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We study the electron spectrum and the density of states of long-wave electrons in the curved graphene nanoribbon based on the
Dirac equation in a curved space-time. The current-voltage characteristics for the contact of nanoribbon-quantum dot have been
revealed. We also analyze the dependence of the specimen properties on its geometry.

1. Introduction

The problem of modified graphene properties attracts a
considerable attention of researchers [1, 2] because the
“pure” graphene has no energy gap in the band structure and,
therefore, the creation of different structures (e.g., analogs
of transistors) is extremely difficult. However, the situation
becomes more promising when various modifications of
the specimen are introduced. As an example, we consider
the modified graphene, for example, graphene nanoribbon,
which have quantized electron energy spectrum due to the
limited space in one dimension, which in turn can lead to
the formation of the energy gap. Furthermore, we know
that the graphene has a naturally wave-like curved surface
due to the instability of the planar structure of its sheets
[3, 4]. All of the above reasons have stimulated the study
of different modifications of a curved graphene [5, 6]. The
long-wave approximation, which is widely used to describe
the properties of electrons in graphene, leads to an analog of
the Dirac equation, which in turn makes it easy to produce
generalization to the case when the graphene surface is
curved. Note that in this case the degeneracy in the Dirac
points is removed and therefore it becomes possible to create

various structures with different band gaps. Consideration
of the Dirac equation for curved graphene [5] also shows a
change in the density of states of electrons and, therefore, it
is possible to change the whole set of electrical characteristics
of the graphene sample. Apparently, the easiest way to
experimentally verify the changes in the density of states is
to study the tunneling current [7], for example, through the
contact with quantum dots. Quantum dots are still rather
“young” objects of study, but their use in various fields of
science and technology is obviously extremely promising
(from the design of lasers and new generation displays to
building qubits) [8].

2. Basic Equations and Spectrum of Electrons

We consider the graphene nanoribbon, which is curved along
the toroidal and the helical surfaces, as presented in Figure 1.

Properties of electrons in the graphene nanoribbons in
the long-wave approximation in the vicinity of the Dirac
point will be described on the basis of the Dirac equation
generalized for the case of a curved space-time [9]:

γμ
(
∂μ −Ωμ

)
Ψ = 0. (1)
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Figure 1: Geometry of a problem; (a) toroidal nanoribbon, (b) helical nanoribbon.

Here and below the repeated indices assume summation; ∂μ
is the partial derivative with respect to coordinate μ, Ωμ is

the component of the spin connection, and Ψ =
(
φ
ϕ

)
is the

wave function (column vector) consisting of wave functions
describing the electrons from different sublattices near the
Dirac point.

As is known [9, 10], if we are given the metric tensor

ds2 = gαβdxαdxα,

gαβg
βγ = δ

γ
α

(2)

(δ
γ
α: delta Kronecker symbol) then, we can define the field

frames (tetrads):

gαβ = eaαe
b
βηab,

gαβ = eαae
β
bη

ab,

ηabηbc = δca,

(3)

where, for the two-dimensional curved surface, we have
ηab = diag(1,−1,−1). Then,

Ωμ = 1
4
γaγbe

a
λg

λσ
(
∂μebσ − Γλμσ e

b
λ

)
,

Γλμσ =
1
2
gλν
(
gσν,μ + gνμ,σ − gμσ ,ν

)
,

γμ = e
μ
aγa.

(4)

Using the torus and the helical parameterization

x = (R + r cosx1) cosx2,

y = (R + r cosx1) sin x2,

z = r sin x1,

x = x1 cosx2,

y = x1 sin x2,

z = h · x2,

(5)

we find that the metrics on the torus surface and the helicoid
is

ds2 = dx2
0 − r2dx2

1 − (R + r cos x1)2dx2
2,

ds2 = dx2
0 − dx2

1 −
(
h2 + x2

1

)
dx2

2 .
(6)

Note that all the Christoffel symbols are equal to zero, except
Γ2

12 and Γ1
22. For the torus, we have Ω0 = 0, Ω1 = 0,

Ω2 = (1/2)γ1γ2 f ′/r( f = R + r cosx1, and f ′ = ∂ f /∂x1),
while in the case of helicoid Ω0 = 0, Ω1 = 0, and Ω2 =
(1/2)γ1γ2(x1/(h2 + x2

1)
1/2

).

Choosing γ0 = σ3, γ1 = −iσ2, and γ2 = −iσ1, where
σ are the Pauli matrices, we obtain the following system of
equations:

V−1
F ∂tϕ = − 1

r2
∂x1Ψ−

i

f 2
∂x2Ψ +

f ′

2 f 2r
Ψ,

V−1
F ∂tϕ = − 1

r2
∂x1ϕ +

i

f 2
∂x2ϕ +

f ′

2 f 2r
ϕ,

V−1
F ∂tϕ + ∂x1Ψ +

i

h2 + x2
1
∂x2Ψ−

x1

2
(
h2 + x2

1

)3/2 Ψ = 0,

−V−1
F ∂tΨ− ∂x1ϕ +

i

h2 + x2
1
∂x2ϕ−

x1

2
(
h2 + x2

1

)3/2ϕ = 0.

(7)

Here, VF is the Fermi velocity for planar graphene, ∂0 =
V−1
F ∂t . Note that since the metric (6) admits two Killing vec-

tors corresponding to translations along x0, x2, the solution
(7) can be found in the form

⎛
⎝ϕ
Ψ

⎞
⎠ −→

⎛
⎝ϕ(x1)

Ψ(x1)

⎞
⎠eiEt−ikx2 , (8)
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which finally gives

Ψ′′ =
⎛
⎝−E2r4

V 2
f

+
k2
nr

4

f 4

⎞
⎠Ψ +

r f ′

2 f 2
Ψ′

+

(
2knr2 f ′

f 3
+
r f ′′

2 f 2
− r f ′2

f 3
− r2 f ′2

4 f 4

)
Ψ,

Ψ′′ =
⎛
⎝− ε2

V 2
f

+
k2

(
h2 + x2

1

)2

⎞
⎠Ψ

+

⎛
⎝− kx1(

h2 + x2
1

)5/2 +
x2

1

4
(
h2 + x2

1

)3

⎞
⎠Ψ.

(9)

Note that the wave vector k is found from the boundary
conditions at the ends of the nanoribbon. In our particular
case, we have chosen the armchair-type ribbon [6] and

kn = 2π
3a0

(
2M + 1 + n

2M + 1

)
, (10)

where a0 is the distance between the atoms in the carbon
lattice, M is the number of atoms along nanoribbon axis,
and n is the quantum number. We can consider (9) as a
Schrodinger equation with perturbation

V̂Torus =
[(

2knr2 f ′

f 3
+
r f ′′

2 f 2
− r f ′2

f 3
− r2 f ′2

4 f 4

)
+

r f ′

2 f 2
∂x

]
,

V̂Helicoid =
⎛
⎝− kx1(

h2 + x2
1

)5/2 +
x2

1

4
(
h2 + x2

1

)3

⎞
⎠.

(11)

In this case, the spectrum of perturbation looks like

E = ±
√
k2
n + k2

y. (12)

Expanding the functions in the denominator in Taylor series
to the second order, we calculate the first perturbation
correction to the spectrum, V̂Torus and V̂Helicoid, as follows:

E1 =
∫
Ψ∗V̂Ψdx, Ψn = A · Sin(knx1). (13)

The integration is performed from 0 to L = (3M + 1)a0,
and the corrections are as follows:

E1 = 2
L

{
− r2

4R2
Sin(L) +

r2

8R2

(
1− 1

kn

)
Sin(2kn − 1)L

(2kn − 1)

+
r2

8R2

(
1 +

1
kn

)
Sin(2kn + 1)L

(2kn + 1)

}
,

E1 = 2
L

{(
−kL2

4h5
+

k

4h5k2
n

+
h−2/3L3

24

)

+ Sin(2knL)

(
kL

4h5kn
+ h−2/3

(
1

32k3
n
− L2

16kn

))

+ Cos(2knL)

(
−k

4h5k4
n

+
h−2/3L

16k2
n

)}
.

(14)

The dependence of the perturbations on the atom numbers
along the nanoribbons M is presented in Figure 2.

The dependence shown in Figure 2(a) is rather complex,
which is associated with the quantization of the electron
spectrum in graphene nanoribbons in accordance with (10).
It should be noted that the dependence of the energy gap
in carbon nanotubes of zigzag type is pretty much similar,
which also arises from the quantization of the electron
spectrum in the direction along the circumference of the
nanotube. The calculations (Figure 2(b)) show that the value
of the helicoids parameterization h influences most strongly
the correction to the energy (as well as its sign).

3. Tunneling Characteristics

The Hamiltonian of the system of electrons can be written in
the following form:

H =
∑
p

EA
p a

+
pap +

∑
q

EB
q b

+
q bq +

∑
pq

Tpq

(
a+
pbq + b+

q aq
)

, (15)

where a+
p ,ap are the electron creation and annihilation

operators with momentum p in the carbon nanoribbons,
EA
p is the electron spectrum of the carbon nanoribbons

(12) with taking into account (14), Tpq is the matrix
element of tunneling operator between p and q states, b+

q ,bq
are the electron creation and annihilation operators with
momentum q in a substance which is in a contact with
a carbon nanoribbon, and EB

p is the electron spectrum of
another substance. It should be noted that p and q are multi-
indices in (15). So, for graphene nanoribbon (further, we
consider an arm-chair nanoribbon only), p = (py ,n), n =
0, 1, . . . ,M− 1. Multi-index q is determined by the substance
which contacts with carbon nanoribbon and, for example,
for quantum dots q = (px , py , pz), whereas for grapheme
q = (px, py). A consideration of the external electric field−→
E (and choosing

−→
E = −(1/c)(∂

−→
A/∂t)) can be carried out by

the replacement p → p − eA/c.

Tunneling current is considered to be given by

J = ie
∑
pq

(
a+
pbq − b+

q ap
)
. (16)

With a gauge transformation [11],

ap −→ S−1apS,

S = exp

⎛
⎝ieVt

∑
p

a+
pap

⎞
⎠,

(17)

where V is the applied voltage and e is the electron charge.
Formally, it is possible to reduce a problem of calculation of
the current-voltage characteristics to the calculation of the
operator response

Jt = ie
∑
pq

(
a+
pbqe

ieVt − b+
q aqe

−ieVt
)

(18)

on the external influence [11]

Ht =
∑
pq

Tpq

(
a+
pbqe

ieVt + b+
q aqe

−ieVt
)
. (19)
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Figure 2: Dependence of the correction to the energy V caused by the perturbation V̂ on atoms number along nanoribbon axis M: (a) for
torus (r/R = 0.1, n = 1); (b) for helicoid (h = 1.5): (a) n = 1, (b) n = 2, (c) n = 3.

The solution was obtained within the framework of the Kubo
theory:

J = 4πe|T|2
∫∞
−∞

dEνA(E + eV)νB(E)
(
nf (E)− nf (E + eV) ,

νA(E) =
∑
p

δ
(
E − EA

p

)
; νB(E) =

∑
q

δ
(
E − EB

q

)
,

(20)

where δ(x) is the Dirac delta function, vA(B)(E) is the
tunneling density of states, and nf (E) is the equilibrium
number of fermions with the energy E. The approximation
of a “rough” contact is hereinafter used, so that Tpq = T
(this imposes certain restrictions on the contact geometry,
i.e., for the case discussed below means that nanoribbon
should be perpendicular to the contact material surface). For
definiteness, we choose the dispersion law for the graphene
nanoribbons given by (12) and (14) and the dispersion law
for the quantum dots as the contact material being

EA
q = ε0 − Δ cos

(
p
)
, (21)

where ε0 is the electron energy of a quantum well, Δ is
the tunneling integral determined by the overlap of electron
wave functions in the adjacent wells, and the momentum p
is directed along the axis Z.

Equation (20) under study has been solved numerically.
The current-voltage characteristic of the contact is presented
in Figure 3.

Figure 3 shows the asymmetric behavior of current
versus voltage applied to the contact. This is due to both
the peculiarities of the electronic structure (density of
states) of the metal and graphene nanoribbon and the
processes of carrier recombination in the transition contact,
which dominate over the thermal processes when V >
0. The resulting dependence may have important practical
applications in the study of nanocontacts and the design
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Figure 3: The current-voltage characteristic of the contact: curved
grapheme nanoribbon-quantum dots: (a) for torus; (b) for helicoid.

of tunnel diodes based on graphene nanoribbons. Also, the
region with negative differential resistance was observed for
some values of V . The presence of such region allows the use
of a tunnel diode as a high-speed switch.

4. Conclusion

(1) An effective equation, which describes the electrons
in a curved graphene nanoribbon and the tunneling
contact nanoribbon-quantum dot has been obtained.

(2) The dependence of the electron spectrum on the
geometry has been revealed. In general, the first
perturbation correction to the spectrum is defined
by the atoms number along the nanoribbon axis M
and by the parametric coefficient, which describes
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the “curvature” of nanoribbon, r/R (in the torus
nanoribbon case), and the step for helical nanorib-
bon h.

(3) The current-voltage characteristics for the con-
tact graphene nanoribbon-quantum dots was con-
structed; the regions with negative differential con-
ductivity were found.
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