]$, $x \land z = x$. Thus, the inequality

$$T_u(x,z) = x \wedge z = x \leq \inf\{u \wedge \mu_i | \mu_i \in S_\alpha\} = T_u(y,z)$$

holds.

- Let $(x, z), (y, z) \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$. By $x \le y$, we have that

 $T_u(x,z) = x \wedge z \leq y \wedge z = T_u(y,z).$

So, the monotonicity holds.

(iv) Now let us show that for every $x, y, z \in L$, the equality $T_u(x, T_u(y, z)) = T_u(T_u(x, y), z)$ holds.

- Let $(x, y), (y, z) \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$. Then

$$T_u(x, T_u(y, z)) = \inf\{u \land \mu_i | \mu_i \in S_\alpha\}$$

and

$$T_u(T_u(x,y),z) = \inf\{u \wedge \mu_i | \mu_i \in S_\alpha\},\$$

whence the equality holds.

- If $(x, y) \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$ and $(y, z) \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$, then it must be $z \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]$. Here, there are two choices for z: either $z \in S_\alpha$ or $z \notin S_\alpha$.

Let $z \in S_{\alpha}$. Then $\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\} \le z$. By the inequality $\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\} \le u$, it is clear that $\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\} \le u \land z$. Since $\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\} \le y \le u$, the following inequalities:

$$\inf\{u \land \mu_i | \mu_i \in S_\alpha\} = \inf\{u \land \mu_i | \mu_i \in S_\alpha\} \land z \le y \land z \le y \le u$$

hold, that is, $y \land z \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]$. Thus, we have that

$$T_u(x, T_u(y, z)) = T_u(x, y \wedge z) = \inf\{u \wedge \mu_i | \mu_i \in S_\alpha\}$$

and

$$T_u(T_u(x,y),z) = T_u(\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, z)$$
$$= \inf\{u \land \mu_i | \mu_i \in S_\alpha\} \land z = \inf\{u \land \mu_i | \mu_i \in S_\alpha\}.$$

So, the equality holds again.

Page 10 of 13

Let $z \notin S_{\alpha}$. Then there exists at least an element v in S_{α} such that v is comparable to the element z; *i.e.*, either $z \leq v$ or $v \leq z$. Let $v \leq z$. Since $u, v \in S_{\alpha}$, it is clear that $\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\} \leq u \land v \leq u \land z \leq u$. Also, from the inequalities $\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\} \leq y$ and $\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\} \leq v \leq z$, it follows $\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\} \leq y \land z \leq y \leq u$, *i.e.*, it is obtained that $y \land z \in [\inf\{u \land \mu_i | \mu_i \in S_{\alpha}\}, u]$. Thus,

$$T_u(x, T_u(y, z)) = T_u(x, y \wedge z) = \inf\{u \wedge \mu_i | \mu_i \in S_\alpha\}$$

and

$$T_u(T_u(x,y),z) = T_u(\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, z)$$
$$= \inf\{u \land \mu_i | \mu_i \in S_\alpha\} \land z$$
$$= \inf\{u \land \mu_i | \mu_i \in S_\alpha\}.$$

Thus, the equality is satisfied.

Now, suppose that $z \le v$. If $u \le z$, it would be $u \le v$, which is a contradiction. Thus, either z < u or z and u are not comparable. If z < u, then it must be $z < \inf\{u \land \mu_i | \mu_i \in S_\alpha\}$ since $\inf\{u \land \mu_i | \mu_i \in S_\alpha\}$ is comparable to every element in L and $z \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]$. Thus, we have that

$$T_u(T_u(x,y),z) = T_u(\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, z)$$
$$= \inf\{u \land \mu_i | \mu_i \in S_\alpha\} \land z$$
$$= z$$

and

$$T_u(x, T_u(y, z)) = T_u(x, y \wedge z)$$

= $T_u(x, z)$
= $x \wedge z = z$,

whence the equality holds.

Let *z* and *u* be not comparable. Since $\inf\{u \land \mu_i | \mu_i \in S_\alpha\}$ is comparable to every element in *L*, either $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} < z$ or $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} > z$. If $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} > z$, it would be *z* < *u*, a contradiction. Then it must be $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} < z$. By $\inf\{u \land \mu_i | \mu_i \in S_\alpha\} = \inf\{u \land \mu_i | \mu_i \in S_\alpha\} \land y < y \land z < y < u$, it is obtained that $y \land z \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]$. Then the equalities

$$T_u(x, T_u(y, z)) = T_u(x, y \wedge z) = \inf\{u \wedge \mu_i | \mu_i \in S_\alpha\}$$

and

$$T_u(T_u(x,y),z) = T_u(\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, z)$$
$$= \inf\{u \land \mu_i | \mu_i \in S_\alpha\} \land z = \inf\{u \land \mu_i | \mu_i \in S_\alpha\}.$$

In this case, the equality is satisfied.

Similarly, one can show that the equality $T_u(x, T_u(y, z)) = T_u(T_u(x, y), z)$ holds when $(x, y) \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$ and $(y, z) \in [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$.

- Now, let us investigate the last condition. If $(x, y), (y, z) \notin [\inf\{u \land \mu_i | \mu_i \in S_\alpha\}, u]^2$, then it is obvious that

$$T_u(x, T_u(y, z)) = T_u(x, y \wedge z) = x \wedge (y \wedge z)$$

and

$$T_u(T_u(x,y),z) = T_u(x \wedge y,z) = (x \wedge y) \wedge z,$$

whence the equality holds.

Consequently, we prove that $(T_u)_{u \in S_\alpha}$ is a family of *t*-norms on *L*. Now, we will show that for every *m*, $n \in S_\alpha$, T_m and T_n are not distributive *t*-norms over each other.

Suppose that T_m is T_n -distributive. By Proposition 1, it must be $T_m \leq T_n$, that is, for every $x, y \in L$, $T_m(x, y) \leq T_n(x, y)$. Since *m* and *n* are not comparable, it is clear that $n \nleq m$ and $m \nleq n$. Then n must not be in $[\inf\{m \land \mu_i | \mu_i \in S_\alpha\}, m]$. Thus,

$$T_m(n,n) = n \wedge n = n.$$

On the other hand, since $n \in [\inf\{n \land \mu_i | \mu_i \in S_\alpha\}, n]$,

$$T_n(n,n) = \inf\{n \land \mu_i | \mu_i \in S_\alpha\}.$$

Then we have that $T_n(n,n) \neq T_m(n,n)$. Otherwise, we obtain that $n \leq m$, which is a contradiction. So, we have that $T_n(n,n) < T_m(n,n)$ contradicts $T_m \leq T_n$. Thus, T_m is not T_n -distributive. Similarly, it can be shown that T_n is not T_m -distributive. So, the family given above is a family of *t*-norms which are not distributive over each other.

To explain how the family $(S_{\alpha})_{\alpha \in I}$ in Theorem 3 can be determined, let us investigate the following example.

Example 5 Let $(L = \{0, a, b, c, d, e, 1\}, \le, 0, 1)$ be a bounded lattice as shown in Figure 3.

For the family of $(S_{\alpha})_{\alpha \in I}$, there are two choices: one of them must be $S_{\alpha_1} = \{c, d, e\}$ and the other must be $S_{\alpha_2} = \{b, e\}$. Then, by Theorem 3, for every $u \in S_{\alpha_1}$ and $v \in S_{\alpha_2}$, the following

functions:

$$T_u(x,y) = \begin{cases} a, & \text{if } (x,y) \in [a,u]^2, \\ x \wedge y, & \text{otherwise} \end{cases}$$

and

$$T_{\nu}(x,y) = \begin{cases} a, & \text{if } (x,y) \in [a,\nu]^2, \\ x \wedge y, & \text{otherwise} \end{cases}$$

are two families of *t*-norms.

Remark 5 In Theorem 3, if the condition that $\inf\{u \land \mu_i | \mu_i \in S_\alpha\}$ is comparable to every element in *L* is canceled, then for any element $u \in S_\alpha$, T_u is not a *t*-norm. The following is an example showing that T_u is not a *t*-norm when the condition that for any element $u \in S_\alpha$, $\inf\{u \land \mu_i | \mu_i \in S_\alpha\}$ is comparable to every element in *L* is canceled.

Example 6 Let $(L = \{0, a, b, c, d, e, f, g, h, j, 1\}, \le, 0, 1)$ be a bounded lattice as displayed in Figure 4.

From Figure 4, it is clear that $\inf\{j, e, f\} = a$ is not comparable to *b*. However, for the set *S* = {*j*, *e*, *f*}, the function defined by

$$T_e(x, y) = \begin{cases} a, & \text{if } (x, y) \in [a, e]^2, \\ x \land y, & \text{otherwise} \end{cases}$$

does not satisfy the associativity since $T_e(T_e(c,d),b) = 0$ and $T_e(c, T_e(d,b)) = b$. So, T_e is not a *t*-norm.

4 Conclusions

In this paper, we introduced the notion of T-distributivity for any t-norm on a bounded lattice and discussed some properties of T-distributivity. We determined a necessary and sufficient condition for T_D to be T-distributive and for T to be T_{\wedge} -distributive. We obtained that T-distributivity is preserved under the isomorphism. We proved that the divisibility of t-norm T_1 requires the divisibility of t-norm T_2 for any two t-norms T_1 and

T_2 where T_1 is T_2 -distributive. Also, we constructed a family of *t*-norms which are not distributive over each other with the help of incomparable elements in a bounded lattice.

Competing interests

The author declares that they have no competing interests.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

Received: 4 December 2012 Accepted: 31 January 2013 Published: 15 February 2013

References

- 1. Menger, K: Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535-537 (1942)
- 2. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. Elsevier, Amsterdam (1983)
- 3. Höhle, U: Commutative: residuated ℓ-monoids. In: Höhle, U, Klement, EP (eds.) Non-Classical Logics and Their Applications to Fuzzy Subsets: a Handbook on the Math., Foundations of Fuzzy Set Theory. Kluwer Academic, Dordrecht (1995)
- 4. Liang, X, Pedrycz, W: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160, 3475-3502 (2009)
- 5. Butnariu, D, Klement, EP: Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer Academic, Dordrecht (1993)
- Klement, EP, Mesiar, R, Pap, E: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8, 701-717 (2000)
- 7. Klement, EP, Weber, S: An integral representation for decomposable measures of measurable functions. Aequ. Math. 47, 255-262 (1994)
- 8. Kolesárová, A: On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 5, 759-766 (1997)
- 9. Birkhoff, G: Lattice Theory, 3rd edn. Am. Math. Soc., Providence (1967)
- 10. De Baets, B, Mesiar, R: Triangular norms on product lattices. Fuzzy Sets Syst. 104, 61-75 (1999)
- 11. Jenei, S, De Baets, B: On the direct decomposability of *t*-norms on product lattices. Fuzzy Sets Syst. **139**, 699-707 (2003)
- 12. Karaçal, F, Kesicioğlu, MN: A T-partial order obtained from t-norms. Kybernetika 47, 300-314 (2011)
- 13. Karaçal, F, Sağıroğlu, Y: Infinitely V-distributive *t*-norm on complete lattices and pseudo-complements. Fuzzy Sets Syst. **160**, 32-43 (2009)
- 14. Karaçal, F, Khadjiev, D: V-distributive and infinitely V-distributive *t*-norms on complete lattice. Fuzzy Sets Syst. **151**, 341-352 (2005)
- Karaçal, F: On the direct decomposability of strong negations and S-implication operators on product lattices. Inf. Sci. 176, 3011-3025 (2006)
- 16. Saminger, S: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157, 1403-1416 (2006)
- 17. Saminger-Platz, S, Klement, EP, Mesiar, R: On extensions of triangular norms on bounded lattices. Indag. Math. 19, 135-150 (2009)
- 18. Casasnovas, J, Mayor, G: Discrete *t*-norms and operations on extended multisets. Fuzzy Sets Syst. **159**, 1165-1177 (2008)
- Wang, Z, Yu, Y: Pseudo t-norms and implication operators: direct product and direct product decompositions. Fuzzy Sets Syst. 139, 673-683 (2003)
- 20. Klement, EP, Mesiar, R, Pap, E: Triangular Norms. Kluwer Academic, Dordrecht (2000)

doi:10.1186/1687-1812-2013-32

Cite this article as: Kesicioğlu: On the property of T-distributivity. Fixed Point Theory and Applications 2013 2013:32.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com