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Abstract
In this paper, we introduce and consider a new system of generalized nonlinear
mixed variational inequalities involving six different nonlinear operators and discuss
the existence and uniqueness of solution of the aforesaid system. We use three nearly
uniformly Lipschitzian mappings Si (i = 1, 2, 3) to suggest and analyze some new
three-step resolvent iterative algorithms with mixed errors for finding an element of
the set of fixed points of the nearly uniformly Lipschitzian mappingQ = (S1, S2, S3),
which is the unique solution of the system of generalized nonlinear mixed variational
inequalities. The convergence analysis of the suggested iterative algorithms under
suitable conditions is studied. In the final section, an important remark on a class of
some relaxed cocoercive mappings is discussed.
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1 Introduction
Variational inequality theory, which was initially introduced by Stampacchia [] in , is
a branch of applicable mathematics with a wide range of applications in industry, physical,
regional, social, pure, and applied sciences. This field is dynamic and is experiencing an
explosive growth in both theory and applications; as a consequence, research techniques
and problems are drawn from various fields. Variational inequalities have been general-
ized and extended in different directions using the novel and innovative techniques. An
important and useful generalization is called the mixed variational inequality, or the vari-
ational inequality of the second kind, involving the nonlinear term. For applications, nu-
merical methods, and other aspects of variational inequalities, see, for example, [–]
and the references therein. In recent years, much attention has been given to develop effi-
cient and implementable numerical methods including projection method and its variant
forms, Wiener-Hopf (normal) equations, linear approximation, auxiliary principle, and
descent framework for solving variational inequalities and related optimization problems.
It is well known that the projection method and its variant forms andWiener-Hopf equa-
tions technique cannot be used to suggest and analyze iterativemethods for solvingmixed
variational inequalities due to the presence of the nonlinear term. These facts motivated
us to use the technique of resolvent operators, the origin of which can be traced back to
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Martinet [] and Brezis []. In this technique, the given operator is decomposed into the
sum of two (or more) maximal monotone operators, whose resolvents are easier to eval-
uate than the resolvent of the original operator. Such a method is known as the operator
splitting method. This can lead to the development of very efficient methods, since one
can treat each part of the original operator independently. The operator splitting methods
and related techniques have been analyzed and studied by many authors including Peace-
man and Rachford [], Lions and Mercier [], Glowinski and Tallec [], and Tseng [].
For an excellent account of the alternating direction implicit (splitting) methods, see [].
A useful feature of the forward-backward splitting method for solving the mixed vari-
ational inequalities is that the resolvent step involves the subdifferential of the proper,
convex and lower semicontinuous part only and the other part facilitates the problem de-
composition.
Equally important is the area of mathematical sciences known as the resolvent equa-

tions, which was introduced by Noor []. Noor [] established the equivalence between
the mixed variational inequalities and the resolvent equations using essentially the resol-
vent operator technique. The resolvent equations are being used to develop powerful and
efficient numerical methods for solving the mixed variational inequalities and related op-
timization problems. It is worthmentioning that if the nonlinear term involving themixed
variational inequalities is the indicator function of a closed convex set in a Hilbert space,
then the resolvent operator is equal to the projection operator.
On the other hand, related to the variational inequalities, we have the problem of find-

ing the fixed points of nonexpansive mappings, which is the subject of current interest in
functional analysis. It is natural to consider a unified approach to these two different prob-
lems.Motivated and inspired by the research going in this direction, Noor andHuang []
considered the problem of finding a common element of the set of solutions of variational
inequalities and the set of fixed points of nonexpansivemappings. It is well known that ev-
ery nonexpansive mapping is a Lipschitzian mapping. Lipschitzian mappings have been
generalized by various authors. Sahu [] introduced and investigated nearly uniformly
Lipschitzian mappings as generalization of Lipschitzian mappings.
In the present paper, we introduce and consider a new system of generalized nonlinear

mixed variational inequalities involving six different nonlinear operators (SGNMVID).
We first verify the equivalence between the SGNMVID and the fixed point problems, and
then by this equivalent formulation, we discuss the existence and uniqueness of the so-
lution of the SGNMVID. Applying nearly uniformly Lipschitzian mappings Si (i = , , )
and the aforesaid equivalent alternative formulation, we suggest and analyze some new
three-step resolvent iterative algorithms with mixed errors for finding the element of the
set of fixed points of the nearly uniformly Lipschitzian mapping Q = (S,S,S), which is
the unique solution of the SGNMVID. Also, the convergence analysis of the suggested
iterative algorithms under suitable conditions is studied. In the final section, some com-
ments on the results related to a class of strongly monotone mappings are discussed. The
results presented in this paper extend and improve some known results in the literature.

2 Preliminaries and basic results
Throughout this article, we letH be a real Hilbert space which is equipped with an inner
product 〈·, ·〉 and the corresponding norm ‖ · ‖. Let Ti :H×H×H →H and gi :H →H
(i = , , ) be six nonlinear single-valued operators such that for each i = , , , gi is an
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onto operator, and let ∂ϕi denote the subdifferential of the function ϕi (i = , , ), where
for each i = , , , ϕi :H → R ∪ {+∞} is a proper convex lower semicontinuous function
onH. For any given constants ρ,η,γ > , we consider the problem of finding x∗, y∗, z∗ ∈H
such that

⎧⎪⎪⎨
⎪⎪⎩

〈ρT(y∗, z∗,x∗) + x∗ – g(y∗), g(x) – x∗〉 ≥ ρϕ(x∗) – ρϕ(g(x)), ∀x ∈H,

〈ηT(z∗,x∗, y∗) + y∗ – g(z∗), g(x) – y∗〉 ≥ ηϕ(y∗) – ηϕ(g(x)), ∀x ∈H,

〈γT(x∗, y∗, z∗) + z∗ – g(x∗), g(x) – z∗〉 ≥ γ ϕ(z∗) – γ ϕ(g(x)), ∀x ∈H,

(.)

which is called the system of generalized nonlinearmixed variational inequalities involving
six different nonlinear operators (SGNMVID).
If for each i = , , , gi ≡ I , the identity operator, and ϕi(x) = δK (x), for all x ∈ K , where

δK is the indicator function of a nonempty closed convex set K inH defined by

δK (y) =

⎧⎨
⎩
, y ∈ K ,

∞, y /∈ K ,

then problem (.) reduces to the following system:

⎧⎪⎪⎨
⎪⎪⎩

〈ρT(y∗, z∗,x∗) + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ K ,

〈ηT(z∗,x∗, y∗) + y∗ – z∗,x – y∗〉 ≥ , ∀x ∈ K ,

〈γT(x∗, y∗, z∗) + z∗ – x∗,x – z∗〉 ≥ , ∀x ∈ K ,

(.)

which was introduced and studied by Cho and Qin [].
For different choices of operators and constants, we obtain different systems and prob-

lems considered and studied in [, , , , , –] and the references therein.

Definition. Aset-valued operatorT :H�H is said to bemonotone if, for any x, y ∈H,

〈u – v,x – y〉 ≥ , ∀u ∈ T(x), v ∈ T(y).

A monotone set-valued operator T is called maximal if its graph, Gph(T) := {(x, y) ∈
H×H : y ∈ T(x)}, is not properly contained in the graph of any other monotone operator.
It is well known that T is a maximal monotone operator if and only if (I + λT)(H) =H for
all λ > , where I denotes the identity operator onH.

Definition . [] For any maximal monotone operator T , the resolvent operator asso-
ciated with T of parameter λ is defined as

JλT (u) = (I + λT)–(u), ∀u ∈H.

It is single-valued and nonexpansive, that is,

∥∥JλT (u) – JλT (v)
∥∥ ≤ ‖u – v‖, ∀u, v ∈H.

http://www.fixedpointtheoryandapplications.com/content/2013/1/186
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If ϕ is a proper, convex and lower-semicontinuous function, then its subdifferential ∂ϕ

is a maximal monotone operator, see Theorem  in []. In this case, we can define the
resolvent operator associated with the subdifferential ∂ϕ of parameter λ as follows:

Jλϕ (u) = (I + λ∂ϕ)–(u), ∀u ∈H.

The resolvent operator Jλϕ has the following useful characterization.

Lemma . [] For a given z ∈H, x ∈H satisfies the inequality

〈x – z, y – x〉 + λϕ(y) – λϕ(x)≥ , ∀y ∈H,

if and only if x = Jλϕ (z), where Jλϕ is the resolvent operator associated with ∂ϕ of parameter
λ > .

It is well known that Jλϕ is nonexpansive, that is,

∥∥Jλϕ (u) – Jλϕ (v)
∥∥ ≤ ‖u – v‖, ∀u, v ∈H.

Let us recall that a mapping T :H → H is nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all
x, y ∈H. In recent years, nonexpansive mappings have been generalized and investigated
by various authors. In the next definitions, several generalizations of nonexpansive map-
pings are stated.

Definition . A nonlinear mapping T :H →H is called
(a) L-Lipschitzian if there exists a constant L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈H;

(b) generalized Lipschitzian [] if there exists a constant L >  such that

‖Tx – Ty‖ ≤ L
(‖x – y‖ + 

)
, ∀x, y ∈H;

(c) generalized (L,M)-Lipschitzian [] if there exist two constants L,M >  such that

‖Tx – Ty‖ ≤ L
(‖x – y‖ +M

)
, ∀x, y ∈H;

(d) asymptotically nonexpansive [] if there exists a sequence {kn} ⊆ [,∞) with
limn→∞ kn =  such that for each n ∈N,

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈H;

(e) pointwise asymptotically nonexpansive [] if, for each integer n≥ ,

∥∥Tnx – Tny
∥∥ ≤ αn(x)‖x – y‖, x, y ∈H,

where αn →  pointwise on X ;

http://www.fixedpointtheoryandapplications.com/content/2013/1/186
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(f ) uniformly L-Lipschitzian if there exists a constant L >  such that for each n ∈N,

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀x, y ∈H.

Definition . [] A nonlinear mapping T :H →H is said to be
(a) nearly Lipschitzian with respect to the sequence {an} if for each n ∈N, there exists a

constant kn >  such that

∥∥Tnx – Tny
∥∥ ≤ kn

(‖x – y‖ + an
)
, ∀x, y ∈H, (.)

where {an} is a fix sequence in [,∞) with an → , as n→ ∞.
For an arbitrary, but fixed n ∈ N, the infimum of constants kn in (.) is called nearly

Lipschitz constant and is denoted by η(Tn). Notice that

η
(
Tn) = sup

{‖Tnx – Tny‖
‖x – y‖ + an

: x, y ∈H,x �= y
}
.

Definition . [] A nearly Lipschitzian mapping T with the sequence {(an,η(Tn))} is
said to be
(a) nearly nonexpansive if η(Tn) =  for all n ∈N, that is,

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + an, ∀x, y ∈H;

(b) nearly asymptotically nonexpansive if η(Tn) ≥  for all n ∈N and limn→∞ η(Tn) = ,
in other words, kn ≥  for all n ∈N with limn→∞ kn = ;

(c) nearly uniformly L-Lipschitzian if η(Tn) ≤ L for all n ∈N, in other words, kn = L for
all n ∈N.

Remark . It should be pointed out that:
(a) Every nonexpansive mapping is an asymptotically nonexpansive mapping, and every

asymptotically nonexpansive mapping is a pointwise asymptotically nonexpansive
mapping. Also, the class of Lipschitzian mappings properly includes the class of
pointwise asymptotically nonexpansive mappings.

(b) It is obvious that every Lipschitzian mapping is a generalized Lipschitzian mapping.
Furthermore, every mapping with a bounded range is a generalized Lipschitzian
mapping. It is easy to see that the class of generalized (L,M)-Lipschitzian mappings
is more general than the class of generalized Lipschitzian mappings.

(c) Clearly, the class of nearly uniformly L-Lipschitzian mappings properly includes the
class of generalized (L,M)-Lipschitzian mappings and that of uniformly
L-Lipschitzian mappings. Note that every nearly asymptotically nonexpansive
mapping is nearly uniformly L-Lipschitzian.

Some interesting examples to investigate relations between the mappings given in Def-
initions ., . and . can be found in [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/186
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3 Existence of solution and uniqueness
In this section, we prove the existence and uniqueness theorem for a solution of the system
of generalized nonlinear mixed variational inequalities (.). For this end, we need the
following lemma, in which, by using the resolvent operator technique and Lemma ., the
equivalence between the system of generalized nonlinear mixed variational inequalities
(.) and fixed point problems is stated.

Lemma . Let Ti, gi, ϕi (i = , , ), ρ , η and γ be the same as in SGNMVID (.). Then
(x∗, y∗, z∗) ∈H×H×H is a solution of SGNMVID (.) if and only if

⎧⎪⎪⎨
⎪⎪⎩
x∗ = Jρϕ (g(y

∗) – ρT(y∗, z∗,x∗)),

y∗ = Jηϕ (g(z
∗) – ηT(z∗,x∗, y∗)),

z∗ = Jγϕ (g(x∗) – γT(x∗, y∗, z∗)),

(.)

where Jρϕ is the resolvent operator associated with ∂ϕ of parameter ρ , Jηϕ is the resolvent
operator associated with ∂ϕ of parameter η and Jγϕ is the resolvent operator associated
with ∂ϕ of parameter γ .

Proof (x∗, y∗, z∗) ∈H×H×H is a solution of SGNMVID (.) if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈x∗ – (g(y∗) – ρT(y∗, z∗,x∗)), g(x) – x∗〉 + ρϕ(g(x)) – ρϕ(x∗)

≥ , ∀x ∈H,

〈y∗ – (g(z∗) – ηT(z∗,x∗, y∗)), g(x) – y∗〉 + ηϕ(g(x)) – ηϕ(y∗)

≥ , ∀x ∈H,

〈z∗ – (g(x∗) – γT(x∗, y∗, z∗)), g(x) – z∗〉 + γ ϕ(g(x)) – γ ϕ(z∗)

≥ , ∀x ∈H.

(.)

Since for each i = , , , gi is an onto operator, Lemma . implies that (x∗, y∗, z∗) ∈ H ×
H×H is a solution of (.) if and only if

⎧⎪⎪⎨
⎪⎪⎩
x∗ = Jρϕ (g(y

∗) – ρT(y∗, z∗,x∗)),

y∗ = Jηϕ (g(z
∗) – ηT(z∗,x∗, y∗)),

z∗ = Jγϕ (g(x∗) – γT(x∗, y∗, z∗)).

This completes the proof. �

Definition . Let T :H ×H ×H → H and g :H → H be two single-valued operators.
Then the operator
(a) T is calledmonotone in the first variable if

〈
T(x, ·, ·) – T(y, ·, ·),x – y

〉 ≥ , ∀x, y ∈H;

(b) T is called r-strongly monotone in the first variable if there exists a constant r > 
such that

〈
T(x, ·, ·) – T(y, ·, ·),x – y

〉 ≥ r‖x – y‖, ∀x, y ∈H;

http://www.fixedpointtheoryandapplications.com/content/2013/1/186
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(c) T is called (κ , θ )-relaxed cocoercive in the first variable if there exist two constants
κ , θ >  such that

〈
T(x, ·, ·) – T(y, ·, ·),x – y

〉 ≥ –κ
∥∥T(x, ·, ·) – T(y, ·, ·)∥∥ + θ‖x – y‖, ∀x, y ∈H;

(d) T is said to be μ-Lipschitz continuous in the first variable if there exists a constant
μ >  such that

∥∥T(x, ·, ·) – T(y, ·, ·)∥∥ ≤ μ‖x – y‖, ∀x, y ∈H;

(e) g is called γ -Lipschitz continuous if there exists a constant γ >  such that

∥∥g(x) – g(y)
∥∥ ≤ γ ‖x – y‖, ∀x, y ∈H;

(f ) g is said to be ν-strongly monotone if there exists a constant ν >  such that

〈
g(x) – g(y),x – y

〉 ≥ ν‖x – y‖, ∀x, y ∈H.

Theorem . Let Ti, gi, ϕi (i = , , ), ρ , η and γ be the same as in SGNMVID (.) such
that for each i = , , , Ti is ςi-strongly monotone and σi-Lipschitz continuous in the first
variable and gi is πi-strongly monotone and δi-Lipschitz continuous. If the constants ρ , η
and γ satisfy the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ρ – ς
σ

| <

√
ς
 –σ

 μ(–μ)
σ


,

|η – ς
σ

| <

√
ς
 –σ

 μ(–μ)
σ


,

|γ – ς
σ

| <

√
ς
 –σ

 μ(–μ)
σ


,

ςi > σi
√

μi( –μi) (i = , , ),

μi =
√
 – (πi – δi ) <  (i = , , ),

πi <  + δi (i = , , ),

(.)

then SGNMVID (.) admits a unique solution.

Proof Define the mappings � ,�,� :H×H×H →H by

�(x, y, z) = Jρϕ
(
g(y) – ρT(y, z,x)

)
,

�(x, y, z) = Jηϕ
(
g(z) – ηT(z,x, y)

)
,

�(x, y, z) = Jγϕ
(
g(x) – γT(x, y, z)

)
,

(.)

for all (x, y, z) ∈H×H×H. Define ‖ · ‖∗ onH×H×H by

∥∥(x, y, z)∥∥∗ = ‖x‖ + ‖y‖ + ‖z‖, ∀(x, y, z) ∈H×H×H.

It is obvious that (H×H×H,‖ ·‖∗) is a Banach space.Moreover, define F :H×H×H →
H×H×H as follows:

F(x, y, z) =
(
�(x, y, z),�(x, y, z),�(x, y, z)

)
, ∀(x, y, z) ∈H×H×H. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/186
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Now, we prove that F is a contractionmapping. For this end, let (x, y, z), (x̂, ŷ, ẑ) ∈H×H×
H be given. By using the nonexpansivity property of the resolvent operator Jρϕ , we get

∥∥�(x, y, z) –�(x̂, ŷ, ẑ)
∥∥

=
∥∥Jρϕ(g(y) – ρT(y, z,x)

)
– Jρϕ

(
g(ŷ) – ρT(ŷ, ẑ, x̂)

)∥∥
≤ ∥∥g(y) – g(ŷ) – ρ

(
T(y, z,x) – T(ŷ, ẑ, x̂)

)∥∥
≤ ∥∥y – ŷ –

(
g(y) – g(ŷ)

)∥∥ +
∥∥y – ŷ – ρ

(
T(y, z,x) – T(ŷ, ẑ, x̂)

)∥∥. (.)

Because g is π-strongly monotone and δ-Lipschitz continuous, we have

∥∥y – ŷ –
(
g(y) – g(ŷ)

)∥∥

= ‖y – ŷ‖ – 
〈
g(y) – g(ŷ), y – ŷ

〉
+

∥∥g(y) – g(ŷ)
∥∥

≤ ( – π)‖y – ŷ‖ + ∥∥g(y) – g(ŷ)
∥∥

≤ (
 – π + δ

)‖y – ŷ‖. (.)

Since T is ς-strongly monotone and σ-Lipschitz continuous in the first variable, we
conclude that

∥∥y – ŷ – ρ
(
T(y, z,x) – T(ŷ, ẑ, x̂)

)∥∥

= ‖y – ŷ‖ – ρ
〈
T(y, z,x) – T(ŷ, ẑ, x̂), y – ŷ

〉
+ ρ∥∥T(y, z,x) – T(ŷ, ẑ, x̂)

∥∥

≤ ( – ρς)‖y – ŷ‖ + ρ∥∥T(y, z,x) – T(ŷ, ẑ, x̂)
∥∥

≤ (
 – ρς + ρσ 


)‖y – ŷ‖. (.)

Substituting (.) and (.) in (.), we deduce that

∥∥�(x, y, z) –�(x̂, ŷ, ẑ)
∥∥ ≤ (√

 – π + δ +
√
 – ρς + ρσ 


)‖y – ŷ‖. (.)

Like in the proof of (.), we can establish that

∥∥�(x, y, z) –�(x̂, ŷ, ẑ)
∥∥ ≤ (√

 – π + δ +
√
 – ης + ησ 


)‖z – ẑ‖ (.)

and

∥∥�(x, y, z) –�(x̂, ŷ, ẑ)
∥∥ ≤ (√

 – π + δ +
√
 – γ ς + γ σ 


)‖x – x̂‖. (.)

From (.)-(.), it follows that

∥∥�(x, y, z) –�(x̂, ŷ, ẑ)
∥∥ +

∥∥�(x, y, z) –�(x̂, ŷ, ẑ)
∥∥ +

∥∥�(x, y, z) –�(x̂, ŷ, ẑ)
∥∥

≤ ϑ‖x – x̂‖ + θ‖y – ŷ‖ + �‖z – ẑ‖, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/186


Petrot and Balooee Fixed Point Theory and Applications 2013, 2013:186 Page 9 of 21
http://www.fixedpointtheoryandapplications.com/content/2013/1/186

where

ϑ =
√
 – π + δ +

√
 – γ ς + γ σ 

 ,

θ =
√
 – π + δ +

√
 – ρς + ρσ 

 ,

� =
√
 – π + δ +

√
 – ης + ησ 

 .

(.)

Applying (.) and (.), we conclude that

∥∥F(x, y, z) – F(x̂, ŷ, ẑ)
∥∥∗ ≤ λ

∥∥(x, y, z) – (x̂, ŷ, ẑ)
∥∥∗, (.)

where λ =max{ϑ , θ ,�}. Condition (.) implies that  ≤ λ <  and so (.) guarantees that
the mapping F is contraction. According to the Banach fixed point theorem, there exists
a unique point (x∗, y∗, z∗) ∈H×H×H such that F(x∗, y∗, z∗) = (x∗, y∗, z∗). It follows from
(.) and (.) that x∗ = Jρϕ (g(y

∗) –ρT(y∗, z∗,x∗)), y∗ = Jηϕ (g(z
∗) –ηT(z∗,x∗, y∗)) and z∗ =

Jγϕ (g(x∗) – γT(x∗, y∗, z∗)). Now, it follows from Lemma . that (x∗, y∗, z∗) ∈ H×H×H
is a unique solution of SGNMVID (.). This completes the proof. �

4 Some new three-step resolvent iterative algorithms
In this section, applying nearly uniformly Lipschitzianmappings Si (i = , , ) and by using
the equivalent alternative formulation (.), we suggest and analyze some new three-step
resolvent iterative algorithms with mixed errors for finding an element of the set of fixed
points ofQ = (S,S,S), which is the unique solution of SGNMVID (.).
Let S : H → H be a nearly uniformly L-Lipschitzian mapping with the sequence

{an}∞n=, let S :H →H be a nearly uniformly L-Lipschitzian mapping with the sequence
{bn}∞n= and let S : H → H be a nearly uniformly L-Lipschitzian mapping with the se-
quence {cn}∞n=. We define the self-mappingQ ofH×H×H as follows:

Q(x, y, z) = (Sx,Sy,Sz), ∀x, y, z ∈H. (.)

Then Q = (S,S,S) :H × H × H → H × H × H is a nearly uniformly max{L,L,L}-
Lipschitzian mapping with the sequence {an + bn + cn}∞n= with respect to the norm ‖ · ‖∗
in H ×H ×H. To see this fact, let (x, y, z), (x′, y′, z′) ∈ H ×H ×H be arbitrary. Then, for
any n ∈N, we have

∥∥Qn(x, y, z) –Qn(x′, y′, z′)∥∥∗

=
∥∥(
Sn x,S

n
y,S

n
z

)
–

(
Sn x

′,Sny
′,Snz

′)∥∥∗

=
∥∥(
Sn x – Sn x

′,Sny – Sny
′,Snz – Snz

′)∥∥∗

=
∥∥Sn x – Sn x

′∥∥ +
∥∥Sny – Sny

′∥∥ +
∥∥Snz – Snz

′∥∥
≤ L

(∥∥x – x′∥∥ + an
)
+ L

(∥∥y – y′∥∥ + bn
)
+ L

(∥∥z – z′∥∥ + cn
)

≤ max{L,L,L}
(∥∥x – x′∥∥ +

∥∥y – y′∥∥ +
∥∥z – z′∥∥ + an + bn + cn

)
=max{L,L,L}

(∥∥(x, y, z) – (
x′, y′, z′)∥∥∗ + an + bn + cn

)
.
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We denote the sets of all the fixed points of Si (i = , , ) and Q by Fix(Si) and Fix(Q),
respectively, and the set of all the solutions of system (.) by SGNMVID(H,Ti, gi,ϕi, i =
, , ). It is clear that for any (x, y, z) ∈ H × H × H, (x, y, z) ∈ Fix(Q) if and only if x ∈
Fix(S), y ∈ Fix(S) and z ∈ Fix(S), that is, Fix(Q) = Fix(S,S,S) = Fix(S) × Fix(S) ×
Fix(S). We now characterize the problem. Let Ti, gi, ϕi (i = , , ), ρ , η and γ be the
same as in SGNMVID (.). If (x∗, y∗, z∗) ∈ Fix(Q)∩SGNMVID(H,Ti, gi,ϕi, i = , , ), then
x∗ ∈ Fix(S), y∗ ∈ Fix(S), z∗ ∈ Fix(S) and (x∗, y∗, z∗) ∈ SGNMVID(H,Ti, gi,ϕi, i = , , ).
Therefore, it follows from Lemma . that for each n ∈N,

⎧⎪⎪⎨
⎪⎪⎩
x∗ = Sn x∗ = Jρϕ (g(y

∗) – ρT(y∗, z∗,x∗)) = Sn Jρϕ (g(y
∗) – ρT(y∗, z∗,x∗)),

y∗ = Sny∗ = Jηϕ (g(z
∗) – ηT(z∗,x∗, y∗)) = SnJηϕ (g(z

∗) – ηT(z∗,x∗, y∗)),

z∗ = Snz∗ = Jγϕ (g(x∗) – γT(x∗, y∗, z∗)) = Sn J
γ
ϕ (g(x∗) – γT(x∗, y∗, z∗)).

(.)

The fixed point formulation (.) is used to suggest the following three-step resolvent
iterative algorithm with mixed errors for finding an element of the set of fixed points of
the nearly uniformly Lipschitzian mapping Q = (S,S,S), which is a unique solution of
SGNMVID (.).

Algorithm . Let Ti, gi, ϕi (i = , , ), ρ , η and γ be the same as in SGNMVID (.). For
an arbitrary chosen initial point (x, y, z) ∈ H ×H ×H, compute the iterative sequence
{(xn, yn, zn)}∞n= by the iterative processes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+ = ( – αn – βn)xn + αnSn Jρϕ (g(yn+) – ρT(yn+, zn+,xn))

+ αnen + βnjn + rn,

yn+ = ( – α′
n – β ′

n)xn + α′
nSnJηϕ (g(zn+) – ηT(zn+,xn, yn))

+ α′
npn + β ′

nqn + kn,

zn+ = ( – α′′
n – β ′′

n )xn + α′′
nSnJ

γ
ϕ (g(xn) – γT(xn, yn, zn))

+ α′′
nsn + β ′′

n tn + ln,

(.)

where Si :H → H (i = , , ) are three nearly uniformly Lipschitzian mappings, {αn}∞n=,
{α′

n}∞n=, {α′′
n}∞n=, {βn}∞n=, {β ′

n}∞n= and {β ′′
n }∞n= are sequences in the interval [, ] such that∑∞

n= αn = ∞,
∑∞

n= βn < ∞,
∑∞

n= β
′
n < ∞,

∑∞
n= β

′′
n < ∞, αn +βn ≤ , α′

n +β ′
n ≤ , α′′

n +β ′′
n ≤

, limn→∞ α′
n = , limn→∞ α′′

n =  and {en}∞n=, {pn}∞n=, {sn}∞n=, {jn}∞n=, {qn}∞n=, {tn}∞n=, {rn}∞n=,
{kn}∞n=, {ln}∞n= are nine sequences inH to take into account a possible inexact computation
of the resolvent operator point satisfying the following conditions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

en = e′
n + e′′

n, pn = p′
n + p′′

n, sn = s′n + s′′n,

limn→∞ ‖e′
n‖ = , limn→∞ ‖p′

n‖ = , limn→∞ ‖s′n‖ = ,∑∞
n= ‖e′′

n‖ < ∞,
∑∞

n= ‖p′′
n‖ < ∞,

∑∞
n= ‖s′′n‖ <∞,∑∞

n= ‖rn‖ < ∞,
∑∞

n= ‖kn‖ <∞,
∑∞

n= ‖ln‖ < ∞.

(.)

If for each i = , , , Si ≡ I , then Algorithm . reduces to the following algorithm.

Algorithm . Let Ti, gi, ϕi (i = , , ), ρ , η and γ be the same as in SGNMVID (.). For
an arbitrary chosen initial point (x, y, z) ∈ H ×H ×H, compute the iterative sequence

http://www.fixedpointtheoryandapplications.com/content/2013/1/186
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{(xn, yn, zn)}∞n= in the following way:

⎧⎪⎪⎨
⎪⎪⎩
xn+ = ( – αn – βn)xn + αnJρϕ (g(yn+) – ρT(yn+, zn+,xn)) + αnen + βnjn + rn,

yn+ = ( – α′
n – β ′

n)xn + α′
nJηϕ (g(zn+) – ηT(zn+,xn, yn)) + α′

npn + β ′
nqn + kn,

zn+ = ( – α′′
n – β ′′

n )xn + α′′
nJ

γ
ϕ (g(xn) – γT(xn, yn, zn)) + α′′

nsn + β ′′
n tn + ln,

where the sequences {αn}∞n=, {α′
n}∞n=, {α′′

n}∞n=, {βn}∞n=, {β ′
n}∞n=, {β ′′

n }∞n=, {en}∞n=, {pn}∞n=,
{sn}∞n=, {jn}∞n=, {qn}∞n=, {tn}∞n=, {rn}∞n=, {kn}∞n= and {ln}∞n= are the same as in Algorithm ..

Remark . Equality (.) can be written as follows:

⎧⎪⎪⎨
⎪⎪⎩
x∗ = Sn Jρϕ (u), y∗ = SnJηϕ (v), z∗ = SnJ

γ
ϕ (w),

u = g(y∗) – ρT(y∗, z∗,x∗), v = g(z∗) – ηT(z∗,x∗, y∗),

w = g(x∗) – γT(x∗, y∗, z∗).

(.)

The fixed point formulation (.) enables us to suggest the following iterative algo-
rithms.

Algorithm . Let Ti, gi, ϕi (i = , , ), ρ , η and γ be the same as in SGNMVID (.). For
an arbitrary chosen initial point (u, v,w) ∈H×H×H, compute the iterative sequence
{(xn, yn, zn)}∞n= in the following way:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn = Sn Jρϕ (un), yn = SnJηϕ (vn), zn = SnJ
γ
ϕ (wn),

un+ = ( – αn – βn)un + αn(g(yn) – ρT(yn, zn,xn)) + αnen + βnjn + rn,

vn+ = ( – αn – βn)vn + αn(g(zn) – ηT(zn,xn, yn)) + αnpn + βnqn + kn,

wn+ = ( – αn – βn)wn + αn(g(xn) – γT(xn, yn, zn)) + αnsn + βntn + ln,

(.)

where Si :H → H (i = , , ) are three nearly uniformly Lipschitzian mappings, {αn}∞n=,
{βn}∞n= are sequences in [, ] such that

∑∞
n= αn = ∞,

∑∞
n= βn < ∞, αn + βn ≤  and the

sequences {en}∞n=, {pn}∞n=, {sn}∞n=, {jn}∞n=, {qn}∞n=, {tn}∞n=, {rn}∞n=, {kn}∞n=, {ln}∞n= are the
same as in Algorithm . satisfying (.).

If βn = , for all n ∈N, then Algorithm . reduces to the following algorithm.

Algorithm . Let Ti, gi, ϕi (i = , , ), ρ , η and γ be the same as in SGNMVID (.). For
an arbitrary chosen initial point (u, v,w) ∈H×H×H, compute the iterative sequence
{(xn, yn, zn)}∞n= in the following way:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn = Sn Jρϕ (un), yn = SnJηϕ (vn), zn = SnJ
γ
ϕ (wn),

un+ = ( – αn)un + αn(g(yn) – ρT(yn, zn,xn)) + αnen + rn,

vn+ = ( – αn)vn + αn(g(zn) – ηT(zn,xn, yn)) + αnpn + kn,

wn+ = ( – αn)wn + αn(g(xn) – γT(xn, yn, zn)) + αnsn + ln,

where Si (i = , , ), {αn}∞n=, {en}∞n=, {pn}∞n=, {sn}∞n=, {rn}∞n=, {kn}∞n= and {ln}∞n= are the same
as in Algorithm ..
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If Si ≡ I (i = , , ), then Algorithm . collapses to the following algorithm.

Algorithm . Let Ti, gi, ϕi (i = , , ), ρ , η and γ be the same as in SGNMVID (.). For
an arbitrary chosen initial point (u, v,w) ∈H×H×H, compute the iterative sequence
{(xn, yn, zn)}∞n= in the following way:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn = Jρϕ (un), yn = Jηϕ (vn), zn = Jγϕ (wn),

un+ = ( – αn – βn)un + αn(g(yn) – ρT(yn, zn,xn)) + αnen + βnjn + rn,

vn+ = ( – αn – βn)vn + αn(g(zn) – ηT(zn,xn, yn)) + αnpn + βnqn + kn,

wn+ = ( – αn – βn)wn + αn(g(xn) – γT(xn, yn, zn)) + αnsn + βntn + ln,

where the sequences {αn}∞n=, {βn}∞n=, {en}∞n=, {pn}∞n=, {sn}∞n=, {jn}∞n=, {qn}∞n=, {tn}∞n=,
{rn}∞n=, {kn}∞n= and {ln}∞n= are the same as in Algorithm ..

5 Main results
In this section, we discuss the convergence analysis of the suggested three-step resolvent
iterative algorithms under suitable conditions. For this end, we need the following lemma.

Lemma . Let {an}, {bn} and {cn} be three nonnegative real sequences satisfying the fol-
lowing condition: There exists a natural number n such that

an+ ≤ ( – tn)an + bntn + cn, ∀n≥ n,

where tn ∈ [, ],
∑∞

n= tn = ∞, limn→∞ bn = ,
∑∞

n= cn < ∞. Then limn→ an = .

Proof The proof directly follows from Lemma  in Liu []. �

Theorem . Let Ti, gi, ϕi (i = , , ), ρ , η and γ be the same as in Theorem . and
let all the conditions of Theorem . hold. Suppose that S : H → H is a nearly uni-
formly L-Lipschitzian mapping with the sequence {bn}∞n=, that S : H → H is a nearly
uniformly L-Lipschitzian mapping with the sequence {cn}∞n=, that S : H → H is a
nearly uniformly L-Lipschitzian mapping with the sequence {dn}∞n=, and that the self-
mappingQ ofH×H×H is defined by (.) such that Fix(Q)∩SGNMVID(H,Ti, gi,ϕi, i =
, , ) �= ∅. Further, let Liλ < , where λ is the same as in (.). Then the iterative se-
quence {(xn, yn, zn)}∞n= generated by Algorithm ., converges strongly to the only element
of Fix(Q)∩ SGNMVID(H,Ti, gi,ϕi, i = , , ).

Proof According to Theorem ., SGNMVID (.) has a unique solution (x∗, y∗, z∗) ∈H×
H×H. Accordingly, in viewof Lemma., (x∗, y∗, z∗) satisfies (.). SinceSGNMVID(H,Ti,
gi,ϕi, i = , , ) is a singleton set, it follows from Fix(Q) ∩ SGNMVID(H,Ti, gi,ϕi, i =
, , ) �= ∅ that (x∗, y∗, z∗) ∈ Fix(Q) and so x∗ ∈ Fix(S), y∗ ∈ Fix(S) and z∗ ∈ Fix(S).
Hence, for each n ∈N, we can write

⎧⎪⎪⎨
⎪⎪⎩
x∗ = ( – αn – βn)x∗ + αnSn Jρϕ (g(y

∗) – ρT(y∗, z∗,x∗)) + βnx∗,

y∗ = ( – α′
n – β ′

n)y∗ + α′
nSnJηϕ (g(z

∗) – ηT(z∗,x∗, y∗)) + β ′
ny∗,

z∗ = ( – α′′
n – β ′′

n )z∗ + α′′
nSn J

γ
ϕ (g(x∗) – γT(x∗, y∗, z∗)) + β ′′

nz∗,

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/186
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where the sequences {αn}∞n=, {α′
n}∞n=, {α′′

n}∞n=, {βn}∞n=, {β ′
n}∞n= and {β ′′

n }∞n= are the same as
in Algorithm .. Let � = supn≥{‖jn – x∗‖,‖qn – y∗‖,‖tn – z∗‖}. It follows from (.), (.)
and the assumptions that

∥∥xn+ – x∗∥∥
≤ ( – αn – βn)

∥∥xn – x∗∥∥ + αn
∥∥Sn Jρϕ(g(yn+) – ρT(yn+, zn+,xn)

)
– Sn J

ρ
ϕ

(
g

(
y∗) – ρT

(
y∗, z∗,x∗))∥∥ + βn

∥∥jn – x∗∥∥ + αn‖en‖ + ‖rn‖
≤ ( – αn – βn)

∥∥xn – x∗∥∥
+ αnL

(∥∥g(yn+) – g
(
y∗) – ρ

(
T(yn+, zn+,xn) – T

(
y∗, z∗,x∗))∥∥ + bn

)
+ αn

(∥∥e′
n
∥∥ +

∥∥e′′
n
∥∥)

+ ‖rn‖ + βn�

≤ ( – αn – βn)
∥∥xn – x∗∥∥ + αnL

(∥∥yn+ – y∗ –
(
g(yn+) – g

(
y∗))∥∥

+
∥∥yn+ – y∗ – ρ

(
T(yn+, zn+,xn) – T

(
y∗, z∗,x∗))∥∥ + bn

)
+ αn

∥∥e′
n
∥∥ +

∥∥e′′
n
∥∥ + ‖rn‖ + βn�. (.)

Since g isπ-stronglymonotone and δ-Lipschitz continuous, andT is ς-stronglymono-
tone and σ-Lipschitz continuous in the first variable, similar to the proofs of (.) and
(.), one can prove that

∥∥yn+ – y∗ –
(
g(yn+) – g

(
y∗))∥∥ ≤

√
 – π + δ

∥∥yn+ – y∗∥∥ (.)

and

∥∥yn+ – y∗ – ρ
(
T(yn+, zn+,xn) – T

(
y∗, z∗,x∗))∥∥

≤
√
 – ρς + ρσ 


∥∥yn+ – y∗∥∥. (.)

Substituting (.) and (.) in (.), we get

∥∥xn+ – x∗∥∥ ≤ ( – αn – βn)
∥∥xn – x∗∥∥ + αnLθ

∥∥yn+ – y∗∥∥
+ αnLbn + αn

∥∥e′
n
∥∥ +

∥∥e′′
n
∥∥ + ‖rn‖ + βn�, (.)

where θ is the same as in (.). It follows from (.) and (.) that

∥∥yn+ – y∗∥∥
≤ (

 – α′
n – β ′

n
)∥∥xn – y∗∥∥ + α′

n
∥∥SnJηϕ(g(zn+) – ηT(zn+,xn, yn)

)
– SnJ

η
ϕ

(
g

(
z∗) – ηT

(
z∗,x∗, y∗))∥∥ + β ′

n
∥∥qn – y∗∥∥ + α′

n‖pn‖ + ‖kn‖
≤ (

 – α′
n – β ′

n
)∥∥xn – y∗∥∥

+ α′
nL

(∥∥g(zn+) – g
(
z∗) – η

(
T(zn+,xn, yn) – T

(
z∗,x∗, y∗))∥∥ + cn

)
+ α′

n
(∥∥p′

n
∥∥ +

∥∥p′′
n
∥∥)

+ ‖kn‖ + β ′
n�

≤ (
 – α′

n – β ′
n
)∥∥xn – y∗∥∥ + α′

nL
(∥∥zn+ – z∗ –

(
g(zn+) – g

(
z∗))∥∥
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+
∥∥zn+ – z∗ – η

(
T(zn+,xn, yn) – T

(
z∗,x∗, y∗))∥∥ + cn

)
+ α′

n
∥∥p′

n
∥∥ +

∥∥p′′
n
∥∥ + ‖kn‖ + β ′

n�. (.)

Since g is π-strongly monotone and δ-Lipschitz continuous, and T is ς-strongly
monotone and σ-Lipschitz continuous in the first variable, we can get

∥∥zn+ – z∗ –
(
g(zn+) – g

(
z∗))∥∥ ≤

√
 – π + δ

∥∥zn+ – z∗∥∥ (.)

and

∥∥zn+ – z∗ – η
(
T(zn+,xn, yn) – T

(
z∗,x∗, y∗))∥∥ ≤

√
 – ης + ησ 


∥∥zn+ – z∗∥∥. (.)

Combining (.)-(.), we conclude that

∥∥yn+ – y∗∥∥ ≤ (
 – α′

n – β ′
n
)∥∥xn – y∗∥∥ + α′

nL�
∥∥zn+ – z∗∥∥

+ α′
nLcn + α′

n
∥∥p′

n
∥∥ +

∥∥p′′
n
∥∥ + ‖kn‖ + β ′

n�, (.)

where � is the same as in (.). From (.) and (.), it follows that

∥∥zn+ – z∗∥∥
≤ (

 – α′′
n – β ′′

n
)∥∥xn – z∗∥∥ + α′′

n
∥∥Sn Jγϕ(g(xn) – γT(xn, yn, zn)

)
– SnJ

γ
ϕ

(
g

(
x∗) – γT

(
x∗, y∗, z∗))∥∥ + β ′′

n
∥∥tn – z∗∥∥ + α′′

n‖sn‖ + ‖ln‖
≤ (

 – α′′
n – β ′′

n
)∥∥xn – z∗∥∥ + α′′

nL
(∥∥g(xn) – g

(
x∗)

– γ
(
T(xn, yn, zn) – T

(
x∗, y∗, z∗))∥∥ + dn

)
+ α′′

n
(∥∥s′n∥∥ +

∥∥s′′n∥∥)
+ ‖ln‖ + β ′′

n�

≤ (
 – α′′

n – β ′′
n
)∥∥xn – z∗∥∥ + α′′

nL
(∥∥xn – x∗ –

(
g(xn) – g

(
x∗))∥∥

+
∥∥xn – x∗ – γ

(
T(xn, yn, zn) – T

(
x∗, y∗, z∗))∥∥ + dn

)
+ α′′

n
∥∥s′n∥∥ +

∥∥s′′n∥∥ + ‖ln‖ + β ′′
n�. (.)

Because g is π-strongly monotone and δ-Lipschitz continuous, and T is ς-strongly
monotone and σ-Lipschitz continuous in the first variable, we can obtain

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥ ≤

√
 – π + δ

∥∥xn – x∗∥∥ (.)

and

∥∥xn – x∗ – γ
(
T(xn, yn, zn) – T

(
x∗, y∗, z∗))∥∥ ≤

√
 – γ ς + γ σ 


∥∥xn – x∗∥∥. (.)

Substituting (.) and (.) in (.), deduce that

∥∥zn+ – z∗∥∥ ≤ (
 – α′′

n – β ′′
n
)∥∥xn – z∗∥∥ + α′′

nLϑ
∥∥xn – x∗∥∥

+ α′′
nLdn + α′′

n
∥∥s′n∥∥ +

∥∥s′′n∥∥ + ‖ln‖ + β ′′
n�, (.)

where ϑ is the same as in (.).
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By using (.) and the fact that Lϑ < , we have

∥∥zn+ – z∗∥∥ ≤ (
 – α′′

n – β ′′
n
)∥∥xn – z∗∥∥ + α′′

nLϑ
∥∥xn – x∗∥∥

+ α′′
nLdn + α′′

n
∥∥s′n∥∥ +

∥∥s′′n∥∥ + ‖ln‖ + β ′′
n�

≤ (
 – α′′

n – β ′′
n
)∥∥xn – x∗∥∥ + α′′

nLϑ
∥∥xn – x∗∥∥ + α′′

nLdn

+
(
 – α′′

n – β ′′
n
)∥∥x∗ – z∗∥∥ + α′′

n
∥∥s′n∥∥ +

∥∥s′′n∥∥ + ‖ln‖ + β ′′
n�

≤ (
 – α′′

n – β ′′
n
)∥∥xn – x∗∥∥ + α′′

n
∥∥xn – x∗∥∥ + α′′

nLdn

+
(
 – α′′

n – β ′′
n
)∥∥x∗ – z∗∥∥ + α′′

n
∥∥s′n∥∥ +

∥∥s′′n∥∥ + ‖ln‖ + β ′′
n�

≤ ∥∥xn – x∗∥∥ + α′′
nLdn +

(
 – α′′

n – β ′′
n
)∥∥x∗ – z∗∥∥

+ α′′
n
∥∥s′n∥∥ +

∥∥s′′n∥∥ + ‖ln‖ + β ′′
n�. (.)

It follows from (.), (.) and the fact that L� <  that

∥∥yn+ – y∗∥∥ ≤ (
 – α′

n – β ′
n
)∥∥xn – y∗∥∥ + α′

nL�
∥∥zn+ – z∗∥∥

+ α′
nLcn + α′

n
∥∥p′

n
∥∥ +

∥∥p′′
n
∥∥ + ‖kn‖ + β ′

n�

≤ (
 – α′

n – β ′
n
)∥∥xn – x∗∥∥ +

(
 – α′

n – β ′
n
)∥∥x∗ – y∗∥∥

+ α′
nL�

∥∥zn+ – z∗∥∥ + α′
nLcn + α′

n
∥∥p′

n
∥∥ +

∥∥p′′
n
∥∥ + ‖kn‖ + β ′

n�

≤ (
 – α′

n – β ′
n
)∥∥xn – x∗∥∥ +

(
 – α′

n – β ′
n
)∥∥x∗ – y∗∥∥

+ α′
nL�

(∥∥xn – x∗∥∥ + α′′
nLdn +

(
 – α′′

n – β ′′
n
)∥∥x∗ – z∗∥∥

+ α′′
n
∥∥s′n∥∥ +

∥∥s′′n∥∥ + ‖ln‖ + β ′′
n�

)
+ α′

nLcn + α′
n
∥∥p′

n
∥∥ +

∥∥p′′
n
∥∥ + ‖kn‖ + β ′

n�

≤ ∥∥xn – x∗∥∥ +
(
 – α′

n – β ′
n
)∥∥x∗ – y∗∥∥ + α′

n
(
 – α′′

n – β ′′
n
)
L�

∥∥x∗ – z∗∥∥
+ α′

nα
′′
nLL�dn + α′

nα
′′
nL�

∥∥s′n∥∥ + α′
nL�

∥∥s′′n∥∥ + α′
nL�‖ln‖ + α′

nL�β ′′
n�

+ α′
nLcn + α′

n
∥∥p′

n
∥∥ +

∥∥p′′
n
∥∥ + ‖kn‖ + β ′

n�. (.)

Applying (.) and (.), it follows that

∥∥xn+ – x∗∥∥
≤ ( – αn – βn)

∥∥xn – x∗∥∥ + αnLθ
∥∥yn+ – y∗∥∥

+ αnLbn + αn
∥∥e′

n
∥∥ +

∥∥e′′
n
∥∥ + ‖rn‖ + βn�

≤ ( – αn – βn)
∥∥xn – x∗∥∥ + αnLθ

(∥∥xn – x∗∥∥ +
(
 – α′

n – β ′
n
)∥∥x∗ – y∗∥∥

+ α′
n
(
 – α′′

n – β ′′
n
)
L�

∥∥x∗ – z∗∥∥ + α′
nα

′′
nLL�dn + α′

nα
′′
nL�

∥∥s′n∥∥ + α′
nL�

∥∥s′′n∥∥
+ α′

nL�‖ln‖ + α′
nL�β ′′

n� + α′
nLcn + α′

n
∥∥p′

n
∥∥ +

∥∥p′′
n
∥∥ + ‖kn‖ + β ′

n�
)

+ αnLbn + αn
∥∥e′

n
∥∥ +

∥∥e′′
n
∥∥ + ‖rn‖ + βn�

≤ ( – αn – βn)
∥∥xn – x∗∥∥ + αnLθ

∥∥xn – x∗∥∥ + αn
(
 – α′

n – β ′
n
)
Lθ

∥∥x∗ – y∗∥∥
+ αnα

′
n
(
 – α′′

n – β ′′
n
)
LLθ�

∥∥x∗ – z∗∥∥ + αnα
′
nα

′′
nLLLθ�dn + αnα

′
nLLθcn

+ αnLbn + αnα
′
nα

′′
nLLθ�

∥∥s′n∥∥ + αnα
′
nLLθ�

∥∥s′′n∥∥ + αnα
′
nLLθ�‖ln‖
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+ αnα
′
nLθ

∥∥p′
n
∥∥ + αnLθ

∥∥p′′
n
∥∥ + αnLθ‖kn‖ + αn

∥∥e′
n
∥∥

+
∥∥e′′

n
∥∥ + ‖rn‖ +

(
αnα

′
nLLθ�β ′′

n + αnLθβ ′
n + βn

)
�

≤ (
 – αn( – Lθ )

)∥∥xn – x∗∥∥
+ αn( – Lθ )

[
( – α′

n – β ′
n)Lθ‖x∗ – y∗‖ + α′

n( – α′′
n – β ′′

n )LLθ�‖x∗ – z∗‖
 – Lθ

+
α′
nα

′′
nLLLθ�dn + α′

nLLθcn + Lbn + α′
nα

′′
nLLθ�‖s′n‖ + α′

nLθ‖p′
n‖ + ‖e′

n‖
 – Lθ

]

+ αnα
′
nLLθ�

∥∥s′′n∥∥ + αnα
′
nLLθ�‖ln‖ + αnLθ

∥∥p′′
n
∥∥ + αnLθ‖kn‖

+
∥∥e′′

n
∥∥ + ‖rn‖ +

(
αnα

′
nLLθ�β ′′

n + αnLθβ ′
n + βn

)
�. (.)

From
∑∞

n= βn < ∞,
∑∞

n= β
′
n < ∞ and

∑∞
n= β

′′
n < ∞, we infer that limn→∞ βn = limn→∞ β ′

n =
limn→∞ β ′′

n = . Since Lθ < , limn→∞ α′
n = limn→∞ α′′

n =  and limn→∞ bn = limn→∞ cn =
limn→∞ dn = , in view of (.), it is evident that the conditions of Lemma . are satisfied
and so Lemma . and (.) guarantee that xn → x∗, as n → ∞. Because

∑∞
n= ‖ln‖ < ∞,∑∞

n= ‖kn‖ < ∞,
∑∞

n= ‖s′′n‖ < ∞ and
∑∞

n= ‖p′′
n‖ < ∞, we have ‖ln‖ → , ‖kn‖ → ,

‖s′′n‖ →  and ‖p′′
n‖ → , as n → ∞. Now, it follows from (.), (.) and (.) that

yn → y∗ and zn → z∗, as n → ∞. Therefore, the sequence {(xn, yn, zn)}∞n= generated by
Algorithm . converges strongly to the unique solution (x∗, y∗, z∗) of SGNMVID (.),
that is, the only element of Fix(Q)∩ SGNMVID(H,Ti, gi,ϕi, i = , , ). This completes the
proof. �

Theorem . Suppose that Ti, gi, ϕi (i = , , ), ρ , η and γ are the same as in Theorem .
and let all the conditions of Theorem . hold. Then the iterative sequence {(xn, yn, zn)}∞n=
generated by Algorithm . converges strongly to the unique solution of SGNMVID (.).

Theorem . Let Ti, gi, ϕi, Si (i = , , ), Q, ρ , η and γ be the same as in Theo-
rem . and let all the conditions of Theorem . hold. Then the iterative sequence
{(xn, yn, zn)}∞n= generated byAlgorithm. converges strongly to the only element of Fix(Q)∩
SGNMVID(H,Ti, gi,ϕi, i = , , ).

Proof Theorem . guarantees the existence of a unique solution (x∗, y∗, z∗) ∈H×H×H
for SGNMVID (.). Hence, Lemma . implies that x∗ = Jρϕ (g(y

∗) – ρT(y∗, z∗,x∗)), y∗ =
Jηϕ (g(z

∗) – ηT(z∗,x∗, y∗)), z∗ = Jγϕ (g(x∗) – γT(x∗, y∗, z∗)). Since SGNMVID(H,Ti, gi,ϕi,
i = , , ) is a singleton set, by using Fix(Q) ∩ SGNMVID(H,Ti, gi,ϕi, i = , , ) �= ∅, we
conclude that (x∗, y∗, z∗) ∈ Fix(Q) and so x∗ ∈ Fix(S), y∗ ∈ Fix(S) and z∗ ∈ Fix(S). Hence,
in view of Remark ., for each n ∈N, we can write

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x∗ = Sn Jρϕ (u), y∗ = SnJηϕ (v), z∗ = SnJ
γ
ϕ (w),

u = ( – αn – βn)u + αn(g(y∗) – ρT(y∗, z∗,x∗)) + βnu,

v = ( – αn – βn)v + αn(g(z∗) – ηT(z∗,x∗, y∗)) + βnv,

w = ( – αn – βn)w + αn(g(x∗) – γT(x∗, y∗, z∗)) + βnw,

(.)
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where the sequences {αn}∞n= and {βn}∞n= are the same as in Algorithm .. Let �̂ =
supn≥{‖jn – u‖,‖qn – v‖,‖tn –w‖}. By using (.), (.) and the assumptions, we have

‖un+ – u‖
≤ ( – αn – βn)‖un – u‖ + αn

∥∥g(yn) – g
(
y∗) – ρ

(
T(yn, zn,xn) – T

(
y∗, z∗,x∗))∥∥

+ βn‖jn – u‖ + αn
(∥∥e′

n
∥∥ +

∥∥e′′
n
∥∥)

+ ‖rn‖
≤ ( – αn – βn)‖un – u‖ + αn

∥∥yn – y∗ –
(
g(yn) – g

(
y∗))∥∥

+ αn
∥∥yn – y∗ – ρ

(
T(yn, zn,xn) – T

(
y∗, z∗,x∗))∥∥

+ αn
∥∥e′

n
∥∥ +

∥∥e′′
n
∥∥ + ‖rn‖ + βn�̂. (.)

Since g isπ-stronglymonotone and δ-Lipschitz continuous, andT is ς-stronglymono-
tone and σ-Lipschitz continuous in the first variable, similar to the proofs of (.) and
(.), one can prove that

∥∥yn – y∗ –
(
g(yn) – g

(
y∗))∥∥ ≤

√
 – π + δ

∥∥yn – y∗∥∥ (.)

and
∥∥yn – y∗ – ρ

(
T(yn, zn,xn) – T

(
y∗, z∗,x∗))∥∥ ≤

√
 – ρς + ρσ 


∥∥yn – y∗∥∥. (.)

Combining (.)-(.), we get

‖un+ – u‖ ≤ ( – αn – βn)‖un – u‖ + αnθ
∥∥yn – y∗∥∥

+ αn
∥∥e′

n
∥∥ +

∥∥e′′
n
∥∥ + ‖rn‖ + βn�̂, (.)

where θ is the same as in (.). It follows from (.) and (.) that
∥∥yn – y∗∥∥ =

∥∥SnJηϕ (vn) – SnJ
η
ϕ (v)

∥∥ ≤ L
(∥∥Jηϕ (vn) – Jηϕ (v)

∥∥ + cn
)

≤ L
(‖vn – v‖ + cn

)
. (.)

Substituting (.) in (.), conclude that

‖un+ – u‖ ≤ ( – αn – βn)‖un – u‖ + αnLθ‖vn – v‖ + αnLθcn

+ αn
∥∥e′

n
∥∥ +

∥∥e′′
n
∥∥ + ‖rn‖ + βn�̂. (.)

Like in the proofs of (.)-(.), we can verify that

‖vn+ – v‖ ≤ ( – αn – βn)‖vn – v‖ + αnL�‖wn –w‖ + αnL�dn

+ αn
∥∥p′

n
∥∥ +

∥∥p′′
n
∥∥ + ‖kn‖ + βn�̂ (.)

and

‖wn+ –w‖ ≤ ( – αn – βn)‖wn –w‖ + αnLϑ‖un – u‖ + αnLϑbn

+ αn
∥∥s′n∥∥ +

∥∥s′′n∥∥ + ‖ln‖ + βn�̂, (.)

where � and ϑ are the same as in (.).
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Let L =max{Li : i = , , }. Then, applying (.)-(.), we obtain
∥∥(un+, vn+,wn+) – (u, v,w)

∥∥∗

≤ ( – αn – βn)
∥∥(un, vn,wn) – (u, v,w)

∥∥∗

+ αnLλ
∥∥(un, vn,wn) – (u, v,w)

∥∥∗ + αnLλ(bn + cn + dn)

+ αn
∥∥(
e′
n,p

′
n, s

′
n
)∥∥∗ +

∥∥(
e′′
n,p

′′
n, s

′′
n
)∥∥∗ +

∥∥(rn,kn, ln)∥∥∗ + βn�̂

≤ (
 – αn( – Lλ)

)∥∥(un, vn,wn) – (u, v,w)
∥∥∗

+ αn( – Lλ)
‖(e′

n,p′
n, s′n)‖∗ + Lλ(bn + cn + dn)

 – Lλ

+
∥∥(
e′′
n,p

′′
n, s

′′
n
)∥∥∗ +

∥∥(rn,kn, ln)∥∥∗ + βn�̂, (.)

where λ is the same as in (.). Since
∑∞

n= αn = ∞,
∑∞

n= βn < ∞, Lλ <  and limn→∞ bn =
limn→∞ cn = limn→∞ dn = , in view of (.), we note that all the conditions of Lemma .
are satisfied. Hence, Lemma . and (.) guarantee that (un, vn,wn) → (u, v,w), as n →
∞. By using (.) and (.), we have

∥∥xn – x∗∥∥ =
∥∥Sn Jρϕ (un) – Sn J

ρ
ϕ (u)

∥∥
≤ L

(∥∥Jρϕ (un) – Jρϕ (u)
∥∥ + bn

)
≤ L

(‖un – u‖ + bn
)

(.)

and

∥∥zn – z∗∥∥ =
∥∥Sn Jγϕ (wn) – SnJ

γ
ϕ (w)

∥∥
≤ L

(∥∥Jγϕ (wn) – Jγϕ (w)
∥∥ + dn

)
≤ L

(‖wn –w‖ + dn
)
. (.)

Since limn→∞ un = u, limn→∞ vn = v, limn→∞ wn = w and limn→∞ bn = limn→∞ cn =
limn→∞ dn = , from inequalities (.), (.) and (.) it follows that yn → y∗, xn → x∗

and zn → z∗, as n → ∞. Hence, the sequence {(xn, yn, zn)}∞n= generated by Algorithm .
converges strongly to the unique solution (x∗, y∗, z∗) of SGNMVID (.), that is, the only
element of Fix(Q)∩ SGNMVID(H,Ti, gi,ϕi, i = , , ). This completes the proof. �

Like in the proof of Theorem ., one can prove the convergence of the iterative se-
quences generated by Algorithms . and ., and we omit their proofs.

Theorem . Suppose that Ti, gi, ϕi, Si (i = , , ), Q, ρ , η and γ are the same as
in Theorem . and let all the conditions of Theorem . hold. Then the iterative se-
quence {(xn, yn, zn)}∞n= generated by Algorithm . converges strongly to the only element
of Fix(Q)∩ SGNMVID(H,Ti, gi,ϕi, i = , , ).

Theorem . Assume that Ti, gi, ϕi (i = , , ), ρ , η and γ are the same as in Theorem .
and let all the conditions of Theorem . hold. Then the iterative sequence {(xn, yn, zn)}∞n=
generated by Algorithm . converges strongly to the unique solution of SGNMVID (.).
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6 An important remark on a relaxed cocoercivemapping
In view ofDefinition ., we note that the relaxed cocoercivity condition is weaker than the
strongmonotonicity condition. In other words, the class of relaxed cocoercivemappings is
more general than the class of strongly monotonemappings. However, it is worth to point
out that if the consideredmappingT is (κ , θ )-relaxed cocoercive and γ -Lipschitzmapping
such that θ > κγ , then it must be a (θ – κγ )-strongly monotone mapping. Hence, the
results that appeared in this paper can be also applied to a class of relaxed cocoercive
mappings. In fact, one may rewrite the results considered under relaxed cocoercivity and
Lipschitzian conditions of mappings and apply a known result on the strongly monotone
condition to a new form. Below, we present an example of the mentioned situation.
For given three different nonlinear operators T,T, g :H × H → H and a continuous

function ϕ :H →R∪ {+∞}, Noor [] introduced and considered the problem of finding
(x∗, y∗) ∈H×H such that

⎧⎨
⎩

〈ρT(y∗,x∗) + x∗ – g(y∗), g(x) – x∗〉 ≥ ρϕ(x∗) – ρϕ(g(x)), ∀x ∈H,

〈ηT(x∗, y∗) + y∗ – g(x∗), g(x) – y∗〉 ≥ ηϕ(y∗) – ηϕ(g(x)), ∀x ∈H,
(.)

which is called a system of general mixed variational inequalities involving three different
nonlinear operators (SGMVID). He also considered some spacial cases of SGMVID (.).
He proposed the following two-step iterative algorithm and its special forms for solving

SGMVID (.) and studied the convergence analysis of the proposed iterative algorithms
under certain conditions.

Algorithm . ([], Algorithm .) For arbitrary chosen initial points x, y ∈ H, com-
pute the sequences {xn} and {yn} by

xn+ = ( – an)xn + anJϕ
[
g(yn) – ρT(yn,xn)

]
,

yn+ = Jϕ
[
g(xn+) – ηT(xn+, yn)

]
,

where an ∈ [, ] for all n≥ .

Theorem. ([], Theorem .) Let x∗, y∗ be the solution of SGMVID (.). Suppose that
T :H×H →H is relaxed (γ, r)-cocoercive and μ-Lipschitzian in the first variable, and
T :H×H →H is relaxed (γ, r)-cocoercive and μ-Lipschitzian in the first variable. Let
g be a relaxed (γ, r)-cocoercive and μ-Lipschitzian. If

∣∣∣∣ρ –
r – γμ




μ


∣∣∣∣ <
√
(r – γμ


 ) –μ

k( – k)
μ


,

r > γμ

 +μ

√
k( – k), k < ,

(.)

∣∣∣∣η –
r – γμ




μ


∣∣∣∣ <
√
(r – γμ


) –μ

k( – k)
μ


,

r > γμ

 +μ

√
k( – k), k < ,

(.)

where

k =
√
 – 

(
r – γμ



)
+μ

 (.)
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and an ∈ [, ],
∑∞

n= an = ∞, then for arbitrarily chosen initial points x, y ∈H, xn and yn
obtained from Algorithm . converge strongly to x∗ and y∗, respectively.

Remark . In view of conditions (.) and (.) (conditions (.) and (.) in []), we
note that k ∈ (, ). Now, condition (.) (condition (.) in []) and k >  imply that
(r – γμ


) <  +μ

. Accordingly, the condition (r – γμ

) <  +μ

 should be added to
conditions (.)-(.). On the other hand, since k < , from condition (.) it follows that
r > γμ


.

Remark . The conditions ri > γiμ

i + μi

√
k( – k) (i = , ), and k <  in (.) and (.)

imply that ri > γiμ

i for each i = , . Since for each i = , , Ti is (γi, ri)-relaxed cocoercive

and μi-Lipschitz continuous, the condition ri > γiμ

i (i = , ) guarantees that for each

i = , , the operatorTi is (ri–γiμ

i )-stronglymonotone. Similarly, since g is (γ, r)-relaxed

cocoercive andμ-Lipschitz continuous, the condition r > γμ

 implies that the operator

g is (r – γμ

)-strongly monotone.

In view of the above remarks, one can rewrite Theorem . as follows.

Theorem . Let x∗, y∗ be the solution of SGMVID (.). Let T : H × H → H be
ξ-strongly monotone and μ-Lipschitz continuous in the first variable, and let T :H ×
H → H be ξ-strongly monotone and μ-Lipschitz continuous in the first variable. Fur-
ther, let g be ξ-strongly monotone and μ-Lipschitz continuous. If the constants ρ and η

satisfy the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|ρ – ξ
μ

| <

√
ξ –μ

 k(–k)
μ


,

|η – ξ
μ

| <

√
ξ –μ

k(–k)
μ


,

ξi > μi
√
k( – k) (i = , ),

k =
√
 – ξ +μ

 < , ξ <  +μ
,

and
∑∞

n= an = ∞, then the iterative sequences {xn} and {yn} generated by Algorithm .
converge strongly to x∗ and y∗, respectively.

7 Conclusion
In this paper, we have introduced and considered a new system of generalized nonlinear
mixed variational inequalities involving six different nonlinear operators (SGNMVID).
We have proved the equivalence between the SGNMVID and the fixed point problem,
and then by this equivalent formulation, discussed the existence and uniqueness of so-
lution of the SGNMVID. This equivalence and three nearly uniformly Lipschitzian map-
pings Si (i = , , ) are used to suggest and analyze some new three-step resolvent iter-
ative schemes with mixed errors for finding an element of the set of fixed points of the
nearly uniformly Lipschitzian mappingQ = (S,S,S), which is the unique solution of the
SGNMVID. Several special cases are also considered. In Section , an important remark
on a subclass of relaxed cocoercive mappings is discussed. It is expected that the results
proved in this paper may stimulate further research regarding the numerical methods and
their applications in various fields of pure and applied sciences.
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