CORE

On the property of T-distributivity

Mücahide Nesibe Kesicioğlu*

"Correspondence:
m.nesibe@gmail.com

Department of Mathematics, Recep Tayyip Erdoğan University, Rize, 53100, Turkey

Abstract

In this paper, we introduce the notion of T-distributivity for any t-norm on a bounded lattice. We determine a relation between the t-norms T and T^{\prime}, where T^{\prime} is a T-distributive t-norm. Also, for an arbitrary t-norm T, we give a necessary and sufficient condition for T_{D} to be T-distributive and for T to be T_{\wedge}-distributive. Moreover, we investigate the relation between the T-distributivity and the concepts of the T-partial order, the divisibility of t-norms. We also determine that the T-distributivity is preserved under the isomorphism. Finally, we construct a family of t-norms which are not distributive over each other with the help of incomparable elements in a bounded lattice. MSC: 03B52; 03E72 Keywords: triangular norm; bounded lattice; T-partial order; divisibility; distributivity

1 Introduction

Triangular norms based on a notion used by Menger [1] were introduced by Schweizer and Sklar [2] in the framework of probabilistic metric spaces, and they play a fundamental role in several branches of mathematics like in fuzzy logics and their applications [3, 4], the games theory [5], the non-additive measures and integral theory [6-8].
A triangular norm (t-norm for short) $T:[0,1]^{2} \rightarrow[0,1]$ is a commutative, associative, non-decreasing operation on $[0,1]$ with a neutral element 1 . The four basic t-norms on $[0,1]$ are the minimum T_{M}, the product T_{P}, the Łukasiewicz t-norm T_{L} and the drastic product T_{D} given by, respectively, $T_{M}(x, y)=\min (x, y), T_{P}(x, y)=x y, T_{L}(x, y)=\max (0, x+$ $y-1)$ and

$$
T_{D}(x, y)= \begin{cases}x, & \text { if } y=1 \\ y, & \text { if } x=1 \\ 0, & \text { otherwise }\end{cases}
$$

Recall that for any t-norms T_{1} and T_{2}, T_{1} is called weaker than T_{2} if for every $(x, y) \in[0,1]^{2}$, $T_{1}(x, y) \leq T_{2}(x, y)$.
T-norms are defined on a bounded lattice $(L, \leq, 0,1)$ in a similar way, and then extremal t-norms T_{D} as well as T_{\wedge} on L are defined similarly T_{D} and T_{M} on [0,1]. For more details on t-norms on bounded lattices, we refer to [9-17]. Also, the order between t-norms on a bounded lattice is defined similarly.
In the present paper, we introduce the notion of T-distributivity for any t-norms on a bounded lattice $(L, \leq, 0,1)$. The aim of this study is to discuss the properties of

[^0]T-distributivity. The paper is organized as follows. Firstly, we recall some basic notions in Section 2. In Section 3, we define the T-distributivity for any t-norm on a bounded lattice. For any two t-norms T_{1} and T_{2}, where T_{1} is T_{2}-distributive, we show that T_{1} is weaker than T_{2} and give an example illustrating the converse of this need not be true. Also, we prove that the only t-norm T, where every t-norm is T-distributive, is the infimum t-norm T_{\wedge} when the lattice L is especially a chain. If L is not a chain, we give an example illustrating any t-norm need not be T_{\wedge}. Also, we show that for any t-norm T on a bounded lattice, T_{D} is T-distributive. Moreover, we show that the T-distributivity is preserved under the isomorphism. For any two t-norms T_{1} and T_{2} such that T_{1} is T_{2}-distributive, we prove that the divisibility of t-norm T_{1} requires the divisibility of t-norm T_{2}. Also, we obtain that for any two t-norms T_{1} and T_{2}, where T_{1} is T_{2}-distributive, the T_{1}-partial order implies T_{2}-partial order. Finally, we construct a family of t-norms which are not distributive over each other with the help of incomparable elements in a bounded lattice.

2 Notations, definitions and a review of previous results

Definition 1 [14] Let ($L, \leq, 0,1$) be a bounded lattice. A triangular norm T (t-norm for short) is a binary operation on L which is commutative, associative, monotone and has a neutral element 1.

Let

$$
T_{D}(x, y)= \begin{cases}x, & \text { if } y=1 \\ y, & \text { if } x=1 \\ 0, & \text { otherwise }\end{cases}
$$

Then T_{D} is a t-norm on L. Since it holds that $T_{D} \leq T$ for any t-norm T on L, T_{D} is the smallest t-norm on L.
The largest t-norm on a bounded lattice $(L, \leq, 0,1)$ is given by $T_{\wedge}(x, y)=x \wedge y$.

Definition 2 [18] A t-norm T on L is divisible if the following condition holds:
$\forall x, y \in L$ with $x \leq y$, there is a $z \in L$ such that $\quad x=T(y, z)$.

A basic example of a non-divisible t-norm on any bounded lattice (i.e., card $L>2$) is the weakest t-norm T_{D}. Trivially, the infimum T_{\wedge} is divisible: $x \leq y$ is equivalent to $x \wedge y=x$.

Definition 3 [12] Let L be a bounded lattice, T be a t-norm on L. The order defined as follows is called a T-partial order (triangular order) for a t-norm T.

$$
x \preceq_{T} y: \Leftrightarrow T(\ell, y)=x \quad \text { for some } \ell \in L .
$$

Definition 4 [19]

(i) A t-norm T on a lattice L is called \wedge-distributive if

$$
\begin{aligned}
& \qquad T\left(a, b_{1} \wedge b_{2}\right)=T\left(a, b_{1}\right) \wedge T\left(a, b_{2}\right) \\
& \text { for every } a, b_{1}, b_{2} \in L
\end{aligned}
$$

Figure $1(L=\{0, a, b, c, 1\}, \leq, 0,1)$.

(ii) A t-norm T on a complete lattice $(L, \leq, 0,1)$ is called infinitely \wedge-distributive if

$$
T\left(a, \wedge_{I} b_{\tau}\right)=\wedge_{I} T\left(a, b_{\tau}\right)
$$

for every subset $\left\{a, b_{\tau} \in L, \tau \in I\right\}$ of L.

3 T-distributivity

Definition 5 Let $(L, \leq, 0,1)$ be a bounded lattice and T_{1} and T_{2} be two t-norms on L. For every $x, y, z \in L$ such that at least one of the elements y, z is not 1 , if the condition

$$
T_{1}\left(x, T_{2}(y, z)\right)=T_{2}\left(T_{1}(x, y), T_{1}(x, z)\right)
$$

is satisfied, then T_{1} is called T_{2}-distributive or we say that T_{1} is distributive over T_{2}.
Example 1 Let $(L=\{0, a, b, c, 1\}, \leq, 0,1)$ be a bounded lattice whose lattice diagram is displayed in Figure 1.
The functions T_{1} and T_{2} on the lattice L defined by

$$
T_{1}(x, y)= \begin{cases}0, & \text { if } x=a, y=a \\ b, & \text { if } x=c, y=c \\ x \wedge y, & \text { otherwise }\end{cases}
$$

and

$$
T_{2}(x, y)= \begin{cases}b, & \text { if } x=c, y=c \\ x \wedge y, & \text { otherwise }\end{cases}
$$

are obviously t-norms on L such that T_{1} is T_{2}-distributive.

Proposition 1 Let $(L, \leq, 0,1)$ be a bounded lattice and T_{1} and T_{2} be two t-norms on L. If T_{1} is T_{2}-distributive, then T_{1} is weaker than T_{2}.

Proof Since all t-norms coincide on the boundary of L^{2}, it is sufficient to show that $T_{1} \leq T_{2}$ for all $x, y, z \in L \backslash\{0,1\}$. By the T_{2}-distributivity of T_{1}, it is obtained that

$$
T_{1}(x, y)=T_{1}\left(T_{2}(x, 1), y\right)=T_{2}\left(T_{1}(x, y), T_{1}(1, y)\right)=T_{2}\left(T_{1}(x, y), y\right) \leq T_{2}(x, y)
$$

Thus, $T_{1} \leq T_{2}$, i.e., T_{1} is weaker than T_{2}.

Remark 1 The converse of Proposition 1 need not be true. Namely, for any two t-norms T_{1} and T_{2}, even if T_{1} is weaker than T_{2}, T_{1} may not be T_{2}-distributive. Now, let us investigate the following example.

Example 2 Consider the product T_{P} and the Łukasiewicz t-norm T_{L}. It is clear that $T_{L}<T_{P}$. Since

$$
T_{L}\left(\frac{3}{4}, T_{P}\left(\frac{5}{8}, \frac{1}{2}\right)\right)=T_{L}\left(\frac{3}{4}, \frac{5}{16}\right)=\frac{1}{16}
$$

and

$$
T_{P}\left(T_{L}\left(\frac{3}{4}, \frac{5}{8}\right), T_{L}\left(\frac{3}{4}, \frac{1}{2}\right)\right)=T_{P}\left(\frac{3}{8}, \frac{1}{4}\right)=\frac{3}{32}
$$

T_{L} is not T_{P}-distributive.

Corollary 1 Let L be a bounded lattice and T_{1} and T_{2} be any two t-norms on L. If both T_{1} is T_{2}-distributive and T_{2} is T_{1}-distributive, then $T_{1}=T_{2}$.

Proposition 2 Let L be a bounded chain and T^{\prime} be a t-norm on L. For every t-norm T, T is T^{\prime}-distributive if and only if $T^{\prime}=T_{\wedge}$.

Proof $: \Rightarrow$ Let T be an arbitrary t-norm on L such that T^{\prime}-distributive. By Proposition 1, it is obvious that $T \leq T^{\prime}$ for any t-norm T. Thus, $T^{\prime}=T_{\wedge}$.
\Leftarrow : Since L is a chain, for any $y, z \in L$, either $y \leq z$ or $z \leq y$. Suppose that $y \leq z$. By using the monotonicity of any t-norm T, it is obtained that for any $x \in L, T(x, y) \leq T(x, z)$. Then

$$
T(x, y)=T(x, y) \wedge T(x, z)
$$

holds. Thus, for any $x, y, z \in L$,

$$
\begin{aligned}
T\left(x, T_{\wedge}(y, z)\right) & =T(x, y) \\
& =T(x, y) \wedge T(x, z) \\
& =T_{\wedge}(T(x, y), T(x, z))
\end{aligned}
$$

is satisfied, which shows that any t-norm T is T_{\wedge}-distributive.

Remark 2 In Proposition 2, if L is not a chain, then the left-hand side of Proposition 2 may not be satisfied. Namely, if L is not a chain, then any t-norm T need not be T_{\wedge}-distributive. Moreover, even if L is a distributive lattice, any t-norm on L may not be T_{\wedge}-distributive. Now, let us investigate the following example.

Example 3 Consider the lattice ($L=\{0, x, y, z, a, 1\}, \leq$) as displayed in Figure 2.
Obviously, L is a distributive lattice. Define the function T on L as shown in Table 1.
One can easily check that T is a t-norm. Since

$$
T\left(a, T_{\wedge}(y, z)\right)=T(a, x)=0
$$

Figure $2(L=\{0, x, y, z, a, 1\}, \leq)$.

Table $1 T$-norm on the lattice ($L=\{0, x, y, z, a, 1\}, \leq)$

\boldsymbol{T}	$\mathbf{0}$	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{a}	$\mathbf{1}$
0	0	0	0	0	0	0
x	0	0	0	0	0	x
y	0	0	y	0	y	y
z	0	0	0	z	z	z
a	0	0	y	z	a	a
1	0	x	y	z	a	1

and

$$
T_{\wedge}(T(a, y), T(a, z))=T_{\wedge}(y, z)=x,
$$

T is not T_{\wedge}-distributive.

Remark 3 The fact that any t-norm T is T_{\wedge}-distributive means that T is \wedge-distributive.

Theorem 1 Let $(L, \leq, 0,1)$ be a bounded lattice. For any t-norm T on L, T_{D} is T distributive.

Proof Let T be an arbitrary t-norm on L. We must show that the equality

$$
T_{D}(x, T(y, z))=T\left(T_{D}(x, y), T_{D}(x, z)\right)
$$

holds for every element x, y, z of L with $y \neq 1$ or $z \neq 1$. Suppose that $z \neq 1$. If $x=1$, the desired equality holds since $T_{D}(x, T(y, z))=T(y, z)$ and $T\left(T_{D}(x, y), T_{D}(x, z)\right)=T(y, z)$. Let $x \neq 1$. Then $y=1$ or $y \neq 1$. If $y=1$, since $T_{D}(x, T(y, z))=T_{D}(x, z)=0$ and $T\left(T_{D}(x, y), T_{D}(x, z)\right)=$ $T(x, 0)=0$, the equality holds again. Now, let $y \neq 1$. Since $T(y, z) \leq y \leq 1$ and $y \neq 1$, $T(y, z) \neq 1$. Then $T_{D}(x, T(y, z))=0$ and $T\left(T_{D}(x, y), T_{D}(x, z)\right)=T(0,0)=0$, whence the equality holds. Thus, T_{D} is T-distributive for any t-norm T on L.

Proposition 3 [20] If T is a t-norm and $\varphi:[0,1] \rightarrow[0,1]$ is a strictly increasing bijection, then the operation $T_{\varphi}:[0,1]^{2} \rightarrow[0,1]$ given by

$$
T_{\varphi}(x, y)=\varphi^{-1}(T(\varphi(x), \varphi(y)))
$$

Let T_{1} and T_{2} be any two t-norms on $[0,1]$ and let φ be a strictly increasing bijection from $[0,1]$ to $[0,1]$. Denote the φ-transforms of the t-norms T_{1} and T_{2} by T_{φ}^{1} and T_{φ}^{2}, respectively.

Theorem 2 Let T_{1} and T_{2} be any t-norms on $[0,1]$ and let φ be a strictly increasing bijection from $[0,1]$ to $[0,1] . T_{1}$ is T_{2}-distributive if and only if T_{φ}^{1} is T_{φ}^{2}-distributive.

Proof Let T_{1} be T_{2}-distributive. We must show that for every $x, y, z \in[0,1]$ with $y \neq 1$ or $z \neq 1$,

$$
T_{\varphi}^{1}\left(x, T_{\varphi}^{2}(y, z)\right)=T_{\varphi}^{2}\left(T_{\varphi}^{1}(x, y), T_{\varphi}^{1}(x, z)\right)
$$

Since $\varphi:[0,1] \rightarrow[0,1]$ is a strictly increasing bijection, for every element $y, z \in[0,1]$ with $y \neq 1$ or $z \neq 1$, it must be $\varphi(y) \neq 1$ or $\varphi(z) \neq 1$. By using T_{2}-distributivity of T_{1}, we obtain that the equality

$$
\begin{aligned}
T_{\varphi}^{1}\left(x, T_{\varphi}^{2}(y, z)\right) & =\varphi^{-1}\left(T_{1}\left(\varphi(x), \varphi\left(T_{\varphi}^{2}(y, z)\right)\right)\right) \\
& =\varphi^{-1}\left(T_{1}\left(\varphi(x), \varphi\left(\varphi^{-1}\left(T_{2}(\varphi(y), \varphi(z))\right)\right)\right)\right) \\
& =\varphi^{-1}\left(T_{1}\left(\varphi(x), T_{2}(\varphi(y), \varphi(z))\right)\right) \\
& =\varphi^{-1}\left(T_{2}\left(T_{1}(\varphi(x), \varphi(y)), T_{1}(\varphi(x), \varphi(z))\right)\right) \\
& =\varphi^{-1}\left(T_{2}\left(\left(\varphi \circ \varphi^{-1}\right) T_{1}(\varphi(x), \varphi(y)),\left(\varphi \circ \varphi^{-1}\right) T_{1}(\varphi(x), \varphi(z))\right)\right) \\
& =\varphi^{-1}\left(T_{2}\left(\varphi\left(\varphi^{-1}\left(T_{1}(\varphi(x), \varphi(y))\right)\right), \varphi\left(\varphi^{-1}\left(T_{1}(\varphi(x), \varphi(z))\right)\right)\right)\right) \\
& =\varphi^{-1}\left(T_{2}\left(\varphi\left(T_{\varphi}^{1}(x, y)\right), \varphi\left(T_{\varphi}^{1}(x, z)\right)\right)\right) \\
& =T_{\varphi}^{2}\left(T_{\varphi}^{1}(x, y), T_{\varphi}^{1}(x, z)\right)
\end{aligned}
$$

holds. Thus, T_{φ}^{1} is T_{φ}^{2}-distributive.
Conversely, let T_{φ}^{1} be T_{φ}^{2}-distributive. We will show that $T_{1}\left(x, T_{2}(y, z)\right)=T_{2}\left(T_{1}(x, y)\right.$, $\left.T_{1}(x, z)\right)$ for every element $x, y, z \in[0,1]$ with $y \neq 1$ or $z \neq 1$. Since T_{φ}^{1} is the φ-transform of the t-norm T_{1}, for every $x, y \in[0,1], T_{\varphi}^{1}(x, y)=\varphi^{-1}\left(T_{1}(\varphi(x), \varphi(y))\right)$. Since φ is a bijection, it is clear that

$$
\begin{equation*}
T_{1}(\varphi(x), \varphi(y))=\varphi\left(T_{\varphi}^{1}(x, y)\right) \tag{1}
\end{equation*}
$$

holds. Also, by using (1), it is obtained that

$$
\begin{equation*}
T_{1}(x, y)=T_{1}\left(\varphi\left(\varphi^{-1}(x)\right), \varphi\left(\varphi^{-1}(y)\right)\right)=\varphi\left(T_{\varphi}^{1}\left(\varphi^{-1}(x), \varphi^{-1}(y)\right)\right) \tag{2}
\end{equation*}
$$

From (2), it follows

$$
\begin{equation*}
T_{\varphi}^{1}\left(\varphi^{-1}(x), \varphi^{-1}(y)\right)=\varphi^{-1}\left(T_{1}(x, y)\right) \tag{3}
\end{equation*}
$$

Also, the similar equalities for t-norm T_{2} can be written. Since $\varphi^{-1}(y) \neq 1$ or $\varphi^{-1}(z) \neq 1$ for every $y, z \in[0,1]$ with $y \neq 1$ or $z \neq 1$, by using T_{φ}^{2}-distributivity of T_{φ}^{1}, it is obtained that the
following equalities:

$$
\begin{aligned}
T_{1}\left(x, T_{2}(y, z)\right) & \stackrel{(2)}{=} T_{1}\left(x, \varphi\left(T_{\varphi}^{2}\left(\varphi^{-1}(y), \varphi^{-1}(z)\right)\right)\right) \\
& \stackrel{(2)}{=} \varphi\left(T_{\varphi}^{1}\left(\varphi^{-1}(x), \varphi^{-1}\left(\varphi\left(T_{\varphi}^{2}\left(\varphi^{-1}(y), \varphi^{-1}(z)\right)\right)\right)\right)\right) \\
& =\varphi\left(T_{\varphi}^{1}\left(\varphi^{-1}(x), T_{\varphi}^{2}\left(\varphi^{-1}(y), \varphi^{-1}(z)\right)\right)\right) \\
& =\varphi\left(T_{\varphi}^{2}\left(T_{\varphi}^{1}\left(\varphi^{-1}(x), \varphi^{-1}(y)\right), T_{\varphi}^{1}\left(\varphi^{-1}(x), \varphi^{-1}(z)\right)\right)\right) \\
& \stackrel{(3)}{=} \varphi\left(T_{\varphi}^{2}\left(\varphi^{-1}\left(T_{1}(x, y)\right), \varphi^{-1}\left(T_{1}(x, z)\right)\right)\right) \\
& \stackrel{(2)}{=} \varphi\left(\varphi^{-1}\left(T_{2}\left(T_{1}(x, y), T_{1}(x, z)\right)\right)\right) \\
& =T_{2}\left(T_{1}(x, y), T_{1}(x, z)\right)
\end{aligned}
$$

hold. Thus, T_{1} is T_{2}-distributive.
Proposition $4 \operatorname{Let}(L, \leq, 0,1)$ be a bounded lattice and T_{1} and T_{2} be two t-norms on L such that T_{1} is T_{2}-distributive. If T_{1} is divisible, then T_{2} is also divisible.

Proof Consider two elements x, y of L with $x \leq y$. If $x=y$, then T_{2} would be always a divisible t-norm since $T_{2}(y, 1)=y=x$. Let $x \neq y$. Since T_{1} is divisible, there exists an element $1 \neq z$ of L such that $T_{1}(y, z)=x$. Then, by using T_{2}-distributivity of T_{1}, it is obtained that

$$
\begin{aligned}
x & =T_{1}(y, z)=T_{1}\left(y, T_{2}(z, 1)\right) \\
& =T_{2}\left(T_{1}(y, z), T_{1}(y, 1)\right) \\
& =T_{2}\left(T_{1}(y, z), y\right) .
\end{aligned}
$$

Thus, for any elements x, y of L with $x \leq y$ and $x \neq y$, since there exists an element $T_{1}(y, z) \in$ L such that $x=T_{2}\left(T_{1}(y, z), y\right), T_{2}$ is a divisible t-norm.

Corollary 2 Let $(L, \leq, 0,1)$ be a bounded lattice and T_{1} and T_{2} be two t-norms on L. If T_{1} is T_{2}-distributive, then the T_{1}-partial order implies the T_{2}-partial order.

Proof Let $a \preceq_{T_{1}} b$ for any $a, b \in L$. If $a=b$, then it would be $a \preceq_{T_{2}} b$ since $T_{2}(b, 1)=b=a$ for the element $1 \in L$. Now, suppose that $a \preceq_{T_{1}} b$ but $a \neq b$. Then there exists an element $\ell \in L$ such that $T_{1}(b, \ell)=a$. Since $a \neq b$, it must be $\ell \neq 1$. Then $T_{1}\left(b, T_{2}(\ell, 1)\right)=T_{1}(b, \ell)=a$. Since T_{1} is T_{2}-distributive, it is obtained that

$$
\begin{aligned}
a & =T_{1}\left(b, T_{2}(\ell, 1)\right)=T_{2}\left(T_{1}(b, \ell), T_{1}(b, 1)\right) \\
& =T_{2}(a, b) .
\end{aligned}
$$

for elements $b, \ell, 1 \in L$ with $\ell \neq 1$, whence $a \leq T_{2} b$. So, we obtain that $\leq_{T_{1}} \subseteq \preceq_{T_{2}}$.
Remark 4 For any t-norms T_{1} and T_{2}, if T_{1} is T_{2}-distributive, then we show that T_{1} is weaker than T_{2} in Proposition 1 and the T_{1}-partial order implies the T_{2}-partial order in Proposition 2. Although T_{1} is weaker than T_{2}, that does not require the T_{1}-partial order to imply the T_{2}-partial order. Let us investigate the following example illustrating this case.

Example 4 Consider the drastic product T_{P} and the function defined as follows:

$$
T^{*}(x, y)= \begin{cases}x y, & \text { if }(x, y) \in\left[0, \frac{1}{2}\right]^{2} \\ \min (x, y), & \text { otherwise }\end{cases}
$$

It is clear that the function T^{*} is a t-norm such that $T_{P} \leq T^{*}$, but $\preceq_{T P} \nsubseteq \preceq_{T^{*}}$. Indeed. First, let us show that $\frac{3}{8} \npreceq_{T^{*}} \frac{1}{2}$. Suppose that $\frac{3}{8} \preceq_{T^{*}} \frac{1}{2}$. Then, for some $\ell \in[0,1]$,

$$
T^{*}\left(\ell, \frac{1}{2}\right)=\frac{3}{8} .
$$

For $\ell \in[0,1]$, either $\ell \leq \frac{1}{2}$ or $\ell>\frac{1}{2}$. Let $\ell \leq \frac{1}{2}$. Since $\frac{3}{8}=T^{*}\left(\ell, \frac{1}{2}\right)=\frac{1}{2} \ell$, it is obtained that $\ell=\frac{3}{4}$, which contradicts $\ell \leq \frac{1}{2}$. Then it must be $\ell>\frac{1}{2}$. Since $\frac{3}{8}=T^{*}\left(\ell, \frac{1}{2}\right)=\min \left(\ell, \frac{1}{2}\right)=\frac{1}{2}$, which is a contradiction. Thus, it is obtained that $\frac{3}{8} \npreceq T^{*} \frac{1}{2}$. On the other hand, since $x \preceq_{T_{P}} y$ means that there exists an element ℓ of L such that $T_{p}(\ell, y)=\ell y=x$ and $T_{P}\left(\frac{1}{2}, \frac{3}{4}\right)=\frac{3}{8}$, we have that $\frac{3}{8} \preceq_{T_{P}} \frac{1}{2}$. So, it is obtained that $\preceq_{T} \nsubseteq \preceq_{T^{*}}$.

Now, let us construct a family of t-norms which are not distributive over each other with the help of incomparable elements in a bounded lattice.

Theorem 3 Let L be a complete lattice and $\left\{S_{\alpha} \mid \alpha \in I\right\}$ be a nonempty family of nonempty sets consisting of the elements in L which are all incomparable to each other with respect to the order on L. Iffor any element $u \in S_{\alpha}, \inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$ is comparable to every element in L, then the family $\left(T_{u}\right)_{u \in S_{\alpha}}$ defined by

$$
T_{u}(x, y)= \begin{cases}\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, & \text { if }(x, y) \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2} \\ x \wedge y, & \text { otherwise }\end{cases}
$$

is a family of t-norms which are not distributive over each other. Namely, for any $\ell, q \in S_{\alpha}$, neither T_{ℓ} is T_{q}-distributive nor T_{q} is T_{ℓ}-distributive.

Proof Firstly, let us show that for every $u \in S_{\alpha}$, each function T_{u} is a t-norm.
(i) Since $x \leq 1$, for every element $x \in L, 1 \notin S_{\alpha}$. Then it follows $T_{u}(x, 1)=x \wedge 1=x$ from $(x, 1) \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$, that is, the boundary condition is satisfied.
(ii) It can be easily shown that the commutativity holds.
(iii) Considering the monotonicity, suppose that $x \leq y$ for $x, y \in L$. Let $z \in L$ be arbitrary. Then there are the following possible conditions for the couples $(x, z),(y, z)$.

- Let $(x, z),(y, z) \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$. Then we get clearly the equality

$$
T_{u}(x, z)=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}=T_{u}(y, z) .
$$

- Let $(x, z) \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$ and $(y, z) \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$. Then $y \notin$ $\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]$. Clearly, $T_{u}(x, z)=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$ and $T_{u}(y, z)=y \wedge z$. Since $x \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]$ and $x \leq y$, we obtain $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq y . \operatorname{By} \inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in\right.$ $\left.S_{\alpha}\right\} \leq z$, we get $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq y \wedge z$, whence $T_{u}(x, z) \leq T_{u}(y, z)$.
- Let $(x, z) \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$ and $(y, z) \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$. Then it is clear that $x \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]$. In this case,

$$
T_{u}(x, z)=x \wedge z \quad \text { and } \quad T_{u}(y, z)=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} .
$$

By $x \leq y$ and $y \leq u$, it is clear that $x \leq u$. Since $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$ is comparable to every element in L, either $x \leq \inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$ or $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq x$. If $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in\right.$ $\left.S_{\alpha}\right\} \leq x$, it would be $x \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]$ from $x \leq u$, a contradiction. Thus, it must be $x \leq \inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$. Since $z \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right], x \wedge z=x$. Thus, the inequality

$$
T_{u}(x, z)=x \wedge z=x \leq \inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}=T_{u}(y, z)
$$

holds.

- Let $(x, z),(y, z) \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$. By $x \leq y$, we have that

$$
T_{u}(x, z)=x \wedge z \leq y \wedge z=T_{u}(y, z)
$$

So, the monotonicity holds.
(iv) Now let us show that for every $x, y, z \in L$, the equality $T_{u}\left(x, T_{u}(y, z)\right)=T_{u}\left(T_{u}(x, y), z\right)$ holds.

- Let $(x, y),(y, z) \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$. Then

$$
T_{u}\left(x, T_{u}(y, z)\right)=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}
$$

and

$$
T_{u}\left(T_{u}(x, y), z\right)=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}
$$

whence the equality holds.

- If $(x, y) \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$ and $(y, z) \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$, then it must be $z \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]$. Here, there are two choices for z : either $z \in S_{\alpha}$ or $z \notin S_{\alpha}$.

Let $z \in S_{\alpha}$. Then $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq z$. By the inequality $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq u$, it is clear that $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq u \wedge z$. Since $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq y \leq u$, the following inequalities:

$$
\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \wedge z \leq y \wedge z \leq y \leq u
$$

hold, that is, $y \wedge z \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]$. Thus, we have that

$$
T_{u}\left(x, T_{u}(y, z)\right)=T_{u}(x, y \wedge z)=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}
$$

and

$$
\begin{aligned}
T_{u}\left(T_{u}(x, y), z\right) & =T_{u}\left(\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, z\right) \\
& =\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \wedge z=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} .
\end{aligned}
$$

So, the equality holds again.

Let $z \notin S_{\alpha}$. Then there exists at least an element v in S_{α} such that v is comparable to the element z; i.e., either $z \leq v$ or $v \leq z$. Let $v \leq z$. Since $u, v \in S_{\alpha}$, it is clear that $\inf \{u \wedge$ $\left.\mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq u \wedge v \leq u \wedge z \leq u$. Also, from the inequalities $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq y$ and $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq v \leq z$, it follows $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \leq y \wedge z \leq y \leq u$, i.e., it is obtained that $y \wedge z \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]$. Thus,

$$
T_{u}\left(x, T_{u}(y, z)\right)=T_{u}(x, y \wedge z)=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}
$$

and

$$
\begin{aligned}
T_{u}\left(T_{u}(x, y), z\right) & =T_{u}\left(\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, z\right) \\
& =\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \wedge z \\
& =\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} .
\end{aligned}
$$

Thus, the equality is satisfied.
Now, suppose that $z \leq v$. If $u \leq z$, it would be $u \leq v$, which is a contradiction. Thus, either $z<u$ or z and u are not comparable. If $z<u$, then it must be $z<\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$ since $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$ is comparable to every element in L and $z \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]$. Thus, we have that

$$
\begin{aligned}
T_{u}\left(T_{u}(x, y), z\right) & =T_{u}\left(\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, z\right) \\
& =\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \wedge z \\
& =z
\end{aligned}
$$

and

$$
\begin{aligned}
T_{u}\left(x, T_{u}(y, z)\right) & =T_{u}(x, y \wedge z) \\
& =T_{u}(x, z) \\
& =x \wedge z=z,
\end{aligned}
$$

whence the equality holds.
Let z and u be not comparable. Since $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$ is comparable to every element in L, either $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}<z$ or $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}>z$. If $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}>z$, it would be $z<u$, a contradiction. Then it must be $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}<z$. By inf $\left\{u \wedge \mu_{i} \mid \mu_{i} \in\right.$ $\left.S_{\alpha}\right\}=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \wedge y<y \wedge z<y<u$, it is obtained that $y \wedge z \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]$. Then the equalities

$$
T_{u}\left(x, T_{u}(y, z)\right)=T_{u}(x, y \wedge z)=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}
$$

and

$$
\begin{aligned}
T_{u}\left(T_{u}(x, y), z\right) & =T_{u}\left(\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, z\right) \\
& =\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} \wedge z=\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}
\end{aligned}
$$

In this case, the equality is satisfied.

Similarly, one can show that the equality $T_{u}\left(x, T_{u}(y, z)\right)=T_{u}\left(T_{u}(x, y), z\right)$ holds when $(x, y) \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$ and $(y, z) \in\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$.

- Now, let us investigate the last condition. If $(x, y),(y, z) \notin\left[\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, u\right]^{2}$, then it is obvious that

$$
T_{u}\left(x, T_{u}(y, z)\right)=T_{u}(x, y \wedge z)=x \wedge(y \wedge z)
$$

and

$$
T_{u}\left(T_{u}(x, y), z\right)=T_{u}(x \wedge y, z)=(x \wedge y) \wedge z
$$

whence the equality holds.
Consequently, we prove that $\left(T_{u}\right)_{u \in S_{\alpha}}$ is a family of t-norms on L. Now, we will show that for every $m, n \in S_{\alpha}, T_{m}$ and T_{n} are not distributive t-norms over each other.
Suppose that T_{m} is T_{n}-distributive. By Proposition 1, it must be $T_{m} \leq T_{n}$, that is, for every $x, y \in L, T_{m}(x, y) \leq T_{n}(x, y)$. Since m and n are not comparable, it is clear that $n \not \leq m$ and $m \not \leq n$. Then n must not be $\operatorname{in}\left[\inf \left\{m \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, m\right]$. Thus,

$$
T_{m}(n, n)=n \wedge n=n .
$$

On the other hand, since $n \in\left[\inf \left\{n \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}, n\right]$,

$$
T_{n}(n, n)=\inf \left\{n \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\} .
$$

Then we have that $T_{n}(n, n) \neq T_{m}(n, n)$. Otherwise, we obtain that $n \leq m$, which is a contradiction. So, we have that $T_{n}(n, n)<T_{m}(n, n)$ contradicts $T_{m} \leq T_{n}$. Thus, T_{m} is not T_{n}-distributive. Similarly, it can be shown that T_{n} is not T_{m}-distributive. So, the family given above is a family of t-norms which are not distributive over each other.

To explain how the family $\left(S_{\alpha}\right)_{\alpha \in I}$ in Theorem 3 can be determined, let us investigate the following example.

Example 5 Let $(L=\{0, a, b, c, d, e, 1\}, \leq, 0,1)$ be a bounded lattice as shown in Figure 3.
For the family of $\left(S_{\alpha}\right)_{\alpha \in I}$, there are two choices: one of them must be $S_{\alpha_{1}}=\{c, d, e\}$ and the other must be $S_{\alpha_{2}}=\{b, e\}$. Then, by Theorem 3, for every $u \in S_{\alpha_{1}}$ and $v \in S_{\alpha_{2}}$, the following

Figure $3(L=\{0, a, b, c, d, e, 1\}, \leq, 0,1)$.

Figure $4(L=\{0, a, b, c, d, e, f, g, h, j, 1\}, \leq, 0,1)$.

functions:

$$
T_{u}(x, y)= \begin{cases}a, & \text { if }(x, y) \in[a, u]^{2} \\ x \wedge y, & \text { otherwise }\end{cases}
$$

and

$$
T_{\nu}(x, y)= \begin{cases}a, & \text { if }(x, y) \in[a, v]^{2} \\ x \wedge y, & \text { otherwise }\end{cases}
$$

are two families of t-norms.

Remark 5 In Theorem 3, if the condition that $\inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$ is comparable to every element in L is canceled, then for any element $u \in S_{\alpha}, T_{u}$ is not a t-norm. The following is an example showing that T_{u} is not a t-norm when the condition that for any element $u \in S_{\alpha}, \inf \left\{u \wedge \mu_{i} \mid \mu_{i} \in S_{\alpha}\right\}$ is comparable to every element in L is canceled.

Example 6 Let $(L=\{0, a, b, c, d, e, f, g, h, j, 1\}, \leq, 0,1)$ be a bounded lattice as displayed in Figure 4.
From Figure 4, it is clear that $\inf \{j, e, f\}=a$ is not comparable to b. However, for the set $S=\{j, e, f\}$, the function defined by

$$
T_{e}(x, y)= \begin{cases}a, & \text { if }(x, y) \in[a, e]^{2} \\ x \wedge y, & \text { otherwise }\end{cases}
$$

does not satisfy the associativity since $T_{e}\left(T_{e}(c, d), b\right)=0$ and $T_{e}\left(c, T_{e}(d, b)\right)=b$. So, T_{e} is not a t-norm.

4 Conclusions

In this paper, we introduced the notion of T-distributivity for any t-norm on a bounded lattice and discussed some properties of T-distributivity. We determined a necessary and sufficient condition for T_{D} to be T-distributive and for T to be T_{\wedge}-distributive. We obtained that T-distributivity is preserved under the isomorphism. We proved that the divisibility of t-norm T_{1} requires the divisibility of t-norm T_{2} for any two t-norms T_{1} and
T_{2} where T_{1} is T_{2}-distributive. Also, we constructed a family of t-norms which are not distributive over each other with the help of incomparable elements in a bounded lattice.

Competing interests

The author declares that they have no competing interests.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

Received: 4 December 2012 Accepted: 31 January 2013 Published: 15 February 2013

References

1. Menger, K: Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535-537 (1942)
2. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. Elsevier, Amsterdam (1983)
3. Höhle, U: Commutative: residuated ℓ-monoids. In: Höhle, U, Klement, EP (eds.) Non-Classical Logics and Their Applications to Fuzzy Subsets: a Handbook on the Math., Foundations of Fuzzy Set Theory. Kluwer Academic, Dordrecht (1995)
4. Liang, X, Pedrycz, W: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160, 3475-3502 (2009)
5. Butnariu, D, Klement, EP: Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer Academic, Dordrecht (1993)
6. Klement, EP, Mesiar, R, Pap, E: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8, 701-717 (2000)
7. Klement, EP, Weber, S: An integral representation for decomposable measures of measurable functions. Aequ. Math. 47, 255-262 (1994)
8. Kolesárová, A: On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 5, 759-766 (1997)
9. Birkhoff, G: Lattice Theory, 3rd edn. Am. Math. Soc., Providence (1967)
10. De Baets, B, Mesiar, R: Triangular norms on product lattices. Fuzzy Sets Syst. 104, 61-75 (1999)
11. Jenei, S, De Baets, B: On the direct decomposability of t-norms on product lattices. Fuzzy Sets Syst. 139, 699-707 (2003)
12. Karaçal, F, Kesicioğlu, MN: A T-partial order obtained from t-norms. Kybernetika 47, 300-314 (2011)
13. Karaçal, F, Sağıroğlu, Y: Infinitely \bigvee-distributive t-norm on complete lattices and pseudo-complements. Fuzzy Sets Syst. 160, 32-43 (2009)
14. Karaçal, F, Khadjiev, D: \bigvee-distributive and infinitely \bigvee-distributive t-norms on complete lattice. Fuzzy Sets Syst. 151, 341-352 (2005)
15. Karaçal, F: On the direct decomposability of strong negations and S-implication operators on product lattices. Inf. Sci. 176, 3011-3025 (2006)
16. Saminger, S: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157, 1403-1416 (2006)
17. Saminger-Platz, S, Klement, EP, Mesiar, R: On extensions of triangular norms on bounded lattices. Indag. Math. 19, 135-150 (2009)
18. Casasnovas, J, Mayor, G: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159, 1165-1177 (2008)
19. Wang, Z, Yu, Y: Pseudo t-norms and implication operators: direct product and direct product decompositions. Fuzzy Sets Syst. 139, 673-683 (2003)
20. Klement, EP, Mesiar, R, Pap, E: Triangular Norms. Kluwer Academic, Dordrecht (2000)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © 2013 Kesicioğlu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1687-1812-2013-32
 Cite this article as: Kesicioğlu: On the property of T-distributivity. Fixed Point Theory and Applications 2013 2013:32.

