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Abstract

In this article, we present a new definition of a class of contraction for multi-valued
case. Also we prove some fixed point theorems for multivalued (ψ, �, ε, l)-
contraction mappings in probabilistic metric space.
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1 Introduction
The class of (ε, l)-contraction as a subclass of B-contraction in probabilistic metric

space was introduced by Mihet [1]. He and other researchers achieved to some inter-

esting results about existence of fixed point in probabilistic and fuzzy metric spaces

[2-4]. Mihet defined the class of (ψ, �, ε, l)-contraction in fuzzy metric spaces [4]. On

the other hand, Hadzic et al. extended the concept of contraction to the multi valued

case [5]. They introduced multi valued (ψ - C)-contraction [6] and obtained fixed

point theorem for multi valued contraction [7]. Also Žikić generalized multi valued

case of Hick’s contraction [8]. We extended (� - k) - B contraction which introduced

by Mihet [9] to multi valued case [10]. Now, we will define the class of (ψ, �, ε, l)-
contraction in the sense of multi valued and obtain fixed point theorem.

The structure of article is as follows: Section 2 recalls some notions and known

results in probabilistic metric spaces and probabilistic contractions. In Section 3, we

will prove three theorems for multi valued (ψ, �, ε, l)- contraction.

2 Preliminaries
We recall some concepts from the books [11-13].

Definition 2.1. A mapping T : [0, 1] × [0, 1] ® [0, 1] is called a triangular norm (a

t-norm) if the following conditions are satisfied:

(1) T (a, 1) = a for every a Î [0, 1];

(2) T (a, b) = T (b, a) for every a, b Î [0, 1];

(3) a ≥ b, c ≥ d ⇒ T(a, c) ≥ T(b, d) a, b, c, d Î [0, 1];

(4) T(T(a, b), c) = T(a, T(b, c)), a, b, c Î [0, 1].

Basic examples are, TL(a, b) = max{a + b - 1, 0}, TP (a, b) = ab and TM (a, b) = min

{a, b}.

Definition 2.2. If T is a t-norm and (x1, x2 , . . . , xn) ∈ [0, 1]n (n ≥ 1), �∞
i=1xi is

defined recurrently by �1
i=1xi = x1 and �n

i=1xi = T
(�n−1

i=1 xi, xn
)
for all n ≥ 2. T can be
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extended to a countable infinitary operation by defining �∞
i=1xi for any sequence

(xi)i∈N∗ as limn→∞�n
i=1xi .

Definition 2.3. Let Δ+ be the class of all distribution of functions F : [0, ∞] ® [0, 1]

such that:

(1) F (0) = 0,

(2) F is a non-decreasing,

(3) F is left continuous mapping on [0, ∞].

D+ is the subset of Δ+ which limx®∞F(x) = 1.

Definition 2.4. The ordered pair (S, F) is said to be a probabilistic metric space if S

is a nonempty set and F : S × S ® D+ (F(p, q) written by Fpq for every (p, q) Î S × S)

satisfies the following conditions:

(1) Fuv(x) = 1 for every x > 0 ⇒ u = v (u, v Î S),

(2) Fuv = Fvu for every u, v Î S,

(3) Fuv (x) = 1 and Fvw(y) = 1 ⇒ Fu,w(x + y) = 1 for every u, v,w Î S, and every x, y Î
R+.

A Menger space is a triple (S, F, T) where (S, F) is a probabilistic metric space, T is a

triangular norm (abbreviated t-norm) and the following inequality holds Fuv(x + y) ≥ T

(Fuw(x), Fwv(y)) for every u, v, w Î S, and every x, y Î R+.

Definition 2.5. Let � : (0, 1) ® (0, 1) be a mapping, we say that the t-norm T is

�-convergent if

∀δ ∈ (0, 1)∀λ ∈ (0, 1) ∃s = s(δ,λ) ∈ N �n
i=1(1 − ϕs+i(δ)) > 1 − λ,∀n ≥ 1.

Definition 2.6. A sequence (xn)nÎ N is called a convergent sequence to x Î S if for

every ε > 0 and l Î (0, 1) there exists N = N(ε, l) Î N such that

Fxnx(ε) > 1 − λ, ∀n ≥ N.

Definition 2.7. A sequence (xn)nÎ N is called a Cauchy sequence if for every ε > 0

and l Î (0, 1) there exists N = N(ε, l)Î N such that

Fxnxn+m(ε) > 1 − λ, ∀n ≥ N ∀m ∈ N.

We also have

xn→Fx ⇔ Fxnx(t) → 1 ∀t > 0.

A probabilistic metric space (S, F, T) is called sequentially complete if every Cauchy

sequence is convergent.

In the following, 2S denotes the class of all nonempty subsets of the set S and C(S) is

the class of all nonempty closed (in the F-topology) subsets of S.

Definition 2.8 [14]. Let F be a probabilistic distance on S and M Î 2S. A mapping f:

S ® 2S is called continuous if for every ε > 0 there exists δ > 0, such that

Fuv(δ) > 1 − δ ⇒ ∀x ∈ fu ∃y ∈ fv : Fxy(ε) > 1 − ε.

Theorem 2.1 [14]. Let (S, F, T) be a complete Menger space, sup 0≤ t < 1T (t, t) = 1

and f : S ® C(S) be a continuous mapping. If there exist a sequence (tn)nÎN ⊂ (0, ∞)

with
∑∞

1 tn < ∞ and a sequence (xn) nÎN ⊂ S with the properties:

xn+1 ∈ f xn for all n and lim
n→∞ �∞

i=1gn+i−1 = 1,
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Where gn := Fxnxn+1(tn), then f has a fixed point.

The concept of (ψ, �, ε, l) - B contraction has been introduced by Mihet [15]. We

will consider comparison functions from the class j of all mapping � : (0, 1) ® (0, 1)

with the properties:

(1) � is an increasing bijection;

(2) � (l) <l ∀l Î (0, 1).

Since every such a comparison mapping is continuous, it is easy to see that if � Î j,
then limn®∞�

n(l) = 0 ∀l Î (0, 1).

Definition 2.9[15]. Let (X, M, *) be a fuzzy Metric space. ψ be a map from (0, ∞) to

(0, ∞) and � be a map from (0, 1) to (0, 1). A mapping f: X ® X is called (ψ, �, ε, l)-
contraction if for any x, y Î X, ε > 0 and l Î (0, 1).

M(x, y, ε) > 1 − λ ⇒ M(f (x), f (y), ψ(ε)) > 1 − ϕ(λ).

If ψ is of the form of ψ(ε) = kε (k Î (0, 1)), one obtains the contractive mapping con-

sidered in [3].

3 Main results
In this section we will generalize the Definition 2.9 to multi valued case in probabilistic

metric spaces.

Definition 3.1. Let S be a nonempty set, � Î j, ψ be a map from (0, ∞) to (0, ∞)

and F be a probabilistic distance on S. A mapping f : S ® 2S is called a multi-valued

(ψ, �, ε, l)-contraction if for every x, y Î S, ε > 0 and for all l Î (0, 1) the following

implication holds:

Fxy(ε) > 1 − λ ⇒ ∀p ∈ fx ∃q ∈ fy : Fpq(ψ(ε)) > 1 − ϕ(λ).

Now, we need to define some conditions on the t-norm T or on the contraction

mapping in order to be able to prove fixed point theorem. These two conditions are

parallel. If one of them holds, Theorem 3.1 will obtain.

Definition 3.2[11]. Let (S, F) be a probabilistic metric space, M a nonempty subset

of S and f : M ® 2S - {∅}, a mapping f is weakly demicompact if for every sequence

(pn)nÎ N from M such that pn+1Î fpn, for every n Î N and lim Fpn+1,pn(ε) = 1 , for every

ε > 0, there exists a convergent subsequence (pnj)j∈N.

The other condition is mentioned in the Theorem 3.1.

Theorem 3.1. Let (S, F, T) be a complete Menger space with sup 0 ≤ a < 1 T (a, a) =

1, M Î C(S) and f : M ® C(M) be a multi-valued (ψ, �, ε, l)-contraction, where the

series Σψn(ε) is convergent for every ε > 0 and � Î j. Let there exists x0 Î M and x1
Î fx0 such that Fx0x1 ∈ D+ . If f is weakly demicompact or

lim
n→∞ �∞

i=1(1 − ϕn+i−1(ε)) = 1 for every ε > 0 (1)

then there exists at least one element x Î M such that x Î fx.

Proof. Since there exists x0 Î M and x1 Î fx0 such that Fx0x1 ∈ D+ , hence for every l
Î (0, 1) there exists ε > 0 such that Fx0x1 > 1 − λ . The mapping f is a (ψ, �, ε, l)-con-
traction and therefore there exists x2 Î fx1 such that

Fx2x1(ψ(ε)) > 1 − ϕ(λ)
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Continuing in this way we obtain a sequence (xn)nÎN from M such that for every n ≥ 2,

xn Î fxn-1and

Fxn,xn−1 (ψ
n−1(ε)) > 1 − ϕn−1(λ). (2)

Since the series Σψn(ε) is convergent we have limn®∞ψ
n(ε) = 0 and by assumption �

Î j, so limn®∞�
n(l) = 0. We infer for every ε0 > 0 that

lim
n→∞ Fxnxn−1 (ε0) = 1. (3)

Indeed, if ε0 > 0 and l0 Î (0, 1) are given, and n0 = n0(ε0, l0) is enough large such

that for every n ≥ n0, ψ
n(ε) ≤ ε0 and �n(l) ≤ l0 then

Fxn+1xn(ε0) ≥ Fxn+1xn(ψ
n(ε)) > 1 − ϕn(λ) > 1 − λ0 for every n ≥ n0.

If f is weakly demicompact (3) implies that there exists a convergent subsequence

(xnk)k∈N .

Suppose that (1) holds and prove that (xn)nÎN is a Cauchy sequence. This means that

for every ε1 > 0 and every l1 Î (0, 1) there exists n1(ε1, l1) Î N such that

Fxn+pxn(ε1) > 1 − λ1 (4)

for every n1 ≥ n1(ε1, l1) and every p Î N.

Let n2(ε1) Î N such that
∑

n≥n2(ε1)ψ
n(ε) < ε1. Since

∑∞
n=1 ψn(ε) is convergent ser-

ies such a natural number n2(ε1) exists. Hence for every p Î N and every n ≥ n2(ε1) we

have that

Fxn+p+1,xn(ε1) ≥ �p+1
i=1 Fxn+i,xn+i−1 (ψ

n+i−1(ε)),

and (2) implies that

Fxn+p+1,xn(ε1) ≥ �p+1
i=1 (1 − ϕn+i−1(λ))

for every n ≥ n2(ε1) and every p Î N.

For every p Î N and n ≥ n2(ε1)

�p+1
i=1 (1 − ϕn+i−1(λ)) ≥ �∞

i=1(1 − ϕn+i−1(λ))

and therefore for every p Î N and n ≥ n2(ε1),

Fxn+p+1,xn(ε1) ≥ �∞
i=1(1 − ϕn+i−1(λ)). (5)

From (1) it follows that there exists n3(l1) Î N such that

�∞
i=1(1 − ϕn+i−1(λ)) > 1 − λ1 (6)

for every n ≥ n3(l1). The conditions (5) and (6) imply that (4) holds for n1(ε1, l1) =
max(n2(ε1), n3(l1)) and every p Î N. This means that (xn)nÎN is a Cauchy sequence

and since S is complete there exists limn®∞xn. Hence in both cases there exists

(xnk)k∈N such that

lim
k→∞

xnk = x.
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It remains to prove that x Î fx. Since fx = fx it is enough to prove that x ∈ fx i.e.,

for every ε2 > 0 and l2 Î (0, 1) there exists bε2,λ2 ∈ fx such that

Fx,bε2,λ2
(ε2) > 1 − λ2. (7)

Since supx< 1T(x, x) = 1 for l2 Î (0, 1) there exists δ(l2) Î (0, 1) such that T(1 -

δ(l2), 1 - δ(l2)) > 1 - l2.
If δ’(l2) is such that

T(1 − δ′(λ2), 1 − δ′(λ2)) > 1 − δ(λ2)

and δ’’(l2) = min(δ(l2), δ’(l2)) we have that

T(1 − δ′′(λ2),T((1 − δ′′(λ2), 1 − δ′′(λ2))) ≥ T(1 − δ(λ2),T((1 − δ′(λ2), 1 − δ(λ2)))

≥ T(1 − δ(λ2), 1 − δ(λ2))

> 1 − λ2.

Since limk→∞xnk = x there exists k1 Î N such that Fx,xnk

( ε

3

)
> 1 − δ′′(λ2) for every

k ≥ k1. Let k2 Î N such that

Fxnk ,xnk+1
(ε2

3

)
> 1 − δ′′(λ2) for every k ≥ k2.

The existence of such a k2 follows by (3). Let ε Î R+ be such that ψ(ε) <
ε2

3
and k3

Î N such that Fxnk ,x(ε) > 1 − δ′′(λ2) for every k ≥ k3. Since f is a (ψ, �, ε, l)-contrac-

tion there exists bε2,λ2,k ∈ fx such that

Fxnk+1 ,bε2,λ2,k
(ψ(ε)) > 1 − ϕ(δ′′(λ2)) for every k ≥ k3.

Therefore for every k ≥ k3

Fxnk+1, bε2,λ2,k

(ε2

2

)
≥ Fxnk+1,bε2,λ2,k

(ψ(ε))

> 1 − ϕ(δ′′(λ2))

> 1 − δ′′(λ2)

If k ≥ max(k1, k2, k3) we have

Fx,bε2,λ2,k
(ε2) ≥ T

(
Fx,xnk

(ε2

3

)
, T

(
Fxnk ,xnk+1

(ε2

3

)
, Fxnk+1,bε2,λ2,k

(ε2

3

)))
T(1 − δ′′(λ2), T(1 − δ′′(λ2), 1 − δ′′(λ2)))

> 1 − λ2

and (7) is proved for bε2,λ2 = bε2,λ2,k, k ≥ max(k1, k2, k3). Hence x ∈ fx = fx, which

means x is a fixed point of the mapping f.

Now, suppose that instead of Σψn(ε) be convergent series, ψ is increasing bijection.

Theorem 3.2. Let (S, F, T) be a complete Menger space with sup 0 ≤ a < 1 T (a, a) =

1 and f : S ® C(S) be a multi-valued (ψ, �, ε, l)- contraction.
If there exist p Î S and q Î fp such that Fpq Î D+, ψ is increasing bijection and

limn→∞�∞
i=1(1 − ϕn+i−1(λ)) = 1 , for every l Î (0, 1), then, f has a fixed point.
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Proof. Let ε > 0 be given and δ Î (0, 1) be such that δ < min{ε, ψ-1(ε)} or ψ(δ) <ε

since ψ is increasing bijection. If Fuv(δ) > 1-δ then, due to (ψ, �, ε, l)- contraction for

each x Î fu we can find y Î fv such that Fxy(ψ(δ)) > 1 - �(δ), from where we obtain

that Fxy(ε) >Fxy(ψ(δ)) > 1 - �(δ) > 1 - δ > 1 - ε. So f is continuous. Next, let p0 = p and

p1 = q be in fp0. Since Fpq Î D+, hence for every l Î (0, 1) there exist ε > 0 such that

Fpq(ε) > 1 - l, namely Fp0p1 (ε) > 1 − λ .

Using the contraction relation we can find p2 Î fp1 such that

Fp1p2 (ψ(ε)) > 1 − ϕ(λ) , and by induction, pn such that pn Î fpn-1and

Fpn−1pn(ψ
n−1(ε)) > 1 − ϕn−1(λ) for all n ≥ 1. Defining tn = ψn(ε), we have

gj = Fpjpj+1(tj) ≥ 1 − ϕj(λ) , ∀j, so limn→∞�∞
i=1gn+i−1 ≥ limn→∞�∞

i=1(1 − ϕn+i−1(λ)) = 1.

On the other hand the sequence (pn) is a Cauchy sequense, that is:

∀ε > 0 ∃n0 = n 0(ε) ∈ N : Fpnpn+m(ε) > 1− ∈,∀n ≥ n0,∀m ∈ N.

Suppose that ε > 0, then:

lim
n→∞ �∞

i=1gn+i+1 = 1 ⇒ ∃n1 = n1(ε) ∈ N : �m
i=1gn+i−1 > 1 − ε, ∀n ≥ n1, ∀m ∈ N.

Since the series
∑∞

n=1 tn is convergent, there exists n2(= n2(ε)) such that∑∞
n=n2 tn < ε .

Let n0 = max{n1, n2}, then for all n ≥ n0 and m Î N we have:

Fpnpn+m(ε) ≥ Fpnpn+m

(
n+m−1∑
i=n

ti

)
≥ �m

i=1Fpn+i−1pn+1 (tn+i−1)

= �m
i=1gn+i−1 > 1 − ε,

as desired.

Now we can apply Theorem 2.1 to find a fixed point of f. The theorem is proved. □
When ψ is increasing bijection and limn®∞ψ

n(l) be zero, by using demicompact con-

traction we have another theorem.

Theorem 3.3. Let (S, F, T) be a complete Menger space, T a t-norm such that sup 0

≤ a < 1T (a, a) = 1, M a non-empty and closed subset of S, f : M ® C(M) be a multi-

valued (ψ, �, ε, l)- contraction and also weakly demicompact. If there exist x0 Î M

and x1 Î fx0 such that Fx0x1 ∈ D+,ψ is increasing bijection and limn®∞ψ (l) = 0 then,

f has a fixed point.

Proof. We can construct a sequence (pn)nÎ N from M, such that p1 = x1 Î fx0, pn+1Î
fpn. Given t > 0 and l Î (0, 1), we will show that

lim
n→∞ Fpn+1pn(t) = 1. (11)

Indeed, since Fx0x1 ∈ D+ , hence for every ξ > 0 there exist h > 0 such that

Fx0x1(η) > 1 − ξ , and by induction Fpn−1pn(ψ
n(η)) > 1 − ϕn(ξ) for all n Î N. By

choosing n such that ψn(h) <t and �n(ξ) <l, we obtain

Fpn+1pn(t) > 1 − λ.

Since t and l are arbitrary, the proof of (1) is complete.
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By Definition 3.2, there exists a subsequence (pnj)j∈N such that lim
j→∞

pnj exists. We

shall prove that x = limj→∞pnj is a fixed point of f. Since fx is closed, fx = fx , and

therefore, it remains to prove that x = fx , i.e., for every ε > 0 and l Î (0, 1), there exist

b(ε, l) Î fx, such that Fx,b(ε,l)(ε) > 1 - l. From the condition sup 0 ≤ a < 1T (a, a) = 1 it

follows that there exists h(l) Î (0, 1) such that

u > 1 − η(λ) ⇒ T(u, u) > 1 − λ.

Let j1(ε, l) Î N be such that

Fpnj ,x
(
ψ−1

( ε

2

))
> 1 − η(λ)

2
for every j ≥ j1(ε,λ).

Since x = limj→∞pnj , such a number j1(ε, l) exists. Since f is (ψ, �, ε, l)-contraction

and ψ is increasing bijection, for pnj+1 ∈ f pnj there exists bj(ε)Î fx such that

Fpnj+1,bj(ε)
( ε

2

)
> 1 − ϕ

(
η(λ)
2

)
> 1 − η(λ)

2
for every j ≥ j1(ε,λ).

From (1) it follows that limj→∞pnj+1 = x and therefore, there exists j2(ε, l) Î N such

that Fx,pnj+1
( ε

2

)
> 1 − η(λ)

2
for every j ≥ j2(ε, l). Let j3(ε, l) = max{j1(ε, l), j2(ε, l)}.

Then, for every j ≥ j3(ε, l) we have Fx,bj(ε)(ε) ≥ T
(
Fx,pnj+1

(
ε
2

)
, Fpnj+1,bj(ε)

(
ε
2

))
> 1 − λ .

Hence, if j >j3(ε, l), then, we can choose b(ε, l) = bj(ε)Î fx. The proof is complete. □
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