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This paper proposes a novel antiwindup controller for 2D discrete linear systems with saturating controls in Fornasini-Marchesini
second local state space (FMSLSS) setting. A Lyapunov-based method to design an antiwindup gain of 2D discrete systems with
saturating controls is established. Stability conditions allowing the design of antiwindup loops, in both local and global contexts
have been derived. Numerical examples are provided to illustrate the applicability of the proposed method.

1. Introduction

An important problem which is always inherent to all dy-
namical systems is the presence of actuator saturation non-
linearities. Such nonlinearities may lead to performance
degradation and even instability for feedback control sys-
tems. The stability analysis of the continuous as well as
discrete time linear systems with saturating controls has been
widely considered for one-dimensional (1D) systems [1–10].
The commonly used techniques to design controllers taking
into account actuator saturation are (i) constrained model
predictive control [4, 11], (ii) scheduled controllers [12], and
(iii) antiwindup compensators [13–18]. Model predictive
controllers find applications in chemical industries for the
control of systems with saturations. Scheduled controllers
also called piecewise linear controller or gain scheduling
schemes are often used in aerospace industry. Antiwindup
compensators are widely used in practice for the control
systems with saturating actuators [14, 15]. Design of anti-
windup controllers can be carried out using linear design
methods which explain its usefulness and popularity among
control engineers. The actuator saturation problem is tackled
following the “antiwindup paradigm” which employs a two-
step design procedure. The main idea here is to design a

linear controller ignoring the saturation nonlinearities and
then augment this controller with extra dynamics to min-
imize the adverse effects of saturation on the closed loop
performance. Several results as well as design schemes on the
antiwindup problem and compensation gain are formulated
and the stability conditions have been mentioned for 1D
systems [7–10, 14–18].

In the recent years, two-dimensional (2D) discrete sys-
tems have found various applications in many areas such as
filtering, image processing, seismographic data processing,
thermal processes, gas absorption, and water stream heating
[19–22]. Mathematically, a 2D discrete system is represented
by a set of difference equations with two space coordinates.
The stability properties of 2D discrete systems described
by Fornasini-Marchesini second local state space (FMSLSS)
model [19] has been studied in [23–33]. Lyapunov-based
sufficient conditions for the global asymptotic stability
of linear FMSLSS model have been reported in [23–26].
The stabilization problem of 2D continuous time saturated
systems by state feedback control has been considered in
[34]. The stability analysis of 2D discrete systems with state
saturation nonlinearities has been carried out in [24, 27–33].
However, to the best of the authors’ knowledge, no previous

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193608325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 ISRN Computational Mathematics

work has considered the area of “antiwindup paradigm” for
2-D saturated systems.

Inspired by the results [9] for 1D discrete-time systems,
this paper investigates the antiwindup problem for 2D dis-
crete systems described by FMSLSS model with saturating
controls. The paper aims at providing a technique to com-
pute the antiwindup gain of the 2D dynamic compensator
that ensures the stability of the overall closed loop system in
local as well as global context. Utilizing the sector description
of saturation nonlinearities and 2D quadratic Lyapunov
function, linear-matrix-inequality- (LMI-) based stability
conditions are obtained.

The paper is organized as follows. In Section 2, the
problem considered has been stated. The necessary concepts
required in the paper have also been provided. LMI-based
criteria for the stability of closed loop systems are developed
in Section 3. In Section 4, the applicability of the presented
approach has been demonstrated with the help of numerical
examples. Section 5 presents the applicability of the designed
antiwindup controller.

2. Problem Statement

Consider the 2D discrete system described by FMSLSS model
[19]

x
(
i + 1, j + 1

) = A1x
(
i + 1, j

)
+ A2x

(
i, j + 1

)

+ B1u
(
i + 1, j

)
+ B2u

(
i, j + 1

)
,

y
(
i, j
) = Cx

(
i, j
)
,

(1)

where i ∈ Z+, j ∈ Z+, and Z+ denotes the set of nonnegative
integers. The x(i, j) ∈ �n is a state vector, u(i, j) ∈ �m is
an input vector, and y(i, j) ∈ �p is an output vector. The
matrices Ak ∈ �n×n, Bk ∈ �n×m (k = 1, 2), and C ∈
�p×n are known constant matrices representing a nominal
plant.

Let a linear 2D dynamic compensator which stabilizes
system (1) and meets the desired performance specifications
in the absence of actuator saturation be given by

xc
(
i + 1, j + 1

) = Ac1xc
(
i + 1, j

)
+ Ac2xc

(
i, j + 1

)

+ Bc1uc
(
i + 1, j

)
+ Bc2uc

(
i, j + 1

)
,

vc
(
i, j
) = Ccxc

(
i, j
)

+ Dcuc
(
i, j
)
,

(2)

where xc(i, j) ∈ �nc is a controller state vector, uc(i, j) =
y(i, j) ∈ �p is a controller input vector, and vc(i, j) ∈ �m is
a controller output vector. The matrices Ack ∈ �nc×nc , Bck ∈
�nc×p (k = 1, 2), Cc ∈ �m×nc , and Dc ∈ �m×p are constant
matrices of appropriate dimensions.

Suppose that the input vector u(i, j) is subject to ampli-
tude limitations defined as

−u0(l) ≤ u(l)
(
i, j
) ≤ u0(l), (3)

where u0(l) > 0, l = 1, . . . ,m, denote the control amplitude
bounds. Consequently, the actual control signal injected to
the system (1) is a saturated one given by

u
(
i, j
) = sat

(
vc
(
i, j
)) = sat

[
Ccxc

(
i, j
)

+ Dcuc
(
i, j
)]
. (4)

The saturation nonlinearities characterized by

sat
(
vc
(
i, j
))

(l) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−u0(l), if vc(l) < −u0(l),

vc(l), if −u0(l) ≤ vc(l) ≤ u0(l),

u0(l), if vc(l) > u0(l),

(5)

where l = 1, . . . ,m, are under consideration.
The actuator saturation causes windup of the controller

and to mitigate its effect an antiwindup compensation
term is added to the controller. A 2D antiwindup com-
pensator involves adding a correction term of the form
Ec[sat(vc(i, j))− vc(i, j)]. The modified compensator has the
form

x
(
i + 1, j + 1

) = A1x
(
i + 1, j

)
+ A2x

(
i, j + 1

)

+ B1 sat
(

vc
(
i + 1, j

))

+ B2 sat
(

vc
(
i, j + 1

))
,

y
(
i, j
) = Cx

(
i, j
)
,

xc
(
i + 1, j + 1

) = Ac1xc
(
i + 1, j

)
+ Ac2xc

(
i, j + 1

)

+ Bc1Cx
(
i + 1, j

)
+ Bc2Cx

(
i, j + 1

)

+ Ec1
[
sat
(

vc
(
i + 1, j

))− vc
(
i + 1, j

)]

+ Ec2
[
sat
(

vc
(
i, j + 1

))− vc
(
i, j + 1

)]
,

vc
(
i, j
) = Ccxc

(
i, j
)

+ DcCx
(
i, j
)
.

(6)

Let

ψ
(

vc
(
i, j
)) = vc

(
i, j
)− sat

(
vc
(
i, j
))
. (7)

Substituting (7) into (6) we obtain

x
(
i + 1, j + 1

) = A1x
(
i + 1, j

)
+ A2x

(
i, j + 1

)

+ B1
[(

vc
(
i + 1, j

))− ψ(vc
(
i + 1, j

))]

+ B2
[

vc
(
i, j + 1

)− ψ(vc
(
i, j + 1

))]

= A1x
(
i + 1, j

)
+ A2x

(
i, j + 1

)

+ B1
[

Ccxc
(
i + 1, j

)
+ DcCx

(
i + 1, j

)

−ψ(vc
(
i + 1, j

))]

+ B2
[

Ccxc
(
i, j + 1

)
+ DcCx

(
i, j + 1

)

−ψ(vc
(
i, j + 1

))]
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= A1x
(
i + 1, j

)
+ A2x

(
i, j + 1

)

+ B1
[

Ccxc
(
i + 1, j

)
+ DcCx

(
i + 1, j

)]

− B1ψ
[

Ccxc
(
i + 1, j

)
+ DcCx

(
i + 1, j

)]

+ B2
[

Ccxc
(
i, j + 1

)
+ DcCx

(
i, j + 1

)]

− B2ψ
[

Ccxc
(
i, j + 1

)
+ DcCx

(
i, j + 1

)]
,

xc
(
i + 1, j + 1

) = Ac1xc
(
i + 1, j

)
+ Ac2xc

(
i, j + 1

)

+ Bc1Cx
(
i + 1, j

)
+ Bc2Cx

(
i, j + 1

)

+ Ec1
[

vc
(
i + 1, j

)− ψ(vc
(
i + 1, j

))

−vc
(
i + 1, j

)]

+ Ec2
[

vc
(
i, j + 1

)− ψ(vc
(
i, j + 1

))

−vc
(
i, j + 1

)]

= Ac1xc
(
i + 1, j

)
+ Ac2xc

(
i, j + 1

)

+ Bc1Cx
(
i + 1, j

)
+ Bc2Cx

(
i, j + 1

)

− Ec1ψ
[

Ccxc
(
i + 1, j

)
+ DcCx

(
i + 1, j

)]

− Ec2ψ
[

Ccxc
(
i, j + 1

)
+ DcCx

(
i, j + 1

)]
.

(8)

Define an extended state vector

ξ
(
i, j
) =

⎡

⎣
x
(
i, j
)

xc
(
i, j
)

⎤

⎦ ∈ �n+nc . (9)

Using (8) and (9), the closed loop system can be written as

ξ
(
i + 1, j + 1

) = A1ξ
(
i + 1, j

)− (B1 + REc1
)
ψ
(

Kξ
(
i + 1, j

))

+ A2ξ
(
i, j + 1

)

− (B2 + REc2
)
ψ
(

Kξ
(
i, j + 1

))
,

(10a)

where

A1 =
⎡

⎣
A1 + B1DcC B1Cc

Bc1C Ac1

⎤

⎦,

A2 =
⎡

⎣
A2 + B2DcC B2Cc

Bc2C Ac2

⎤

⎦,

B1 =
⎡

⎣
B1

0

⎤

⎦, B2 =
⎡

⎣
B2

0

⎤

⎦,

R =
⎡

⎣
0

Inc

⎤

⎦, K =
[

DcC Cc

]

(10b)

and Inc is the identity matrix of order nc. It is assumed [27–
34] that the system has a finite set of initial conditions, that
is, there exist two positive integers h1 and h2 such that

ξ(i, 0) = 0, i ≥ h1;

ξ
(
0, j
) = 0, j ≥ h2.

(11)

The aim of this paper is to determine the antiwindup
compensator gain matrix [Ec1 Ec2] and an associated region
of asymptotic stability of the closed loop system (10a)-(10b)
for a given set of admissible initial states.

In the following section, we will establish stability condi-
tion for system given by (10a)-(10b) in both local and global
contexts.

3. Main Results

Consider a block diagonal matrix G ∈ �2m×2(n+nc) such that

G =
⎡

⎣
G1 0

0 G2

⎤

⎦, (12)

where G1 ∈ �m×(n+nc), G2 ∈ �m×(n+nc) and define a poly-
hedral set:

� �
{
ξ ∈ �(n+nc); −u0(l) ≤

(
K(l) −G1(l)

)
ξ
(
i + 1, j

)

≤ u0(l),−u0(l) ≤
(

K(l) −G2(l)
)
ξ
(
i, j + 1

) ≤ u0(l),

l = 1, 2, . . . ,m}.
(13)

Now, we have the following lemma.

Lemma 1. If ξ ∈ � then

δ =
⎡

⎣
ψ
(

Kξ
(
i + 1, j

))

ψ
(

Kξ
(
i, j + 1

))

⎤

⎦

T

×D

⎧
⎨

⎩

⎡

⎣
ψ
(

Kξ
(
i + 1, j

))

ψ
(

Kξ
(
i, j + 1

))

⎤

⎦−G

⎡

⎣
ξ
(
i + 1, j

)

ξ
(
i, j + 1

)

⎤

⎦

⎫
⎬

⎭ ≤ 0,

(14)

where D is positive definite block diagonal matrix and “T”
denotes the transpose.

Proof. Observe that, (14) can be expressed as

δ = ψT
(

Kξ
(
i + 1, j

))

×D1
{
ψ
(

Kξ
(
i + 1, j

))−G1ξ
(
i + 1, j

)}

+ ψT
(

Kξ
(
i, j + 1

))

×D2
{
ψ
(

Kξ
(
i, j + 1

))−G2ξ
(
i, j + 1

)} ≤ 0,

(15)
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where D1 ∈ �m×m, D2 ∈ �m×m are positive definite diagonal

matrices and D =
[

D1 0
0 D2

]
. Following the proof of [9, Lemma

1], it can be shown that both terms of the left hand side of
(15) are nonpositive. This completes the proof.

The main result of the paper may be stated as follows.

Theorem 1. Suppose there exists a positive definite symmetric
matrix W ∈ �(n+nc)×(n+nc), a matrix Z ∈ �nc×2m, a matrix
Y ∈ �2m×2(n+nc), a scalar 0 < α < 1, and a diagonal positive
definite matrix S ∈ �2m×2m satisfying the following LMIs:

⎡

⎢
⎢
⎢
⎢
⎣

P
−1 −YT −P

−1
A
T

−Y 2S
(

BS + RZ
)T

−A P
−1 (

BS + RZ
)

W

⎤

⎥
⎥
⎥
⎥
⎦
> 0, (16)

⎡

⎢
⎣

α−1W α−1WKT
(l) − YT

1(l)

α−1K(l)W− Y1(l) u2
0(l)

⎤

⎥
⎦ ≥ 0, l = 1, 2, . . . ,m,

(17)

⎡

⎢
⎣

(1− α)−1W (1− α)−1WKT
(l) − YT

2(l)

(1− α)−1K(l)W− Y2(l) u2
0(l)

⎤

⎥
⎦ ≥ 0,

(18)

where

P
−1 =

⎡

⎣
α−1W 0

0 (1− α)−1W

⎤

⎦. (19)

Then for the gain matrix Ec = ZS−1 the ellipsoid ε(P) =
{ξ ∈ �n+nc ; ξTPξ ≤ min(1/α, 1/(1− α))} with P = W−1 is a
region of asymptotic stability for system (10a)-(10b).

Proof. Consider a 2D quadratic Lyapunov function

V
(
i + η, j + τ

) = ξT
(
i + η, j + τ

)
Pξ
(
i + η, j + τ

)
, (20)

where P = PT > 0. Now, following [23] (see [24, 25] also),
we define ΔV(i, j) as

ΔV
(
i, j
) = ξT

(
i + 1, j + 1

)
Pξ
(
i + 1, j + 1

)

− ξT(i + 1, j
)
αPξ

(
i + 1, j

)

− ξT(i, j + 1
)
(1− α)Pξ

(
i, j + 1

)
.

(21)

Using (10a)-(10b), (21) can be rearranged as

ΔV
(
i, j
)

=
[

A1ξ
(
i + 1, j

)− (B1 + REc1
)
ψ
(

Kξ
(
i + 1, j

))

+A2ξ
(
i, j + 1

)− (B2 + REc2
)
ψ
(

Kξ
(
i, j + 1

))]T
P

×
[

A1ξ
(
i + 1, j

)− (B1 + REc1
)
ψ
(

Kξ
(
i + 1, j

))

+A2ξ
(
i, j + 1

)− (B2 + REc2
)
ψ
(

Kξ
(
i, j + 1

))]

− ξT(i + 1, j
)
αPξ

(
i + 1, j

)

− ξT(i, j + 1
)
(1− α)Pξ

(
i, j + 1

)

= ξT
(
i + 1, j

)
A
T
1 PA1ξ

(
i + 1, j

)

− ξT(i + 1, j
)

A
T
1 P
(

B1 + REc1
)
ψ
(

Kξ
(
i + 1, j

))

− ψT
(

Kξ
(
i + 1, j

))(
B1 + REc1

)T
PA1ξ

(
i + 1, j

)

+ ψT
(

Kξ
(
i + 1, j

))(
B1 + REc1

)T

× P
(

B1 + REc1
)
ψ
(

Kξ
(
i + 1, j

))

+ ξT
(
i + 1, j

)
A
T
1 PA2ξ

(
i, j + 1

)

− ξT(i + 1, j
)

A
T
1 P
(

B2 + REc2
)
ψ
(

Kξ
(
i, j + 1

))

− ψT
(

Kξ
(
i + 1, j

))(
B1 + REc1

)T
PA2ξ

(
i, j + 1

)

+ ψT
(

Kξ
(
i + 1, j

))(
B1 + REc1

)T

× P
(

B2 + REc2
)
ψ
(

Kξ
(
i, j + 1

))

+ ξT
(
i, j + 1

)
A
T
2 PA1ξ

(
i + 1, j

)

− ξT(i, j + 1
)

A
T
2 P
(

B1 + REc1
)
ψ
(

Kξ
(
i + 1, j

))

+ ξT
(
i, j + 1

)
A
T
2 PA2ξ

(
i, j + 1

)

− ξT(i, j + 1
)

A
T
2 P
(

B2 + REc2
)
ψ
(

Kξ
(
i, j + 1

))

− ψT
(

Kξ
(
i, j + 1

))(
B2 + REc2

)T
PA1ξ

(
i + 1, j

)

+ ψT
(

Kξ
(
i, j + 1

))(
B2 + REc2

)T

× P
(

B1 + REc1
)
ψ
(

Kξ
(
i + 1, j

))

− ψT
(

Kξ
(
i, j + 1

))(
B2 + REc2

)T
PA2ξ

(
i, j + 1

)

+ ψT
(

Kξ
(
i, j + 1

))(
B2 + REc2

)T

× P
(

B2 + REc2
)
ψ
(

Kξ
(
i, j + 1

))

− ξT(i + 1, j
)
αPξ

(
i + 1, j

)

− ξT(i, j + 1
)
(1− α)Pξ

(
i, j + 1

)
.

(22)

Adding to and subtracting from (22) the quantity 2δ (see
(15)), we obtain
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ΔV
(
i, j
) = −

[
ξT
(
i + 1, j

)
ξT
(
i, j + 1

)
ψT
(

Kξ
(
i + 1, j

))
ψT
(

Kξ
(
i, j + 1

))]

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αP− A
T
1 PA1

−A
T
2 PA1

(
B1 + REc1

)T
PA1 −D1G1

(
B2 + REc2

)T
PA1

−A
T
1 PA2

(1− α)P− A
T
2 PA2

(
B1 + REc1

)T
PA2

(
B2 + REc2

)T
PA2 −D2G2

A
T
1 P
(

B1 + REc1
)−GT

1 D1

A
T
2 P
(

B1 + REc1
)

2D1 −
(

B1 + REc1
)T

P
(

B1 + REc1
)

−(B2 + REc2
)T

P
(

B1 + REc1
)

A
T
1 P
(

B2 + REc2
)

A
T
2 P
(

B2 + REc2
)−GT

2 D2

−(B1 + REc1
)T

P
(

B2 + REc2
)

2D2 −
(

B2 + REc2
)T

P
(

B2 + REc2
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ
(
i + 1, j

)

ξ
(
i, j + 1

)

ψ
(

Kξ
(
i + 1, j

))

ψ
(

Kξ
(
i, j + 1

))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 2δ.

(23)

Defining

A =
[

A1 A2

]
,

B =
[

B1 B2

]
,

Ec =
[

Ec1 Ec2

]

(24)

equation (23) can be written as

ΔV
(
i, j
) = −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ
(
i + 1, j

)

ξ
(
i, j + 1

)

ψ
(

Kξ
(
i + 1, j

))

ψ
(

Kξ
(
i, j + 1

))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

⎡

⎣
X1 X2

XT
2 X3

⎤

⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ
(
i + 1, j

)

ξ
(
i, j + 1

)

ψ
(

Kξ
(
i + 1, j

))

ψ
(

Kξ
(
i, j + 1

))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 2δ,

X1 = P− A
T

PA,

X2 = A
T

P
(

B + REc
)−GTD,

X3 = 2D− (B + REc
)T

P
(

B + REc
)
,

(25)

where P is given by (19). From (25) and (15) it is clear that
ΔV(i, j) ≤ 0 if

⎡

⎣
X1 X2

XT
2 X3

⎤

⎦ > 0. (26)

Before and after multiplying (26) by
[

P
−1

0
0 D−1

]
with D = S−1,

we obtain
⎡

⎣
P
−1 − P

−1
A
T

PA P
−1

P
−1

A
T

P
(

BS + RZ
)− P

−1
GT

(
BS + RZ

)T
PA P

−1 −GP
−1

2S− (BS + RZ
)T

P
(

BS + RZ
)

⎤

⎦

> 0.
(27)

The equivalence of (27) and (16) trivially follows from
Schur’s complement.

Next, we will show that the satisfaction of (17) and
(18) implies that the set ε(P) = {ξ ∈ �n+nc ; ξTPξ ≤
min(1/α, 1/(1 − α))} is included in the polyhedral set � as
defined in (13). It can be shown that {ξ ∈ �n+nc ; ξTPξ ≤
1/α} ⊂ � is equivalent to [35]

αP− (K(l) −G1(l)
)T(K(l) −G1(l)

)
u−2

0 (l) ≥ 0, l = 1, 2 . . .m.

(28)

Before and after multiplying (28) by α−1P−1 we get

α−1P−1 − α−1P−1(K(l) −G1(l)
)T

× (K(l) −G1(l)
)
α−1P−1u−2

0 (l) ≥ 0.
(29)

By Schur’s complement, (29) together with G1 = αY1P and
P = W−1 leads to (17). Similarly, using (13) with G2 =
(1 − α)Y2P and P = W−1 it can be shown that {ξ ∈
�n+nc ; ξTPξ ≤ 1/(1 − α)} ⊂ � implies (18). This completes
the proof.

Remark 1. Using Theorem 1, one can determine antiwindup
gain matrix Ec in order to ensure the stability for a given
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region in the state space of 2D discrete systems with saturated
inputs.

Remark 2. From (25) it is clear that ΔV(i, j) ≤ 0 for the
system (10a)-(10b) with ψ(Kξ(i+1, j)) = ψ(Kξ(i, j+1)) =
0 provided that P − A

T
PA > 0. Thus, the condition P −

A
T

PA > 0 (also known as Hinamoto’s condition [23]) is a
sufficient condition for the global asymptotic stability of 2D
linear FMSLSS model.

Remark 3. It may be mentioned that several previous works
[24, 27–33] deal with the problem of global asymptotic sta-
bility of digital filters with state saturation. The nonlinearities
considered in [24, 27–33] occur due to the implementation
of the system using finite wordlength. In contrast, the present
paper tackles the problem of stability of a 2D system in
presence of the actuator saturation nonlinearity.

As a direct consequence of Theorem 1, we have the fol-
lowing result for the global exponential stability of system
(10a) and (10b).

Corollary 1. Suppose there exist a positive definite symmetric
matrix W ∈ �(n+nc)×(n+nc), a diagonal positive definite matrix
S ∈ �2m×2m, and a matrix Z ∈ �nc×2m such that

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P
−1 −P

−1
K
T −P

−1
A
T

−K P
−1

2S
(

BS + RZ
)T

−A P
−1 (

BS + RZ
)

W

⎤

⎥
⎥
⎥
⎥
⎥
⎦
> 0, (30)

where P
−1

is defined in (19). Then, for Ec = ZS−1, the origin of
system (10a)-(10b) is globally stable.

Proof. Choosing

G1 = G2 = K (31)

one can see that (13) is automatically met for all ξ ∈ �n+nc .
Consequently, (14) is also satisfied for all ξ ∈ �n+nc . Now,
substituting (31) into (16) we obtain the global exponential
stability condition (30). This completes the proof.

Remark 4. Note that, unlike (16)–(19), (30) is independent
of u0(l), l = 1, 2, . . .m. In other words, one is not required to
explicitly know the values of control amplitude bounds when
dealing with Corollary 1.

Remark 5. It should be observed that for a given α (0 < α <
1) the matrix inequality (16)–(18) is linear in variables W, S,
Y, and Z. Hence, it can be solved efficiently by employing the
MATLAB LMI Toolbox [35, 36].

4. Numerical Examples

To illustrate the applicability of the presented results, we now
consider the following examples.

Example 1. Consider a closed loop 2D system represented by
(10a)-(10b) with the following parameters:

A1 =
⎡

⎣
0.05 0.08

0.2 0.3

⎤

⎦, A2 =
⎡

⎣
0.1 0.0

0.0 0.1

⎤

⎦,

B1 =
⎡

⎣
0

0.01

⎤

⎦, B2 =
⎡

⎣
0

0.01

⎤

⎦,

Ac1 = [0.1], Ac2 = [0.1],

Bc1 = [0.01], Bc2 = [0.01],

C =
[

1 0
]

, Cc = [0.1],

Dc = [10].

(32)

Using MATLAB LMI toolbox [36] and choosing α = 0.5, it
is found that (30) is feasible for the following values of un-
known parameters:

W =

⎡

⎢
⎢
⎢
⎣

27.6 1.0 −14.5

1.0 977.7 −3.8

−14.5 −3.8 1503.1

⎤

⎥
⎥
⎥
⎦

,

S =
⎡

⎣
4016.8 0

0 4002.7

⎤

⎦,

Z =
[
−64.8397 −92.7441

]
.

(33)

In this case, the gain matrix Ec = ZS−1 is given by

Ec =
[
−0.0161 −0.0232

]
. (34)

Therefore, according to Corollary 1, the system under con-
sideration is globally stable.

Example 2. Consider a closed loop system described by (10a)
and (10b) with

A1 =
⎡

⎣
0.6 0.08

0.2 0.5

⎤

⎦, A2 =
⎡

⎣
0.3 0.0

0.0 0.1

⎤

⎦,

B1 =
⎡

⎣
0

0.01

⎤

⎦, B2 =
⎡

⎣
0

0.01

⎤

⎦,

Ac1 = [0.1], Ac2 = [0.1],

Bc1 = [0.01], Bc2 = [0.01],

Cc = [0.1], C =
[

1 0
]

,

Dc = [10].

(35)
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Using MATLAB LMI toolbox [36] and choosing α = 0.5 and
the control bound u0(1) = 1, it is verified that (16)–(18) are
feasible for the following values of unknown parameters

W =

⎡

⎢
⎢
⎢
⎣

1.0 0.0 −21

0.0 1.0 −38

−21 −38 14436

⎤

⎥
⎥
⎥
⎦

,

S =
⎡

⎣
1511.5 0

0 1255.2

⎤

⎦,

Z =
[
−4601.4 −3843.7

]
.

(36)

In this example, the gain matrix Ec = ZS−1 is obtained as

Ec =
[
−3.0442 −3.0621

]
. (37)

Therefore, Theorem 1 assures that the system under consid-
eration is asymptotically stable in the region given by the
ellipsoid ε(P) = {ξ ∈ �n+nc ; ξTPξ ≤ 2}.

5. Application to the Antiwindup
Control of Dynamical Processes Described by
the Darboux Equation

The design method of antiwindup controller given in
Section 3 can be applied to the control of several dynamical
processes. It is known that in real world situations, some
dynamical processes in water steam heating, gas absorption,
and air drying can be described by the Darboux equation
[37–39]. In this section, we shall illustrate the applicability of
our proposed method (Theorem 1) in anti-windup control
of processes in a Darboux equation.

Consider the Darboux equation [37–39] given by

∂2s(x, t)
∂x∂t

= a1
∂s(x, t)
∂t

+ a2
∂s(x, t)
∂x

+ a0s(x, t) + b f (x, t),

(38a)

y(x, t) = c1

[
∂s(x, t)
∂t

− a2s(x, t)
]

+ c2s(x, t), (38b)

with the initial conditions:

s(x, 0) = p(x), s(0, t) = q(t), (39)

where s(x, t) is an unknown function at space x ∈ [0, x f ] and
time t ∈ [0,∞]; f (x, t) is the input function; y(x, t) is the
measured output; a1, a2, a0, b, c1, and c2 are real constants.

Define

r(x, t) = ∂s(x, t)
∂t

− a2s(x, t) (40)

then (38a) can be transformed into an equivalent system of
first-order differential equation of the form
⎡

⎢
⎢
⎢
⎣

∂r(x, t)
∂x

∂s(x, t)
∂t

⎤

⎥
⎥
⎥
⎦
=
⎡

⎣
a1 a1a2 + a0

1 a2

⎤

⎦

⎡

⎣
r(x, t)

s(x, t)

⎤

⎦ +

⎡

⎣
b

0

⎤

⎦ f (x, t).

(41)

It follows from (40) that

r(0, t) = ∂s(x, t)
∂t

∣∣
∣
∣
x=0

− a2s(0, t) = dq(t)
dt

− a2q(t) = z(t).

(42)

Taking r(i, j) = r(iΔx, jΔt), s(i, j) = s(iΔx, jΔt),
f (x, t) = u(i, j) and applying forward difference quotients
for both derivatives in (41), it is easy to verify that (41) can
be expressed in the following form:
⎡

⎣
r
(
i, j
)

s
(
i, j
)

⎤

⎦ =
⎡

⎣
(1 + a1Δx) (a1a2 + a0)Δx

0 0

⎤

⎦

⎡

⎣
r
(
i− 1, j

)

s
(
i− 1, j

)

⎤

⎦

+

⎡

⎣
0 0

Δt (1 + a2Δt)

⎤

⎦

⎡

⎣
r
(
i, j − 1

)

s
(
i, j − 1

)

⎤

⎦

+

⎡

⎣
bΔx

0

⎤

⎦u
(
i− 1, j

)
+

⎡

⎣
0

0

⎤

⎦u
(
i, j − 1

)

(43)

with the initial conditions:

s(i, 0) = p(iΔx), r
(
0, j
) = z

(
jΔt
)
. (44)

Now, taking

x
(
i, j
) =

⎡

⎣
r
(
i, j
)

s
(
i, j
)

⎤

⎦, (45)

equation (43) can be expressed in the FMSLSS setting:

x
(
i + 1, j + 1

) =
⎡

⎣
0 0

Δt (1 + a2Δt)

⎤

⎦x
(
i + 1, j

)

+

⎡

⎣
(1 + a1Δx) (a1a2 + a0)Δx

0 0

⎤

⎦x
(
i, j + 1

)

+

⎡

⎣
0

0

⎤

⎦u
(
i + 1, j

)
+

⎡

⎣
bΔx

0

⎤

⎦u
(
i, j + 1

)

(46)

with the initial conditions:

x(i, 0) =
⎡

⎣
−a2p(iΔx)

p(iΔx)

⎤

⎦, x
(
0, j
) =

⎡

⎣
z
(
jΔt
)

q
(
jΔt
)

⎤

⎦. (47)

In view of (40) and (45), (38b) can be written as

y
(
i, j
) = Cx

(
i, j
)
, (48)

where

C =
[
c1 c2

]
. (49)

Now, consider the problem of anti-windup controller for
the system represented by (46)–(49) with

a0 = 0.2, a1 = −1.8, a2 = −0.5,

b = −0.194, Δx = 0.5, Δt = 1,

c1 = 1, c2 = 0.

(50)
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Consequently, the plant under consideration is described by
(1) where

A1 =
⎡

⎣
0 0

1 0.5

⎤

⎦, A2 =
⎡

⎣
0.1 0.55

0 0

⎤

⎦,

B1 =
⎡

⎣
0

0

⎤

⎦, B2 =
⎡

⎣
−0.097

0.01

⎤

⎦,

C =
[

1 0
]
.

(51)

For the above plant, the parameters of the stabilizing dynam-
ic compensator (2) is given by

Ac1 = [0.2], Ac2 = [0.3],

Bc1 = [0.01], Bc2 = [0.01],

Dc = [11.12], Cc = [0.1].

(52)

Assume that, the control signal injected to the plant is a
saturated one characterized by (5) where

−10 ≤ u(l)
(
i, j
) ≤ 10. (53)

The resulting closed loop system is obtained by substituting
(51) and (52) in (10a)-(10b). It is understood that the initial
conditions of the closed loop system belong to (11). Using
MATLAB LMI toolbox [36] and choosing α = 0.5, it is
verified that (16)–(18) are feasible for the present example
and the values of unknown parameters are obtained as

W =

⎡

⎢
⎢
⎢
⎣

0.0810 −0.0246 −6.4152

−0.0246 0.3181 14.7750

−6.4152 14.7750 9850.1

⎤

⎥
⎥
⎥
⎦

,

S =
⎡

⎣
2103800 0

0 10.2344

⎤

⎦,

Z =
[
−114.7141 −110.7475

]
.

(54)

In this example, the gain matrix

Ec = ZS−1 =
[
−0.0001 −10.8212

]
. (55)

Therefore, Theorem 1 assures that the system under consid-
eration is asymptotically stable in the region given by the
ellipsoid ε(P) = {ξ ∈ �n+nc ; ξTPξ ≤ 2}.

6. Conclusions

A Lyapunov-based approach to design an antiwindup gain
of 2D discrete systems with saturating controls in the
FMSLSS setting is established. Stability conditions allowing
the design of antiwindup loops, in both local and global
contexts have been stated for this system. The proposed
criterion is in LMI setting and can be efficiently solved
using MATLAB LMI Toolbox [35, 36]. Numerical examples

are provided to illustrate the applicability of the presented
results. Application of the proposed antiwindup controller
design method is demonstrated through processes described
by a Darboux equation [37–39].

The presented approach utilizes the 2D Lyapunov con-
dition [23] which provides only sufficient condition for the
stability and is not necessary. It is known that, unlike its
1D counterpart, the available Lyapunov-based approaches
[23–27] provide only sufficient condition for the asymptotic
stability of 2D linear discrete systems. The problem of
determining necessary and sufficient conditions for the
stability of 2D discrete saturated systems is very challenging.
Further investigation is required to reduce or eliminate the
gap between “sufficiency” and the “necessity” for a 2-D
system to be stable, which occurs in the proposed approach.
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