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Abstract
We present a theoretical framework for surfaces parameterized by the product of two
arbitrary time scales. We also study surfaces by delta regular curves lying on them and
give their metric tensor known as the first fundamental form with respect to partial
delta derivatives.
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1 Introduction
The theory of time scales, which has recently received a lot of attention, was introduced by
Hilger [] to unify continuous and discrete analysis. In the study [], Bohner andGuseinov
introduced the concepts such as curves, delta tangent lines, surfaces and delta tangent
planes on time scales. Due to this significant paper, time scale calculus has attracted re-
searchers of differential geometry [–]. In the paper [], Bohner and Guseinov also gave
a brief introduction to surfaces on time scales and discussed integrals on surfaces elabo-
rately.
In this paper, we first study surfaces parameterized by the product of two arbitrary time

scales. Since the parametrization lets us obtain a dynamic structure which involves dis-
crete or continuous geometric data, we give the theoretical framework to surfaces in the
viewpoint of manifolds.While studying, we only give the results with the delta differential
operator, it is straightforward to obtain similar results for a backward differential operator.
In [], authors briefly introduced that partial delta tangential vectors help us to construct
a tangent plane.We also deal with this idea by the surfaces which have less conditions like
σi-complete differentiability. Throughout this paper, we use the chain rule that Bohner
and Guseinov presented as follows.

Theorem  Let the function f be σ-completely delta differentiable at the point (t, s). If
the functions ϕ and ψ have delta derivatives at ξ, then the composite function

F(ξ ) = f
(
ϕ(ξ ),ψ(ξ )

)
for ξ ∈ T ()

has a delta derivative at the point ξ, which is expressed by the formula

F�
(
ξ) = ∂f (t, s)

�t
ϕ�

(
ξ) + ∂f (σ(t), s)

�s
ψ�

(
ξ),

where ϕ(T) = T and ψ(T) = T.

© 2013 Atmaca and Akgüller; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193606484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.advancesindifferenceequations.com/content/2013/1/170
mailto:sibela@mu.edu.tr
http://creativecommons.org/licenses/by/2.0


Atmaca and Akgüller Advances in Difference Equations 2013, 2013:170 Page 2 of 10
http://www.advancesindifferenceequations.com/content/2013/1/170

Theorem  Let the function f be σ-completely delta differentiable at the point (t, s). If
the functions ϕ and ψ have delta derivatives at ξ, then the composite function defined by
() has a delta derivative at the point ξ, which is expressed by the formula

F�
(
ξ) = ∂f (t,σ(s))

�t
ϕ�

(
ξ) + ∂f (t, s)

�s
ψ�

(
ξ),

where ϕ(T) = T and ψ(T) = T.

Detailed proofs of chain rule theorems and significant remarks can be found in []. In
[], vector fields and covariant delta derivatives on time scales are studied for higher di-
mensional time scales. In Section , we present a delta covariant derivative by considering
curves lying on the surface. We also study delta integral curves of a vector field which can
be derived by a system of dynamic equations on a surface. Finally, in Section , we intro-
duce a metric tensor which involves partial delta differentials. By using this tensor, we are
able to calculate the length of a delta regular curve lying on the surface with the condition
of increasing transformation.
We refer the reader to resources such as [–] for more detailed studies on the calculus

of time scales and [, ] for details on the differential geometry of surfaces.

2 Surfaces on time scales
We may consider a surface S as a closed subset � = T × T × T of R, where Ti, i =
, , , are arbitrary time scales. However, any closed subset of R may not be a surface. A
theoretical study for any S ⊂R

 to be a surface is given in this section.

Definition  Let S be a closed subset of R. S is a surface if for each point P in S , there
is a neighborhood A of P and a function ϕ :U → S , where U is a closed set in R

 and an
open set in time scale topology, satisfying the following conditions:

i. ϕ :U →R
 is �-differentiable and for all (t, s) ∈U

∂ϕ(t, s)
�t

× ∂ϕ(t, s)
�s

�= 

i.e., ϕ is �-regular.
ii. ϕ(U) = S ∩A and ϕ :U → ϕ(U) is a homeomorphism.

The function ϕ : U → S is called a surface patch. S is called a smooth surface if for all
points P in S , there exists a surface patch such that P ∈ ϕ(U).

Speaking about time scale topology, we consider the opens as the sets whose closures are
open in the standard real topology. We refer the readers who want to go further into the
topic to []. Since ϕ is �-regular, one can also conclude that ϕ belongs to the class C∞

rd .

Proposition  Let U ⊂ T ×T and let f be a �-differentiable function. Then the set

S =
{(
t, s, f (t, s)

) | (t, s) ∈ T ×T
}

determines a surface.

http://www.advancesindifferenceequations.com/content/2013/1/170


Atmaca and Akgüller Advances in Difference Equations 2013, 2013:170 Page 3 of 10
http://www.advancesindifferenceequations.com/content/2013/1/170

Proof Assume that the Euclidean coordinate system on a parameter set is {t, s}. Since co-
ordinate functions t and s are �-differentiable and f is also �-differentiable, we may con-
clude that ϕ is �-differentiable. The Jacobian matrix of ϕ with respect to delta differenti-
ation is

J(ϕ) =

⎛⎜⎜⎝
∂t

�t
∂t

�s
∂s

�t
∂s

�s
∂f (t,s)
�t

∂f (t,s)
�s

⎞⎟⎟⎠ =

⎛⎜⎝  
 

∂f (t,s)
�t

∂f (t,s)
�s

⎞⎟⎠ ,

and since for all P = (p,p) ∈U , rank J(ϕ) = , the function ϕ is �-regular. It is also trivial
that ϕ is homeomorphism. �

Theorem  Let U and Ũ be nonempty closed subsets of R and let ϕ : U → S be a
�-regular surface patch. If φ : Ũ → U is diffeomorphism, then the function

ϕ̃ = ϕ ◦ φ : Ũ →R


is a �-regular surface patch.

Proof For the function φ, let φ(t̃, s̃) = (t, s), where (t, s) ∈ U and (t̃, s̃) ∈ Ũ .
First, consider ϕ̃ is σ-completely �-differentiable. By the chain rule, we obtain

∂ϕ̃

�() t̃
=

∂t
�() t̃

∂ϕ

�t
+

∂s
�() t̃

∂ϕσ

�s

and

∂ϕ̃

�()s̃
=

∂t
�()s̃

∂ϕ

�t
+

∂s
�()s̃

∂ϕσ

�s
.

Thus

∂ϕ̃

�() t̃
× ∂ϕ̃

�()s̃
=

(
∂t

�() t̃
∂s

�(s)s̃
–

∂t
�(s)s̃

∂s
�() t̃

)
∂ϕ

�t
× ∂ϕσ

�s
. ()

The constant on the right-hand side of equation () is equal to the determinant of the
Jacobian matrix

J(φ) =

⎛⎝ ∂t
�() t̃

∂t
�() s̃

∂s
�() t̃

∂s
�() s̃

⎞⎠ .

Now, we need to consider the case that the function ϕ̃ is σ-completely �-differentiable.
If this holds, then we obtain

∂ϕ̃

�() t̃
× ∂ϕ̃

�()s̃
=

(
∂t

�() t̃
∂s

�(s)s̃
–

∂t
�(s)s̃

∂s
�() t̃

)
∂ϕσ

�t
× ∂ϕ

�s
. ()

The constant on the right-hand side of equation () is equal to the determinant of the
Jacobian matrix J(φ).
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Figure 1 Graph of ϕ1.

Since ϕ is a �-regular surface patch, one can say that Jacobian J(φ) never vanishes.
Therefore, by equations () and (), ϕ̃ is �-regular. �

Example  Let T = {t | t ∈ Z
+} and T = {√s | s ∈ Z

+}. Since ϕ(t, s) = (t, ts, s) is
�-regular, the image of ϕ : T × T → R

 defines a surface, and its graph will be as in
Figure .

Example  Let T = { 
 t | t ∈ Z

+} and T = {s | s ∈ N}. It is easy to see ϕ(t, s) =
(t, e(t, ), e –s

s
(s, )) is �-regular. Therefore the image of ϕ : T ×T →R

 defines a sur-
face, and its graph will be as in Figure .

2.1 Tangents and�-derivatives
The forward tangent line of a �-regular curve 
 on time scales is the straight line passing
from the point P of the curve through the point Pσ , and it has the vector 
�(P) as its
direction vector []. The same idea can also be extended to the surfaces parameterized by
time scales to obtain delta tangent planes [].
A natural way to study a surface S is via the �-regular curves 
 that lie on S .

Definition  A tangent vector to a surface S at a point P ∈ S is the tangent vector at P of
a curve in S passing through P. The set of all tangent vectors at P is called a tangent space
TP(S).

Theorem  Let ϕ : U → S be a surface patch of S which contains P ∈ S , let (t, s) be the
coordinates of U and let 
 be the �-regular curve passing P. Then:

http://www.advancesindifferenceequations.com/content/2013/1/170
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Figure 2 Graph of ϕ2.

i. If 
 is σ-completely �-differentiable, then the tangent space at P is spanned by the
vectors ∂ϕ(t,s)

�t
and ∂ϕ(σ(t),s)

�s
.

ii. If 
 is σ-completely �-differentiable, then the tangent space at P is spanned by the
vectors ∂ϕ(t,σ(s))

�t
and ∂ϕ(t,s)

�s
,

where ϕ(t, s) = P.

Proof Let 
 be a �-regular curve lying on S and 
(ξ ) = ϕ(u(ξ ), v(ξ )) for ξ ∈ T.
i. Suppose that 
 is σ-completely �-differentiable. Then, by the chain rule, we obtain


� =
∂ϕ

�t
t� +

∂ϕσ

�s
s�.

Therefore, the tangent vector 
� is the linear combination of the vectors ∂ϕ

�t

and ∂ϕσ
�t

.
Conversely, every vector on � ⊂R

 can be written in the form of λ ∂ϕ

�t
+μ

∂ϕσ
�s

for
such constants λ and μ.
Now, let us define


(x) = ϕ(t + λx, s +μx).

For x = , i.e., at P ∈ S , the curve 
 is a smooth curve. Therefore, we obtain


� = λ
∂ϕ

�t
+μ

∂ϕσ

�s
.

http://www.advancesindifferenceequations.com/content/2013/1/170
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This shows that every vector spanned by ∂ϕ

�t
and ∂ϕσ

�s
is a tangent vector of the curve


 on S at P.
ii. Similarly, assume that 
 is σ-completely �-differentiable. By the chain rule, we get


� =
∂ϕσ

�t
t� +

∂ϕ

�s
s�.

Therefore, the tangent vector 
� is the linear combination of vectors ∂ϕσ
�t

and ∂ϕ

�t
.

It is also possible to find such constants λ′ and μ′, where every vector on � ⊂R


is in the form of λ′ ∂ϕσ
�t

+μ′ ∂ϕ

�s
.

If we define a smooth curve


(x) = ϕ
(
t + λ′x, s +μ′x

)
,

then we may obtain


� = λ′ ∂ϕσ

�t
+μ′ ∂ϕ

�s
.

This shows that every vector spanned by ∂ϕσ
�t

and ∂ϕ

�s
is a tangent vector of the curve


 on S at P. �

3 Vector fields and covariant�-derivative
Let σi and �i denote, respectively, a forward jump operator and a delta operator of Ti for
i ∈ {, , . . . ,n}, n ∈N, where Ti are arbitrary time scales. Let us set

�n = T ×T × · · · ×Tn.

�n is called an n-dimensional time scale.
A vector fieldX on�n is a function that assigns to each point P ∈ �n a tangent vector vP .

Definition  Let X be a vector field and X(P) ∈ TP(�n). Generally, a vector field is de-
noted by

X =
n∑
i=

αi
∂

�ixi
,

where αi are Euclidean coordinate functions and the set {∂/�x, . . . , ∂/�nxn} is the natural
basis for TP(�n).

Relationship between a vector field X and its Euclidean coordinate function αi can be
considered as follows: if each αi of X is σj-completely �-differentiable, then one can say
that X is σj-completely �-differentiable.
Suppose that X is a vector field on �n and vP ∈ TP(�n). Consider the vector field X ◦ β ,

where β : T→ �n is defined by β(t) = P + tv. It is obvious to see that X ◦ β is a vector field
on β . Also, β(T) is the closed line parallel to the vector v and (X ◦ β)� ∈ TP(�n).

Definition  The vector (X ◦ β)�() is called a covariant �-derivative of X in the direc-
tion of vP and denoted by D�

vPX.

http://www.advancesindifferenceequations.com/content/2013/1/170
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Now we shall consider �-integral curves of vector fields on surfaces. Let S be a smooth
surface and let X be a vector field on S . A curve 
 : [a,b]→ S , where [a,b] is a nonempty
closed set of R, on S is called a �-integral curve of X if the vector 
� ∈ T
(t)S (t ∈ [a,b])
at each point coincides with the value of X at that point.
It is possible to find equations that should be satisfied by the �-integral curve through

an arbitrary point P ∈ S . Let {x,x,x} be a local coordinate system around P. Then X is
locally expressed as

X =
∑
i=

αi(x)
∂

�ixi
.

Let 
 : [a,b]→ S be the required �-integral curve, and, for the sake of simplicity, choose
a parameter such that 
() = P. If we describe the position of 
(t) by the local coordinate
system as 
(t) = (x(t),x(t),x(t)), then we obtain


�(t) =
∑
i=

dxi
�t

∂

�ixi
.

Thus, the required equation is

dxi
�t

= αi
(
x(t),x(t),x(t)

)
(i = , , ). ()

The condition of passing through the point P at t =  is expressed as the initial condition
xi() = xi(P).
By the way, () is a system of ordinary linear dynamic equations of first order. Theo-

rem . in [] assures us that this system has a unique solution if a coefficient matrix of
the system is regressive.
By the existence of the solution, we see that there exists a �-integral curve through

an arbitrary point P when t = . We shall consider extending the domain of the integral
curve as long as possible to assure the maximality. Since the solution of the system is
unique, if two �-integral curves pass through the same point at the same time, then they
are connected as a single integral curve. So, theway of extending is unique. From this point
of view, for each P ∈ S , there exists a �-integral curve 
(P) through the point when t = ,
and it cannot be extended any more. This kind of �-integral curves are called maximal,
and we can conclude that S is covered by all the maximal �-integral curves which are
pairwise disjoint.

4 Metric properties of surfaces on time scales
Themetric of a surface S is determined by the partial�-derivatives of the surface patch ϕ.
Assuming that ϕ�

t ×ϕ
�
s �= , the tangent plane to S is spanned by the two tangent vectors

ϕ
�
t and ϕ

�
s . The surface normal vector is orthogonal to both tangent vectors and can be

computed as

�n =
ϕ

�
t × ϕ

�
s

‖ϕ�
t × ϕ

�
s ‖ .

http://www.advancesindifferenceequations.com/content/2013/1/170
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4.1 First fundamental form
The Jacobian matrix encodes the metric of the surface in a way that it allows measuring
transformation of angles, distances and areas by the mapping from the parameter domain
to the surface.
Let ω and ω be two unit vectors in a parameter space. Cosine of the angle can be com-

puted by the Euclidean dot product ωT
 ω. When we consider the dot product of tangent

vectors on S , we obtain

ω̃T
 ω̃ = (Jω)T (Jω) = ωT


(
JT J

)
ω.

Therefore, the matrix product JT J induces the metric on a surface on time scales.

Definition  Let S be a surface on time scales. The first fundamental form of S is the
assignment to each P ∈ S of the inner product,

· : TP(S)× TP(S)→R,

i.e., the restriction of the Euclidean dot product to the �-tangent space of S , and can be
shown by I.
Given a surface patch ϕ :U → S , the matrix for the first fundamental form with respect

to the basis {ϕ�
t ,ϕ�

s } is

I =

(
E F
F G

)
,

where E = ϕ
�
t ϕ

�
t , F = ϕ

�
t ϕ

�
s and G = ϕ

�
s ϕ

�
s .

4.2 Length measurement
Since the first fundamental form I defines ametric on a surface, we canmeasure the length
of a �-regular curve ϕ(x) = ϕ(
(x)), defined as the image of a �-regular curve 
(x) =
(t(x), s(x)) in the parameter domain, where x ∈ T̃ for an arbitrary time scale.

Definition  Let T be a time scale. The function 
 is called a path on T × T if it is
increasing.Moreover, the composite function ϕ ◦
 : T → S is called a path on the surface,
where ϕ is a �-regular surface patch.

Theorem  Let 
 : [a,b] → S be a path on the surface S and let ϕ :U → S be a proper
patch in S , and suppose that 
 is contained in this patch.
For the coordinate functions t′ : T̃→R and s′ : T̃ →R of the path 
, the length of 
 is

l(
) =
∫ b

a

√
E
(
dt′

�̃x

)

+ F
(
dt′

�̃x
ds′

�̃x

)
+G

(
ds′

�̃x

)

�̃x,

where x ∈ [a,b]⊂ T̃ and �̃ is the corresponding delta-differential operator.

Proof Let t′(T̃) := T
′
 and s′(T̃) := T

′
, and let their �-differential operators be �′

 and �′
,

respectively. By considering the coordinate changing idea presented in Theorem , we can

http://www.advancesindifferenceequations.com/content/2013/1/170
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express 
 in terms of coordinates 
̃ = ϕ– ◦ 
 : [a,b] ⊂ T̃ → U , 
̃(x) = (t′(x), s′(x)). Then

(x) = ϕ(
̃(x)), hence 
(x) = ϕ(t′(x), s′(x)). By the chain rule, we can obtain

dϕ

�̃x
=
dt′

�̃x
∂ϕ

�′
t′

+
ds′

�̃x
∂ϕ

�′
s′

=
∑
i

dϕi

�̃x
∂ϕ

�′
iϕi

,

where ϕi is the ith component of ϕ. This shows that dt′/�̃x and ds′/�̃x are the components
of the �-tangential vector with respect to basis {∂ϕ/�′

t′, ∂ϕ/�′
s′}.

Now, speed in surface coordinates can be computed as

∣∣∣∣ dϕ

�̃x

∣∣∣∣ =
√〈

dϕ

�̃x
,
dϕ

�̃x

〉

=

√√√√〈 ∑
i

dϕi

�̃x
∂ϕ

�′
iϕi

,
dϕi

�̃x
∂ϕ

�′
iϕi

〉

=

√√√√ ∑
i,j

dϕi

�̃x
dϕj

�̃x

〈
∂ϕ

�′
iϕi

,
∂ϕ

�′
jϕj

〉
.

For length, we have

l(
) =
∫ b

a

√
∂ϕ

�′
t′

(
dt′

�̃x

)

+ 
∂ϕ

�′
t′

∂ϕ

�′
s′

(
dt′

�̃x
ds′

�̃x

)
+

∂ϕ

�′
s′

(
ds′

�̃x

)

�̃x

=
∫ b

a

√
E
(
dt′

�̃x

)

+ F
(
dt′

�̃x
ds′

�̃x

)
+G

(
ds′

�̃x

)

�̃x. �
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