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Abstract
In this paper, we introduce the notion of T -distributivity for any t-norm on a bounded
lattice. We determine a relation between the t-norms T and T ′, where T ′ is a
T -distributive t-norm. Also, for an arbitrary t-norm T , we give a necessary and
sufficient condition for TD to be T -distributive and for T to be T∧-distributive.
Moreover, we investigate the relation between the T -distributivity and the concepts
of the T -partial order, the divisibility of t-norms. We also determine that the
T -distributivity is preserved under the isomorphism. Finally, we construct a family of
t-norms which are not distributive over each other with the help of incomparable
elements in a bounded lattice.
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1 Introduction
Triangular norms based on a notion used by Menger [] were introduced by Schweizer
and Sklar [] in the framework of probabilistic metric spaces, and they play a fundamental
role in several branches of mathematics like in fuzzy logics and their applications [, ],
the games theory [], the non-additive measures and integral theory [–].
A triangular norm (t-norm for short) T : [, ] → [, ] is a commutative, associative,

non-decreasing operation on [, ] with a neutral element . The four basic t-norms on
[, ] are the minimum TM , the product TP , the Łukasiewicz t-norm TL and the drastic
product TD given by, respectively, TM(x, y) = min(x, y), TP(x, y) = xy, TL(x, y) = max(,x +
y – ) and

TD(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
x, if y = ,

y, if x = ,

, otherwise.

Recall that for any t-normsT andT,T is calledweaker thanT if for every (x, y) ∈ [, ],
T(x, y) ≤ T(x, y).
T-norms are defined on a bounded lattice (L,≤, , ) in a similar way, and then extremal

t-norms TD as well as T∧ on L are defined similarly TD and TM on [, ]. For more details
on t-norms on bounded lattices, we refer to [–]. Also, the order between t-norms on
a bounded lattice is defined similarly.
In the present paper, we introduce the notion of T-distributivity for any t-norms

on a bounded lattice (L,≤, , ). The aim of this study is to discuss the properties of
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T-distributivity. The paper is organized as follows. Firstly, we recall some basic notions in
Section . In Section , we define the T-distributivity for any t-norm on a bounded lattice.
For any two t-normsT andT, whereT isT-distributive, we show thatT is weaker than
T and give an example illustrating the converse of this need not be true. Also, we prove
that the only t-norm T , where every t-norm is T-distributive, is the infimum t-norm T∧
when the lattice L is especially a chain. If L is not a chain, we give an example illustrating
any t-norm need not be T∧. Also, we show that for any t-norm T on a bounded lattice, TD

is T-distributive. Moreover, we show that the T-distributivity is preserved under the iso-
morphism. For any two t-norms T and T such that T is T-distributive, we prove that
the divisibility of t-norm T requires the divisibility of t-norm T. Also, we obtain that
for any two t-norms T and T, where T is T-distributive, the T-partial order implies
T-partial order. Finally, we construct a family of t-norms which are not distributive over
each other with the help of incomparable elements in a bounded lattice.

2 Notations, definitions and a review of previous results
Definition  [] Let (L,≤, , ) be a bounded lattice. A triangular norm T (t-norm for
short) is a binary operation on L which is commutative, associative, monotone and has a
neutral element .

Let

TD(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
x, if y = ,

y, if x = ,

, otherwise.

Then TD is a t-norm on L. Since it holds that TD ≤ T for any t-norm T on L, TD is the
smallest t-norm on L.
The largest t-norm on a bounded lattice (L,≤, , ) is given by T∧(x, y) = x∧ y.

Definition  [] A t-norm T on L is divisible if the following condition holds:

∀x, y ∈ L with x ≤ y, there is a z ∈ L such that x = T(y, z).

A basic example of a non-divisible t-norm on any bounded lattice (i.e., cardL > ) is the
weakest t-norm TD. Trivially, the infimum T∧ is divisible: x≤ y is equivalent to x∧ y = x.

Definition  [] Let L be a bounded lattice, T be a t-norm on L. The order defined as
follows is called a T-partial order (triangular order) for a t-norm T .

x �T y : ⇔ T(�, y) = x for some � ∈ L.

Definition  []
(i) A t-norm T on a lattice L is called ∧-distributive if

T(a,b ∧ b) = T(a,b)∧ T(a,b)

for every a,b,b ∈ L.

http://www.fixedpointtheoryandapplications.com/content/2013/1/32
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Figure 1 (L = {0,a,b, c, 1},≤, 0, 1).

(ii) A t-norm T on a complete lattice (L,≤, , ) is called infinitely ∧-distributive if

T(a,∧Ibτ ) = ∧IT(a,bτ )

for every subset {a,bτ ∈ L, τ ∈ I} of L.

3 T-distributivity
Definition  Let (L,≤, , ) be a bounded lattice and T and T be two t-norms on L. For
every x, y, z ∈ L such that at least one of the elements y, z is not , if the condition

T
(
x,T(y, z)

)
= T

(
T(x, y),T(x, z)

)

is satisfied, then T is called T-distributive or we say that T is distributive over T.

Example  Let (L = {,a,b, c, },≤, , ) be a bounded lattice whose lattice diagram is dis-
played in Figure .
The functions T and T on the lattice L defined by

T(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
, if x = a, y = a,

b, if x = c, y = c,

x∧ y, otherwise

and

T(x, y) =

⎧⎨
⎩
b, if x = c, y = c,

x∧ y, otherwise

are obviously t-norms on L such that T is T-distributive.

Proposition  Let (L,≤, , ) be a bounded lattice and T and T be two t-norms on L. If
T is T-distributive, then T is weaker than T.

Proof Since all t-norms coincide on the boundary of L, it is sufficient to show thatT ≤ T

for all x, y, z ∈ L\{, }. By the T-distributivity of T, it is obtained that

T(x, y) = T
(
T(x, ), y

)
= T

(
T(x, y),T(, y)

)
= T

(
T(x, y), y

) ≤ T(x, y).

Thus, T ≤ T, i.e., T is weaker than T. �
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Remark  The converse of Proposition  need not be true.Namely, for any two t-normsT

and T, even if T is weaker than T, T may not be T-distributive. Now, let us investigate
the following example.

Example  Consider the product TP and the Łukasiewicz t-norm TL. It is clear that
TL < TP . Since

TL

(


,TP

(


,



))
= TL

(


,



)
=




and

TP

(
TL

(


,



)
,TL

(


,



))
= TP

(


,



)
=




TL is not TP-distributive.

Corollary  Let L be a bounded lattice and T and T be any two t-norms on L. If both T

is T-distributive and T is T-distributive, then T = T.

Proposition  Let L be a bounded chain and T ′ be a t-norm on L. For every t-norm T , T
is T ′-distributive if and only if T ′ = T∧.

Proof :⇒ Let T be an arbitrary t-norm on L such that T ′-distributive. By Proposition , it
is obvious that T ≤ T ′ for any t-norm T . Thus, T ′ = T∧.

⇐: Since L is a chain, for any y, z ∈ L, either y ≤ z or z ≤ y. Suppose that y ≤ z. By using
the monotonicity of any t-norm T , it is obtained that for any x ∈ L, T(x, y)≤ T(x, z). Then

T(x, y) = T(x, y)∧ T(x, z)

holds. Thus, for any x, y, z ∈ L,

T
(
x,T∧(y, z)

)
= T(x, y)

= T(x, y)∧ T(x, z)

= T∧
(
T(x, y),T(x, z)

)

is satisfied, which shows that any t-norm T is T∧-distributive. �

Remark  In Proposition , if L is not a chain, then the left-hand side of Proposition may
not be satisfied. Namely, if L is not a chain, then any t-normT need not beT∧-distributive.
Moreover, even if L is a distributive lattice, any t-norm on L may not be T∧-distributive.
Now, let us investigate the following example.

Example  Consider the lattice (L = {,x, y, z,a, },≤) as displayed in Figure .
Obviously, L is a distributive lattice. Define the function T on L as shown in Table .
One can easily check that T is a t-norm. Since

T
(
a,T∧(y, z)

)
= T(a,x) = 

http://www.fixedpointtheoryandapplications.com/content/2013/1/32
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Figure 2 (L = {0,x,y, z,a, 1},≤).

Table 1 T-norm on the lattice (L = {0,x,y, z,a, 1},≤)

T 0 x y z a 1

0 0 0 0 0 0 0
x 0 0 0 0 0 x
y 0 0 y 0 y y
z 0 0 0 z z z
a 0 0 y z a a
1 0 x y z a 1

and

T∧
(
T(a, y),T(a, z)

)
= T∧(y, z) = x,

T is not T∧-distributive.

Remark  The fact that any t-norm T is T∧-distributive means that T is ∧-distributive.

Theorem  Let (L,≤, , ) be a bounded lattice. For any t-norm T on L, TD is T-
distributive.

Proof Let T be an arbitrary t-norm on L. We must show that the equality

TD
(
x,T(y, z)

)
= T

(
TD(x, y),TD(x, z)

)

holds for every element x, y, z of Lwith y �=  or z �= . Suppose that z �= . If x = , the desired
equality holds since TD(x,T(y, z)) = T(y, z) and T(TD(x, y),TD(x, z)) = T(y, z). Let x �= .
Then y =  or y �= . If y = , since TD(x,T(y, z)) = TD(x, z) =  and T(TD(x, y),TD(x, z)) =
T(x, ) = , the equality holds again. Now, let y �= . Since T(y, z) ≤ y ≤  and y �= ,
T(y, z) �= . Then TD(x,T(y, z)) =  and T(TD(x, y),TD(x, z)) = T(, ) = , whence the
equality holds. Thus, TD is T-distributive for any t-norm T on L. �

Proposition  [] If T is a t-norm and ϕ : [, ] → [, ] is a strictly increasing bijection,
then the operation Tϕ : [, ] → [, ] given by

Tϕ(x, y) = ϕ–(T(
ϕ(x),ϕ(y)

))

is a t-norm which is isomorphic to T . This t-norm is called ϕ-transform of T .

http://www.fixedpointtheoryandapplications.com/content/2013/1/32
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Let T and T be any two t-norms on [, ] and let ϕ be a strictly increasing bijection
from [, ] to [, ]. Denote the ϕ-transforms of the t-norms T and T by T 

ϕ and T
ϕ ,

respectively.

Theorem  Let T and T be any t-norms on [, ] and let ϕ be a strictly increasing bijec-
tion from [, ] to [, ]. T is T-distributive if and only if T 

ϕ is T
ϕ -distributive.

Proof Let T be T-distributive. We must show that for every x, y, z ∈ [, ] with y �=  or
z �= ,

T 
ϕ

(
x,T

ϕ (y, z)
)
= T

ϕ

(
T 

ϕ(x, y),T

ϕ(x, z)

)
.

Since ϕ : [, ] → [, ] is a strictly increasing bijection, for every element y, z ∈ [, ] with
y �=  or z �= , it must be ϕ(y) �=  or ϕ(z) �= . By using T-distributivity of T, we obtain
that the equality

T 
ϕ

(
x,T

ϕ (y, z)
)
= ϕ–(T

(
ϕ(x),ϕ

(
T

ϕ (y, z)
)))

= ϕ–(T
(
ϕ(x),ϕ

(
ϕ–(T

(
ϕ(y),ϕ(z)

)))))
= ϕ–(T

(
ϕ(x),T

(
ϕ(y),ϕ(z)

)))
= ϕ–(T

(
T

(
ϕ(x),ϕ(y)

)
,T

(
ϕ(x),ϕ(z)

)))
= ϕ–(T

((
ϕ ◦ ϕ–)T

(
ϕ(x),ϕ(y)

)
,
(
ϕ ◦ ϕ–)T

(
ϕ(x),ϕ(z)

)))
= ϕ–(T

(
ϕ
(
ϕ–(T

(
ϕ(x),ϕ(y)

)))
,ϕ

(
ϕ–(T

(
ϕ(x),ϕ(z)

)))))
= ϕ–(T

(
ϕ
(
T 

ϕ(x, y)
)
,ϕ

(
T 

ϕ(x, z)
)))

= T
ϕ

(
T 

ϕ(x, y),T

ϕ(x, z)

)

holds. Thus, T 
ϕ is T

ϕ -distributive.
Conversely, let T 

ϕ be T
ϕ -distributive. We will show that T(x,T(y, z)) = T(T(x, y),

T(x, z)) for every element x, y, z ∈ [, ] with y �=  or z �= . Since T 
ϕ is the ϕ-transform

of the t-norm T, for every x, y ∈ [, ], T 
ϕ(x, y) = ϕ–(T(ϕ(x),ϕ(y))). Since ϕ is a bijection,

it is clear that

T
(
ϕ(x),ϕ(y)

)
= ϕ

(
T 

ϕ(x, y)
)

()

holds. Also, by using (), it is obtained that

T(x, y) = T
(
ϕ
(
ϕ–(x)

)
,ϕ

(
ϕ–(y)

))
= ϕ

(
T 

ϕ

(
ϕ–(x),ϕ–(y)

))
()

From (), it follows

T 
ϕ

(
ϕ–(x),ϕ–(y)

)
= ϕ–(T(x, y)

)
. ()

Also, the similar equalities for t-norm T can be written. Since ϕ–(y) �=  or ϕ–(z) �=  for
every y, z ∈ [, ] with y �=  or z �= , by using T

ϕ -distributivity of T 
ϕ , it is obtained that the

http://www.fixedpointtheoryandapplications.com/content/2013/1/32
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following equalities:

T
(
x,T(y, z)

) ()= T
(
x,ϕ

(
T

ϕ

(
ϕ–(y),ϕ–(z)

)))
()= ϕ

(
T 

ϕ

(
ϕ–(x),ϕ–(ϕ(

T
ϕ

(
ϕ–(y),ϕ–(z)

)))))
= ϕ

(
T 

ϕ

(
ϕ–(x),T

ϕ

(
ϕ–(y),ϕ–(z)

)))
= ϕ

(
T

ϕ

(
T 

ϕ

(
ϕ–(x),ϕ–(y)

)
,T 

ϕ

(
ϕ–(x),ϕ–(z)

)))
()= ϕ

(
T

ϕ

(
ϕ–(T(x, y)

)
,ϕ–(T(x, z)

)))
()= ϕ

(
ϕ–(T

(
T(x, y),T(x, z)

)))
= T

(
T(x, y),T(x, z)

)

hold. Thus, T is T-distributive. �

Proposition  Let (L,≤, , ) be a bounded lattice and T and T be two t-norms on L such
that T is T-distributive. If T is divisible, then T is also divisible.

Proof Consider two elements x, y of L with x ≤ y. If x = y, then T would be always a
divisible t-norm sinceT(y, ) = y = x. Let x �= y. SinceT is divisible, there exists an element
 �= z of L such that T(y, z) = x. Then, by using T-distributivity of T, it is obtained that

x = T(y, z) = T
(
y,T(z, )

)
= T

(
T(y, z),T(y, )

)
= T

(
T(y, z), y

)
.

Thus, for any elements x, y of Lwith x ≤ y and x �= y, since there exists an elementT(y, z) ∈
L such that x = T(T(y, z), y), T is a divisible t-norm. �

Corollary  Let (L,≤, , ) be a bounded lattice and T and T be two t-norms on L. If T

is T-distributive, then the T-partial order implies the T-partial order.

Proof Let a �T b for any a,b ∈ L. If a = b, then it would be a �T b since T(b, ) = b = a
for the element  ∈ L. Now, suppose that a �T b but a �= b. Then there exists an element
� ∈ L such that T(b,�) = a. Since a �= b, it must be � �= . Then T(b,T(�, )) = T(b,�) = a.
Since T is T-distributive, it is obtained that

a = T
(
b,T(�, )

)
= T

(
T(b,�),T(b, )

)
= T(a,b).

for elements b,�,  ∈ L with � �= , whence a �T b. So, we obtain that �T⊆�T . �

Remark  For any t-norms T and T, if T is T-distributive, then we show that T is
weaker than T in Proposition  and the T-partial order implies the T-partial order in
Proposition . Although T is weaker than T, that does not require the T-partial order to
imply the T-partial order. Let us investigate the following example illustrating this case.

http://www.fixedpointtheoryandapplications.com/content/2013/1/32
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Example  Consider the drastic product TP and the function defined as follows:

T *(x, y) =

⎧⎨
⎩
xy, if (x, y) ∈ [,  ]

,

min(x, y), otherwise.

It is clear that the function T * is a t-norm such that TP ≤ T *, but �TP ��T* . Indeed.
First, let us show that 

 �T*

 . Suppose that


 �T*


 . Then, for some � ∈ [, ],

T *
(

�,



)
=


.

For � ∈ [, ], either � ≤ 
 or � > 

 . Let � ≤ 
 . Since


 = T *(�,  ) =


�, it is obtained that

� = 
 , which contradicts � ≤ 

 . Then it must be � > 
 . Since


 = T *(�,  ) = min(�,  ) =


 ,

which is a contradiction. Thus, it is obtained that 
 �T*


 . On the other hand, since x �TP y

means that there exists an element � of L such that Tp(�, y) = �y = x and TP(  ,

 ) =


 , we

have that 
 �TP


 . So, it is obtained that �TP ��T* .

Now, let us construct a family of t-normswhich are not distributive over each other with
the help of incomparable elements in a bounded lattice.

Theorem  Let L be a complete lattice and {Sα|α ∈ I} be a nonempty family of nonempty
sets consisting of the elements in L which are all incomparable to each other with respect to
the order on L. If for any element u ∈ Sα , inf{u∧μi|μi ∈ Sα} is comparable to every element
in L, then the family (Tu)u∈Sα defined by

Tu(x, y) =

⎧⎨
⎩
inf{u∧ μi|μi ∈ Sα}, if (x, y) ∈ [inf{u∧ μi|μi ∈ Sα},u],
x∧ y, otherwise

is a family of t-norms which are not distributive over each other. Namely, for any �,q ∈ Sα ,
neither T� is Tq-distributive nor Tq is T�-distributive.

Proof Firstly, let us show that for every u ∈ Sα , each function Tu is a t-norm.
(i) Since x ≤ , for every element x ∈ L,  /∈ Sα . Then it follows Tu(x, ) = x ∧  = x from

(x, ) /∈ [inf{u∧ μi|μi ∈ Sα},u], that is, the boundary condition is satisfied.
(ii) It can be easily shown that the commutativity holds.
(iii) Considering the monotonicity, suppose that x ≤ y for x, y ∈ L. Let z ∈ L be arbitrary.

Then there are the following possible conditions for the couples (x, z), (y, z).
- Let (x, z), (y, z) ∈ [inf{u∧ μi|μi ∈ Sα},u]. Then we get clearly the equality

Tu(x, z) = inf{u∧ μi|μi ∈ Sα} = Tu(y, z).

- Let (x, z) ∈ [inf{u ∧ μi|μi ∈ Sα},u] and (y, z) /∈ [inf{u ∧ μi|μi ∈ Sα},u]. Then y /∈
[inf{u ∧ μi|μi ∈ Sα},u]. Clearly, Tu(x, z) = inf{u ∧ μi|μi ∈ Sα} and Tu(y, z) = y ∧ z. Since
x ∈ [inf{u∧ μi|μi ∈ Sα},u] and x ≤ y, we obtain inf{u∧ μi|μi ∈ Sα} ≤ y. By inf{u∧ μi|μi ∈
Sα} ≤ z, we get inf{u∧ μi|μi ∈ Sα} ≤ y∧ z, whence Tu(x, z) ≤ Tu(y, z).

http://www.fixedpointtheoryandapplications.com/content/2013/1/32
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- Let (x, z) /∈ [inf{u∧ μi|μi ∈ Sα},u] and (y, z) ∈ [inf{u∧ μi|μi ∈ Sα},u]. Then it is clear
that x /∈ [inf{u∧ μi|μi ∈ Sα},u]. In this case,

Tu(x, z) = x∧ z and Tu(y, z) = inf{u∧ μi|μi ∈ Sα}.

By x ≤ y and y ≤ u, it is clear that x ≤ u. Since inf{u∧ μi|μi ∈ Sα} is comparable to every
element in L, either x ≤ inf{u ∧ μi|μi ∈ Sα} or inf{u ∧ μi|μi ∈ Sα} ≤ x. If inf{u ∧ μi|μi ∈
Sα} ≤ x, it would be x ∈ [inf{u∧ μi|μi ∈ Sα},u] from x ≤ u, a contradiction. Thus, it must
be x ≤ inf{u∧ μi|μi ∈ Sα}. Since z ∈ [inf{u∧ μi|μi ∈ Sα},u], x∧ z = x. Thus, the inequality

Tu(x, z) = x∧ z = x ≤ inf{u∧ μi|μi ∈ Sα} = Tu(y, z)

holds.
- Let (x, z), (y, z) /∈ [inf{u∧ μi|μi ∈ Sα},u]. By x ≤ y, we have that

Tu(x, z) = x∧ z ≤ y∧ z = Tu(y, z).

So, the monotonicity holds.
(iv) Now let us show that for every x, y, z ∈ L, the equality Tu(x,Tu(y, z)) = Tu(Tu(x, y), z)

holds.
- Let (x, y), (y, z) ∈ [inf{u∧ μi|μi ∈ Sα},u]. Then

Tu
(
x,Tu(y, z)

)
= inf{u∧ μi|μi ∈ Sα}

and

Tu
(
Tu(x, y), z

)
= inf{u∧ μi|μi ∈ Sα},

whence the equality holds.
- If (x, y) ∈ [inf{u ∧ μi|μi ∈ Sα},u] and (y, z) /∈ [inf{u ∧ μi|μi ∈ Sα},u], then it must be

z /∈ [inf{u∧ μi|μi ∈ Sα},u]. Here, there are two choices for z: either z ∈ Sα or z /∈ Sα .
Let z ∈ Sα . Then inf{u ∧ μi|μi ∈ Sα} ≤ z. By the inequality inf{u ∧ μi|μi ∈ Sα} ≤ u, it

is clear that inf{u ∧ μi|μi ∈ Sα} ≤ u ∧ z. Since inf{u ∧ μi|μi ∈ Sα} ≤ y ≤ u, the following
inequalities:

inf{u∧ μi|μi ∈ Sα} = inf{u∧ μi|μi ∈ Sα} ∧ z ≤ y∧ z ≤ y ≤ u

hold, that is, y∧ z ∈ [inf{u∧ μi|μi ∈ Sα},u]. Thus, we have that

Tu
(
x,Tu(y, z)

)
= Tu(x, y∧ z) = inf{u∧ μi|μi ∈ Sα}

and

Tu
(
Tu(x, y), z

)
= Tu

(
inf{u∧ μi|μi ∈ Sα}, z)

= inf{u∧ μi|μi ∈ Sα} ∧ z = inf{u∧ μi|μi ∈ Sα}.

So, the equality holds again.
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Let z /∈ Sα . Then there exists at least an element v in Sα such that v is comparable to
the element z; i.e., either z ≤ v or v ≤ z. Let v ≤ z. Since u, v ∈ Sα , it is clear that inf{u ∧
μi|μi ∈ Sα} ≤ u ∧ v ≤ u ∧ z ≤ u. Also, from the inequalities inf{u ∧ μi|μi ∈ Sα} ≤ y and
inf{u∧μi|μi ∈ Sα} ≤ v≤ z, it follows inf{u∧μi|μi ∈ Sα} ≤ y∧ z ≤ y ≤ u, i.e., it is obtained
that y∧ z ∈ [inf{u∧ μi|μi ∈ Sα},u]. Thus,

Tu
(
x,Tu(y, z)

)
= Tu(x, y∧ z) = inf{u∧ μi|μi ∈ Sα}

and

Tu
(
Tu(x, y), z

)
= Tu

(
inf{u∧ μi|μi ∈ Sα}, z)

= inf{u∧ μi|μi ∈ Sα} ∧ z

= inf{u∧ μi|μi ∈ Sα}.

Thus, the equality is satisfied.
Now, suppose that z ≤ v. If u≤ z, it would be u≤ v, which is a contradiction. Thus, either

z < u or z and u are not comparable. If z < u, then it must be z < inf{u∧ μi|μi ∈ Sα} since
inf{u ∧ μi|μi ∈ Sα} is comparable to every element in L and z /∈ [inf{u ∧ μi|μi ∈ Sα},u].
Thus, we have that

Tu
(
Tu(x, y), z

)
= Tu

(
inf{u∧ μi|μi ∈ Sα}, z)

= inf{u∧ μi|μi ∈ Sα} ∧ z

= z

and

Tu
(
x,Tu(y, z)

)
= Tu(x, y∧ z)

= Tu(x, z)

= x∧ z = z,

whence the equality holds.
Let z and u be not comparable. Since inf{u∧μi|μi ∈ Sα} is comparable to every element

in L, either inf{u ∧ μi|μi ∈ Sα} < z or inf{u ∧ μi|μi ∈ Sα} > z. If inf{u ∧ μi|μi ∈ Sα} > z, it
would be z < u, a contradiction. Then it must be inf{u∧ μi|μi ∈ Sα} < z. By inf{u∧ μi|μi ∈
Sα} = inf{u∧μi|μi ∈ Sα}∧y < y∧z < y < u, it is obtained that y∧z ∈ [inf{u∧μi|μi ∈ Sα},u].
Then the equalities

Tu
(
x,Tu(y, z)

)
= Tu(x, y∧ z) = inf{u∧ μi|μi ∈ Sα}

and

Tu
(
Tu(x, y), z

)
= Tu

(
inf{u∧ μi|μi ∈ Sα}, z)

= inf{u∧ μi|μi ∈ Sα} ∧ z = inf{u∧ μi|μi ∈ Sα}.

In this case, the equality is satisfied.
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Similarly, one can show that the equality Tu(x,Tu(y, z)) = Tu(Tu(x, y), z) holds when
(x, y) /∈ [inf{u∧ μi|μi ∈ Sα},u] and (y, z) ∈ [inf{u∧ μi|μi ∈ Sα},u].
- Now, let us investigate the last condition. If (x, y), (y, z) /∈ [inf{u∧ μi|μi ∈ Sα},u], then

it is obvious that

Tu
(
x,Tu(y, z)

)
= Tu(x, y∧ z) = x∧ (y∧ z)

and

Tu
(
Tu(x, y), z

)
= Tu(x∧ y, z) = (x∧ y)∧ z,

whence the equality holds.
Consequently, we prove that (Tu)u∈Sα is a family of t-norms on L. Now, we will show that

for every m,n ∈ Sα , Tm and Tn are not distributive t-norms over each other.
Suppose that Tm is Tn-distributive. By Proposition , it must be Tm ≤ Tn, that is, for

every x, y ∈ L, Tm(x, y)≤ Tn(x, y). Sincem and n are not comparable, it is clear that n�m
andm� n. Then n must not be in [inf{m∧ μi|μi ∈ Sα},m]. Thus,

Tm(n,n) = n∧ n = n.

On the other hand, since n ∈ [inf{n∧ μi|μi ∈ Sα},n],

Tn(n,n) = inf{n∧ μi|μi ∈ Sα}.

Then we have that Tn(n,n) �= Tm(n,n). Otherwise, we obtain that n ≤ m, which is a con-
tradiction. So, we have that Tn(n,n) < Tm(n,n) contradicts Tm ≤ Tn. Thus, Tm is not
Tn-distributive. Similarly, it can be shown that Tn is not Tm-distributive. So, the family
given above is a family of t-norms which are not distributive over each other. �

To explain how the family (Sα)α∈I in Theorem  can be determined, let us investigate the
following example.

Example  Let (L = {,a,b, c,d, e, },≤, , ) be a bounded lattice as shown in Figure .
For the family of (Sα)α∈I , there are two choices: one of themmust be Sα = {c,d, e} and the

other must be Sα = {b, e}. Then, by Theorem , for every u ∈ Sα and v ∈ Sα , the following

Figure 3 (L = {0,a,b, c,d,e, 1},≤, 0, 1).
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Figure 4 (L = {0,a,b, c,d,e, f ,g,h, j, 1},≤, 0, 1).

functions:

Tu(x, y) =

⎧⎨
⎩
a, if (x, y) ∈ [a,u],

x∧ y, otherwise

and

Tv(x, y) =

⎧⎨
⎩
a, if (x, y) ∈ [a, v],

x∧ y, otherwise

are two families of t-norms.

Remark  In Theorem , if the condition that inf{u∧ μi|μi ∈ Sα} is comparable to every
element in L is canceled, then for any element u ∈ Sα , Tu is not a t-norm. The following
is an example showing that Tu is not a t-norm when the condition that for any element
u ∈ Sα , inf{u∧ μi|μi ∈ Sα} is comparable to every element in L is canceled.

Example  Let (L = {,a,b, c,d, e, f , g,h, j, },≤, , ) be a bounded lattice as displayed in
Figure .
From Figure , it is clear that inf{j, e, f } = a is not comparable to b. However, for the set

S = {j, e, f }, the function defined by

Te(x, y) =

⎧⎨
⎩
a, if (x, y) ∈ [a, e],

x∧ y, otherwise

does not satisfy the associativity since Te(Te(c,d),b) =  and Te(c,Te(d,b)) = b. So, Te is
not a t-norm.

4 Conclusions
In this paper, we introduced the notion of T-distributivity for any t-norm on a bounded
lattice and discussed some properties of T-distributivity. We determined a necessary and
sufficient condition for TD to be T-distributive and for T to be T∧-distributive. We ob-
tained that T-distributivity is preserved under the isomorphism. We proved that the di-
visibility of t-norm T requires the divisibility of t-norm T for any two t-norms T and
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T where T is T-distributive. Also, we constructed a family of t-norms which are not
distributive over each other with the help of incomparable elements in a bounded lattice.
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