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Abstract

Background: The ability to accurately forecast census counts in hospital departments has considerable implications
for hospital resource allocation. In recent years several different methods have been proposed forecasting census
counts, however many of these approaches do not use available patient-specific information.

Methods: In this paper we present an ensemble-based methodology for forecasting the census under a framework
that simultaneously incorporates both (i) arrival trends over time and (ii) patient-specific baseline and time-varying
information. The proposed model for predicting census has three components, namely: current census count,
number of daily arrivals and number of daily departures. To model the number of daily arrivals, we use a seasonality
adjusted Poisson Autoregressive (PAR) model where the parameter estimates are obtained via conditional maximum
likelihood. The number of daily departures is predicted by modeling the probability of departure from the census
using logistic regression models that are adjusted for the amount of time spent in the census and incorporate both
patient-specific baseline and time varying patient-specific covariate information. We illustrate our approach using
neonatal intensive care unit (NICU) data collected at Women & Infants Hospital, Providence RI, which consists of 1001
consecutive NICU admissions between April 1st 2008 and March 31st 2009.

Results: Our results demonstrate statistically significant improved prediction accuracy for 3, 5, and 7 day census
forecasts and increased precision of our forecasting model compared to a forecasting approach that ignores
patient-specific information.

Conclusions: Forecasting models that utilize patient-specific baseline and time-varying information make the most
of data typically available and have the capacity to substantially improve census forecasts.

Background
In a period of heightened economic burden, efficient
and effective allocation of hospital resources is an issue
of principal importance. The ability to accurately fore-
cast the number of patient arrivals, as well as predict
census counts in hospital departments, have consider-
able implications for hospital resource allocation, both
at the micro and macro level. For example, short term
census forecasts have the potential to improve in-patient
bed allocation, reduce diversions, better align hospital
ancillary services, and reduce the incidence of over- and
under-staffing [1]. More importantly, accurate census
forecasts can inform scaling up of operations during high

*Correspondence: devin.c.koestler@dartmouth.edu
1 Department of Community and Family Medicine, Geisel School of Medicine
at Dartmouth College, Lebanon, NH 03756, USA
Full list of author information is available at the end of the article

census periods, potentially leading to improved patient
outcomes [2]. Since staffing levels in hospital units are
driven by the census capacity as well as the acuity of in-
unit patients, forecasting methods that incorporate both
patient-level severity of illness (which may evolve consid-
erably throughout their stay) and long-term census trends
are necessary for informing accurate census predictions -
this is a main highlight of this paper.
There have been several methodologies developed for

forecasting arrival and census counts in various hospi-
tal departments [3-8]. Jones et al. (2008) evaluated the
use of seasonal autoregressive integrated moving average
(ARIMA), time series regression, exponential smooth-
ing, and artificial neural network models to forecast
daily patient volumes in emergency departments at three
diverse hospital emergency departments. The time series
methods considered in that analysis provided improved
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in-sample model goodness of fit assessed via mean abso-
lute prediction error (MAPE) relative to a multiple linear
regression approach, considered the benchmark model
for forecasting emergency department patient volumes.
Additionally, Sun et al. (2009) evaluated the use of autore-
gressive integrated moving average models, adjusted to
incorporate various environmental variables, to forecast
counts of daily patient attendances in the emergency
department of an acute care regional general hospital. In
addition to univariate time series approaches to forecast-
ing emergency department patient volumes, multivariate
time series models have also been utilized and have been
shown to reliably forecast emergency department patient
census.
The primary limitation of the above methods is

that they do not incorporate patient-level information
to make predictions. Here, we propose an ensemble-
based method for short-term census forecasts under
a framework that simultaneously incorporates (i) hos-
pital unit arrival trends over time and (ii) patient-
specific baseline and time-varying information. Such
approaches represent the future of census forecasting as
hospital departments around the country move toward
more efficient methods for collecting and processing
patient-level information upon admission and through
the duration of stay. The proposed method is applied
to neonatal intensive care unit (NICU) data collected
at Women & Infants Hospital, Providence RI, which
consists of 1001 consecutive NICU admissions between
April 1st 2008 and March 31st 2009. In order to illus-
trate the potential for improved census forecasts that
results from incorporating baseline and time-varying
patient information, our proposed approach is compared
to a forecasting method that ignores patient-specific
information.

Methods
To elucidate our methodology, we differentiate between
arrival, departure, and census counts for the NICU.
We define the arrival count on a particular day as
the number of patients admitted to the NICU during
a 24 hour period. Similarly, the departure count for
a particular day is defined as the number of patients
who depart the NICU as a result of a healthy dis-
charge during a 24 hour period. By healthy discharge
we refer to cases where a patient was discharged
from the NICU as a result of adequate physiologi-
cal health, as determined by clinical criteria. Lastly,
we define the daily census count as the number of
patients residing in the NICU at the end of the day
(11:59pm).
Our approach to modeling the NICU census follows [9]

where the NICU census C(t + k) at time (t + k) can
be concisely expressed as a function of several different

components. More specifically, C(t + k) where k ≥ 1, is a
function of:

1. C(t): NICU census at time (t).
2. {A(t + 1),A(t + 2), . . .A(t + k)}: number of arrivals

on each successive day from time (t + 1) up to time
(t + k).

3. {D(t + 1),D(t + 2), . . .D(t + k)}: number of
departures from the NICU census on each successive
day from time (t + 1) up to time (t + k).

The census at time (t + k) takes the form:

C(t + k) = C(t)︸︷︷︸
observed

+
k∑

i=1
A(t + i) −

k∑
i=1

D(t + i)

︸ ︷︷ ︸
not observed

(1)

so that, the census at time (t + k) is equal to the census
at time (t) plus the number of arrivals on each successive
day from time (t+1) up to time (t+k), minus the number
of departures on each successive day from time (t + 1) up
to time (t + k). We note that, at the current time (t), the
only observable component in model (1) is C(t). As such,
the predicted census at time (t+k), Ĉ(t+k), must contain
predictions for the number of arrivals and departures on
each successive day up to time (t + k) from time (t + 1),
Â(t + i) and D̂(t + i), i = 1, 2, . . . , k. Thus, our census
forecasting model can be succinctly expressed as:

Ĉ(t + k) = C(t) +
k∑

i=1
Â(t + i) −

k∑
i=1

D̂(t + i) (2)

Remark 1. One key assumption we make is that the num-
ber of arrivals A(t) is independent of the number of
departures D(t) at time (t). In other words, the num-
ber of patients arriving in the NICU census at some time
(t) does not provide information about the number of
patients departing the NICU census at that same time. As
will be described in further detail, the assumption of inde-
pendence between arrivals and departures at some time
(t) has important implications when computing the errors
associated with our census predictions. In general, this is
a sensible assumption when NICUs are operating below
their maximum capacity, which was most often the case
for the data presented here.

Remark 2. We note that the number of departures
D(t + k) at time (t + k) is not independent of the number
of arrivalsA(t+k− i) at time (t+k− i), where i = 1, 2, . . ..
That is, there is an upper-bound on the number of depar-
tures at time (t + k) based on the cumulative number of
arrivals from the preceding days.
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Remark 3. In (2), the estimate for the census at time (t+k)
is given as a point estimate, which is subject to uncertainty
given the error in the estimation of the number of arrivals
and departures. Stochastic or “ensemble-based” forecast-
ing is used to account for this uncertainty through the use
of multiple forecasts created with an individual forecast
model. For example, we generate an ensemble of predic-
tions of C(t + k), denoted {Ĉ(r)(t + k), r = 1, 2, . . . ,M},
where r represents a single realization andM is an upper-
bound on the number of realizations, and summarize over
the ensemble to obtain more accurate census forecasts.
We describe this procedure in further detail in Section
“Ensemble-based forecasting and prediction intervals for
census forecasts”.

Since obtaining census forecasts at some time (t + k) is
contingent upon predictions for the number of arrivals as
well as the number of departures from (t + 1) up to and
including time (t+ k), we describe our proposed method-
ology for predicting the number of arrivals and departures
in the paragraphs that follow.

Predicting the number of arrivals
We model daily arrival using the Poisson Autoregressive
(PAR) model [10]. This choice is inspired by several stud-
ies that have demonstrated that daily arrival patterns in
various hospital departments can be modeled as a Pois-
son process [11-13]. Moreover, this model incorporates
the correlation between day-to-day arrival counts. The
model specification is as follows: let {A(t), t = 1, 2, . . .T},
denote a time series of arrival counts. We define Ft
as any covariate information, including previous arrival
counts, available to the observer up to time t. Under the
PAR model, denote the conditional expected arrival to be
E[A(t)|Ft]= μt , t = 1, 2, . . . ,T .
Thus, the conditional mean of the pth order PAR model

using a log-linear link function is given by:

log[μt(β)]= β0 +
p∑

i=1
βiA(t − i) (3)

where β =[β0,β1, . . . ,βp]T is a vector of autoregressive
parameters and A(t − i) represents the number of arrivals
at time (t − i), i = 1, 2, . . . , p. Since arrival counts in the
NICU tend to contain a seasonal pattern, we generalize
equation (3) to include seasonality effects:

log[μt(β ,φ)]= β0 +
K∑

k=1
φk cos

(2π tωk
T

)

+ αk sin
(2π tωk

T

)
+

p∑
i=1

βiA(t − i)

(4)

Here, ωk represents the frequency, equivalently T/ωk is
the period or the number of time points (days) needed to
complete one cycle and φk and αk capture the amplitude
of the kth seasonality effect. To estimate the seasonal-
ity components, we examined the cyclical properties of
the autocorrelation function (ACF). This approach is con-
sistent with the fact that the spectrum - which gives
a frequency decomposition of the variance in the time
series - is the Fourier transform of the autocovariance (or
autocorrelation) sequence. In our data, a visual inspection
of the sample ACF showed that there is a cosinusuidal pat-
tern with half-year periodicity (one cycle every 26 weeks).
To select the order (p) of the above model, we use the
Bayesian Information Criterion (BIC) [14]. After deter-
mining the optimal order for the above model, which we
call ṗ, we estimate the expected number of arrivals μ̂t , via:

μ̂t = exp

⎡
⎣β̂0 + φ̂ cos

(2π tω
T

)
+

ṗ∑
i=1

β̂iA(t − i)

⎤
⎦ (5)

where β̂ and φ̂ denote the conditional maximum likeli-
hood estimates for β and φ respectively, where we treat
the first ṗ arrivals, {A(1),A(2), . . . ,A(ṗ)} as fixed.

Predicting the number of departures
To predict the number of departures from a group of
patients residing in the NICU, it is ideal to incorporate
both patient-specific baseline covariate information (i.e.,
information collected upon admission to the NICU) and
any covariate information collected throughout their stay
in the NICU. For the data considered here, only birth
weight and gestational age were obtained for each child
upon NICU admission. Although both are known to be
useful for predicting length of stay, physiologic informa-
tion collected throughout their time in the NICU may
dictate when patients are released and thus, largely impact
overall length of stay [15]. In addition, we also seek a
framework for predicting the number of departures to
reflect the fact that the probability of a patient leaving k
days from some time point (t) should be conditional on
howmany days that patient has already spent in the NICU.

Some notation
Suppose Si represents the number of days the ith patient
has spent in the NICU and Xi represents a vector of
baseline covariates collected on the ith patient. Moreover,
defineX(t)

i as a vector of additional covariates obtained up
to and including (t) days after admission to the NICU for
the ith patient. Thus Z(t)

i =[X,X(t)]i, is a vector of base-
line covariates plus any additional covariate information
that is obtained for the ith patient up to and including (t)
days after admission to the NICU. Further, letHs(t) repre-
sent the number of patients in the NICU at time (t) who
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have stayed (s) days in the NICU and suppose that Y (k,s)
i

is an indicator of whether or not patient i leaves the NICU
in k days, given that they have already spent (s) days in the
NICU. More specifically:

Y (k,s)
i =

{
1 if LOSi ≤ k + s, given (s) days spent in the NICU
0 if LOSi > k + s, given (s) days spent in the NICU

where LOSi represents the length of stay in the NICU for
patient i. For example, when k = 1 and s = 0, we have the
following,

Y (1,0)
i =

{
1 if LOSi ≤ 1 given (0) days spent in the NICU
0 if LOSi > 1 given (0) days spent in the NICU

which indicates whether or not patient i leaves the NICU
prior to or on 1 day after their admission to the NICU.
When k = 1 and s = 1, Y (1,1)

i indicates whether or not
patient i leaves the NICU in 1 day after having spent 1 day
in the NICU. Figure 1 further illustrates the Y (k,s) coding
scheme.

Modeling the probability of departure

Let π(k)(Z(s)
i , Si = s) = P(Y (k,s)

i = 1|Z(s)
i , Si = s), which

represents, at time (t), the probability that patient i, who
has spent (s) days in the NICU, leaves the NICU within

k-days. This is conditioned on their baseline covari-
ate information as well as covariate information that is
obtained for these patients up to and including (s) days
after their admission to the NICU.Wemodel the probabil-
ity of departure from the NICU within k-days from time
t among patients who have spent (s) days in the NICU at
time t as a function of all available covariate information
using the model,

g
[
π(k)(Z(s)

i , Si = s)
]

= Z(s)
i β(k,s) (6)

where β(k,s) is a vector of model parameters specific to the
model above; the superscript k reflects the fact that we
are modeling the probability of departure from the NICU
prior to or on k days from some time point and the super-
script, s denotes that this model is conditional on those
who have spent s prior days in the NICU. In the above
expression, g(.) is an appropriate link function (i.e. logit,
probit, complementary log-log, etc. since Y (k,s) is binary).
Thus, π̂ (k)(Z(s)

i , Si = s) represents the estimated probabil-
ity of departing the NICU prior to or on k days from time
(t) for the ith patient who has spent s days in the NICU.

* *

* *

* *

* *

* *
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Figure 1 Illustration of Y (k,s) coding scheme. Illustration of Y(k,s) coding scheme at a fixed time t for a subject with (A) LOS = 3, (B) LOS = 5, (C)
LOS = 7, and (D) LOS = 9. Black boxes represent Y(k,s) = 1, grey boxes denote Y(k,s) = 0, and boxes with ∗ represent cases where Y(k,s) is undefined. In
general, an observation is undefined if LOS ≤ s.
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Predicting the number of departures
An estimate of the expected number of departures at time
(t + k) from time (t) among patients who have spent (s)
prior days in the NICU at time (t) is obtained by summing
the predicted responses for each patient,

D̂{(t + k); S = s} =
Hs(t)∑
i=1

Ŷ (k,s)
i (7)

where Hs(t) denotes the number of patients at time (t)
who have spent (s) days in the NICU and Ŷ (k,s)

i is the
predicted response for patient i, which can be taken as:

1. Ŷ (k,s)
i = π̂ (k)(Z(s)

i , Si = s) or,
2. Ŷ (k,s)

i is a sample from a Bernoulli(π̂ (k)(Z(s)
i , Si = s)).

We opted for the later as it better aligns with the
ensemble-based framework described in Section “Ensem-
ble-based forecasting and prediction intervals for cen-
susforecasts”. Since the model in equation (7) only consid-
ers patients that have spent (s) days in the census at time
(t), si = s for all i. Based on the proposed framework,
the total number of expected departures k days from time
(t) among N patients residing in the NICU at time (t), is
the sum of the expected number of departures for each
S = 0, 1, . . . ,R where R = max (Si), for i = 1, 2, . . . ,N at
time (t),

D̂{(t + k)} =
R∑

s=0
D̂{(t + k); S = s} (8)

Due to sparseness of data for large R and also model fea-
sibility, we propose setting R to a fixed value that remains
constant across forecasts at different times. In summary,
there are two main stages in our approach to predicting
the number of departures among N patients residing in
the census at time t. In the first stage, we predict the num-
ber of departures among patients who have spent S days
in the census, where S = {0, 1, . . . ,R} using model (7) and
in the second stage we sum over all predictions obtained
in the first stage to obtain an estimate of the expected
number of departures from the census.
It is important to note that formula (8) provides an esti-

mate of the expected number of departures k-days from
time t only among the N patients residing in the census
at time t. Given that the number of departures at time
k-days from time t also depends on subjects that arrive
between times t and t + k, reliable estimates of the num-
ber of departures must also consider these subjects. Since
these subjects are not directly observed, we hereafter refer
to them as pseudo-subjects.

We estimate the probability of departure k-days from
time t for each pseudo-subject by taking a random sam-
ple - with replacement - of baseline covariates from our
available data, x�

i . Using x�
i , we compute the probability of

departure, π̂ (k)(x∗
i , si = s), prior to or on day (t + k), for

the ith pseudo-subject. Putting this into a broader context,
if we predict the number of arrivals on day t+1 to be μ̂t+1,
that is Â(t + 1) = μ̂t+1, then we sample μ̂t+1 observa-
tions, with replacement, from our available data and use
the baseline covariates from those μ̂t+1 observations to
predict the number of departures prior to or on day t + k
from that group. This process is repeated for day t + 2 up
to day t+k−1, with Â(t+2), . . . , Â(t+k−1) forming the
basis of how many psuedo-subjects are considered at each
time point.
As noticed, forecasting census counts becomes increas-

ingly more complex with increasing levels of uncertainty
as one considers longer forecasts. While the above exam-
ples present the census forecasts as point predictions, it
is often the case that better prediction performance can
be achieved by summarizing over an ensemble of such
forecasts (i.e. mean or median over the ensemble) [16].
In the section that follows, we present an ensemble-based
method that can be simultaneously used to (i) obtain
more reliable census forecasts and (ii) obtain prediction
intervals for our census forecasts.

Ensemble-based forecasting and prediction intervals for
census forecasts
To generate a representative sample of the possible future
states of the census, we propose an ensemble-based pro-
cedure for obtaining census forecasts and note that this
procedure can also be used to construct prediction inter-
vals. As noted in Remark 1, this approach assumes inde-
pendence between the number of arrivals A(t) and the
number of departures D(t) for all t = 1, 2, . . . ,T . To
illustrate the procedure, recall that A(t) ∼ Poisson(μt),
where

μt = exp

⎡
⎣β0 + φ cos

(2π tω
T

)
+

ṗ∑
i=1

βiA(t − i)

⎤
⎦

Let, λ = [β0,β1, . . . ,βṗ,φ]T , it follows that λ̂
.∼

MVN(λ,Vλ), where λ̂ represents the maximum like-
lihood estimate of λ and Vλ is the inverse of the
Fisher Information matrix for λ. Additionally, recall that
D(t + k) = ∑R

s=0 D{(t + k); S = s}, where D{(t +
k); S = s} = ∑Hs(t)

i=1 Y (k,s)
i . We have that Y (k,s)

i ∼
Bernoulli(π(k)(Z(s)

i , Si = s)), where:

π(k)(Z(s)
i , Si = s) = exp

{
Z(s)
i β(k,s)}

1 + exp
{
Z(s)
i β(k,s)} (9)
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without loss of generality, assuming a logistic regression
model for the probability of departure. It follows then that
β̂

(k,s) .∼ MVN(β(k,s),Vβ(k,s) ), where β̂
(k,s) represents the

maximum likelihood estimate of β(k,s) and Vβ(k,s) repre-
sents the inverse Fisher Information matrix for β(k,s).
Recall that a point estimate of census at time (t+k) from

time (t) is obtained using equation (2). Thus, we generate
an ensemble of predictions ofC(t+k), denoted Ĉ(r)(t+k),
where:

Ĉ(r)(t+k) = C(t)+
k∑

j=1
Â(r)(t+j)−

k∑
j=1

D̂(r)(t+j) (10)

and r denotes a single realization. More precisely, we
obtain Ĉ(r)(t + k) using the following procedure:
For r = 1, 2, . . . ,M

1. Denote λ(r) as a sample from a Multivariate normal
distribution with mean λ̂ and variance-covariance V̂λ

and β(r)(k,s) as a sample from a Multivariate normal
distribution with mean β̂

(k,s) and
variance-covariance V̂β(k,s) , for s = 1, 2, . . . ,R.

2. Conditional on λ(r) and β(r)(k,s), compute
μ̂

(r)
t+j = μ(λ(r)) and

π̂
(r)(k)
i = π(k)(z(s)

i , si = s)|β(r)(k,s)) for j = 1, 2, . . . , k,
i = 1, 2, . . .Hs(t), and s = 1, 2, . . . ,R.

3. Based on μ̂
(r)
t+j and π̂

(r)(k)
i , obtain samples Â(r)(t + j)

and Ŷ (r)(k,s)
i from a Poisson(μ̂

(r)
t+j) and

Bernoulli(π̂ (r)(k)
i ) respectively, for j = 1, 2, . . . , k,

i = 1, 2, . . .Hs(t), and s = 1, 2, . . . ,R.
4. Based on Â(r)(t + j), j = 1, 2, . . . , k − 1 sample

Ŷ �(r)(k−j,0)
i for each of the pseudo-subjects.

5. Compute D̂(r)(t + j), for j = 1, 2, . . . , k.
6. Conditional on Â(r)(t + j) and D̂(r)(t + j), for

j = 1, 2, . . . , k, Compute Ĉ(r)(t + k).

End
where M is an upper bound pre-specified by the use
(i.e. M = 1000). Our census forecasts are then obtained
by summarizing over the ensemble of predictions,
Ĉ(r)(t + k), r = 1, 2, . . .M, using for instance, the mean or
median. Furthermore, this approach can also be used for
the construction of 95% prediction intervals by computing
the associated percentiles of the ensemble of predictions.
Up to now, we have considered the components of the

census forecasting model, namely the arrivals and the
departures, as separate entities. To provide further intu-
ition, we provide an example of our proposed census
forecasting model in Additional file 1.

Results
Our census forecasting model was applied to data col-
lected by the third author, a neonatologist at the Depart-
ment of Pediatrics, Women and Infants Hospital, 101
Dudley St., Providence, RI with the goal of obtaining accu-
rate short-term census forecasts. Women & Infants Hos-
pital, Department of Pediatrics maintains several patient
databases designed for quality monitoring. One of these,
the Risk-Adjusted Length of Stay Database has prospec-
tively collected data on neonatal severity of illness in the
first week of life.Maintainedmeticulously fromApril 2008
through June 2010, it includes 2660 consecutive admis-
sions that stayed in the NICU greater than 24 hours.
It includes fields for patient level information, such as:
demographic data, hospital stay, and severity of illness
indices.
The patient level data used for this analysis consisted of

1001 consecutive NICU admissions, born between April
1, 2008 through March 31, 2009, that had complete data
at the time of analysis. With IRB approval, the medi-
cal records of all newborns born between April 1, 2008
through March 31, 2009 admitted to the NICU were
obtained retrospectively for data extraction. All newborns
admitted to the NICU at Women and Infants Hospital
within 24 hours of birth were recruited and ranged inmor-
bidity from minimal to sever. Newborns were excluded if
they (i) died prior to NICU admission; (ii) were admitted
for pre-terminal comfort care (defined as neither intuba-
tion nor cardiorespiratory resuscitation); (iii) had a major
congenital anomaly. All procedures and study materi-
als were approved by the Institutional Review Board at
Women & Infants Hospital, Providence RI.
Numerous illness severity indices have been developed

for predicting mortality in the neonatal population. Two
of these, the Score for Neonatal Acute Physiology, Peri-
natal Extension (SNAPPE) [17], and Morbidity Assess-
ment Index for Newborns (MAIN) [18], have been shown
to be promising predictors for an individual’s length of
stay in the NICU, even after adjusting for an individu-
als birth weight and gestational age [15]. SNAPPE, scored
from 9 categorical variables which are acquired in the
first few days of life, provides an overview of overall
physiologic health in the neonate. MAIN is scored from
an accumulation of 47 morbidities in the first week of
life and similar to SNAPPE, provides an assessment of
overall neonatal physiological health. Of particular impor-
tance to the forecasting models we propose is that both
SNAPPE and MAIN scores are collected at two time
points during the perinatal period. Specifically, SNAPPE
scores are collected on day 1 and day 3 of life, whereas
MAIN scores are collected on day 1 and day 7 of life.
We refer to the SNAPPE scores collected on day 1 and
day 3 of life as SNAPDOL1 and SNAPDOL3. Similarly,
we refer to the MAIN scores collect on day 1 and day
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7 of life as MAIN1 and MAIN7 respectively. In addition
to MAIN and SNAPPE, both gestational age and birth
weight, obtained upon admission to the NICU, were used
in our forecasting models. The gestational age was taken
as actual, completed gestational weeks. An infant who was
32 6/7 was recorded as 32 weeks. An infant who was 33
0/7 was recorded as 33 weeks. Gestational age was the
best obstetrical estimate. If that was not available, it was
followed by the pediatric assessment. Birth weight was
obtained by documentation in the operating room, deliv-
ery room or NICU, whichever was recorded first. See
Table 1 for a summary of the patient level data.
Arrival data used in the development of the census fore-

casting models consisted of the number of daily admis-
sions to the NICU at Women and Infants hospital from
January 1, 2008 through May 20, 2009. Collectively, both
the patient level data as well as the arrival data were used
to construct a NICU census forecasting model for predict-
ing the census counts at 1, 3, 5, and 7 days in advance. All
analyses were carried out using R version 2.11.

Fitting the seasonality adjusted PARmodel for predicting
arrivals
We first estimated the autocorrelation function (ACF) to
determine the presence of seasonality and weekly trends
in our data. We observed a modest semi-annual trend
in our data with peaks in the number of arrivals in the
spring and fall months. Since our data consists of approx-
imately a year and a half of daily admissions counts,
our empirical estimate of the frequency of the season-
ality trend was (ω̂ = 3), which constitutes 1 cycle per
26 weeks. We used the the Bayesian Information Crite-
rion (BIC) [14] to determine the optimal order, (ṗ) of our
PAR models. More specifically, we adjusted for season-
ality and fit several PAR(p) models varying the order (p)
and selected the model that resulted in the lowest BIC.
Based on this approach, we estimated the optimal order
to be (ṗ = 7). Fitting an order (7) seasonality adjusted
PAR model, we computed within sample predictions and

found the mean-squared error (MSE) to be 3.48, which
is marginally better than using predictions based on the
estimated mean number of daily admissions (MSE = 3.55).

Predicting departures
As previously described, the patient level data used in
the development of our forecasting models consisted of
1001 consecutive NICU admissions from April 1st 2008
through March 30th 2009. In order to validate our fore-
casting model, we split the patient level dataset into train-
ing and testing sets. The initial training data consisted
of 598 patients who were admitted to the NICU from
April 1st 2008 up to and including September 30th 2008.
Furthermore, our testing data consisted of 603 patients
who were admitted to the NICU from October 1st 2008
up to and including March 30th 2009. We used a real-
istic continuously updating (Figure 2) forecasting proce-
dure for prospectively forecasting the NICU census as
this approach most closely mimics how one would use
these forecasting models in practice. For example, con-
sider forecasting the NICU census on October 1st 2008
from September 30th 2008, the first and last date in our
testing and training data, respectively. To forecast the
NICU census on this date we used all available training
data to develop our prediction models for departure. We
then constructed the current NICU census on Septem-
ber 30th 2008, which consisted of patients who arrived to
the NICU prior to or on September 30th and departed
after September 30th. Using the current census count
on September 30th, our predicted number of arrivals on
October 1st, and the predicted number of departures from
the census on October 1st, we were able to obtain an
estimate of the census count onOctober 1st using the rela-
tionship between the current census count, arrival counts,
and departure counts as described in equation (2). We
continue this procedure to obtain estimates of the cen-
sus counts up to and including March 30th 2009, the last
date in our testing data. As noted, a desirable feature of
our continuously updating procedure is that the training

Table 1 Summary statistics for the patient level data (N = 1001)

Variable Variable type Mean Median Standard deviation Range

LOS Discrete 20.1 10.0 25.4 (1,227)

BWEIGHT Continuous 2418.0 2335.0 939.8 (360, 5493)

GESTAGE Continuous 34.6 34.0 4.0 (23, 42)

SNAPDOL1 Discrete 8.2 0.0 13.1 (0, 103)

SNAPDOL3 Discrete 5.0 0.0 10.4 (0, 86)

MAIN1 Continuous 484.8 417.0 314.0 (0, 2139)

MAIN7 Continuous 661.2 607.0 361.3 (0, 2486)

LOS represents a patient’s length of stay in the NICU, BWEIGHT represents a patient’s birth weight in grams, GESTAGE denotes a patient’s gestational age in weeks,
SNAPDOL1 represents a patient’s SNAPPE score recorded after 1 day spent in the NICU, SNAPDOL3 represents a patient’s SNAPPE score recorded after 3 days spent in
the NICU, MAIN1 represents a patient’s MAIN score recorded after 1 day spent in the NICU and MAIN7 represents a patients MAIN score recorded after 7 days spent in
the NICU. The smaller the SNAPPE and MAIN scores, the physiologically healthier the child.
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Figure 2 Diagram illustrating the continuously updating forecasting procedure. Diagram illustrating the continuously updating forecasting
procedure for prospectively forecasting the NICU census data described in the data application. The training and testing sets are denoted by the
green and red boxes, respectively. Initially the training data consisted of patients who were admitted to the NICU between April 1st, 2008 to
September 30, 2008. As each day progresses (increasing time), the training data absorbs part of the testing data.

data is conditional upon date and thus more informa-
tion is available for model development at each sequen-
tial date. As pointed out, this most accurately reflects
how one would use our forecasting models in a practical
application.
We considered conditional logistic repression models

to obtain an estimate for the expected number depar-
tures. In order to obtain prospective census forecasts at
1, 3, 5, and 7 days in advance, we fit a series of condi-
tional logistic regression models which were collectively
used to obtain an estimate of the number of departures.
In particular, the logistic regressionmodels that were used
to inform the expected number of departures were strat-
ified by the number of days a patient occupied NICU,
which in turn had implications on what covariate infor-
mation was available for those patients. For instance, at
baseline, the only covariate information for a patient was
their birth weight and gestational age. However SNAP-
DOL1 and MAIN1 scores were available for patients
who occupied the NICU for at least one day. Further-
more, SNAPDOL3 and MAIN7 scores were available for
patients who occupied the NICU for at least 3 and 7 days
respectively. As mentioned, the logistic regression mod-
els that were used to inform the expected number of
departures were stratified by the number of days a patient
occupied NICU, such that S ∈ {1, 2, . . . ,≥ 10}, where S
represents the number of days a patient had occupied the
NICU at some time point. The upper bound for S was
selected as such due to concerns regarding data spareness
as well for computational and model feasibility. Given the
high volume of models this framework requires, results
from our individual model fits are omitted, but available
upon request.

Predicting census
In Figure 3 we present the results of the observed and
forecasted census counts among the testing data for 1,
3, 5, and 7 day forecasts. The forecasted census counts
were obtained by taking the median of an ensemble of
1000 census predictions for each day in our testing data.
As noted from Figure 3, the 1, 3, 5, and 7 day forecasts
appear to capture the global trends in observed census
counts, however as expected, locally the accuracy of our
census forecasts diminishes as a function of the length of
forecasts. A plot of the residuals (observed - forecasted
census; figure not shown) shows a moderate tendency of
our forecasting model to overestimate the census. This
overestimation however, becomes more pronounced for
the longer forecasts. The mean absolute prediction error
(MAPE) for 1, 3, 5, and 7 day forecasts were estimated
to be 2.00, 3.44, 4.35, and 5.12 respectively (Figure 4).
Moreover, we estimated that 98%, 94%, 90%, and 91% of
observed census counts were within the 95% prediction
intervals for the forecasted census.
We also compared the results of our forecasting model

to the results of an approach that used only census counts
over time and thus ignored available patient-specific infor-
mation. Similar to our methodology for predicting the
number of arrivals, this method utilized a seasonality
adjusted PAR model, where the seasonality frequency (ω)
of was determined empirically using the ACF and the
order (p) of the PARmodel was determined using the BIC.
Using the census counts for our training data, we esti-
mated the seasonality frequency and the optimal order to
be ω̂ = 1 and ṗ = 5 respectively. Fitting a seasonality
adjusted PAR(5) model to the census counts for our train-
ing data and forecasting the NICU census for our testing
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Figure 3 Plots of the observed and predicted census. Plots of the observed and predicted census with 95% prediction intervals. Predictions are
based on data observed up to the date being predicted.

data, we determined the MAPE for 1, 3, 5, and 7 day fore-
casts to be 2.30, 4.93, 7.14, and 7.18 respectively (Figure 4).
Moreover, we estimated that the coverage probabilities for
this approach (i.e. percent of observed census counts that
were within the 95% prediction intervals) were nearly 1
for 1, 3, 5, and 7 day forecasts, however the width of the
95% predictions intervals were substantially larger for this
method compared to our proposed forecasting method
(Figure 5).

Discussion
In this paper we presented a novel methodology for
forecasting the census in a Neonatal Intensive Care
Unit (NICU). Our model explicitly incorporates both
arrival trends over time in the NICU and patient-level
clinical information. The census forecast is computed
from the current census count, predicted arrivals and
predicted departures. We proposed an ensemble-based

procedure for obtaining census predictions that used sea-
sonality adjusted PAR model to model arrival trends
in the NICU and stratified conditional logistic regres-
sion models incorporating baseline and time-dependent
covariates for modeling the probability of departure. Our
model is efficient because it integrates arrival trends over
time as well as patient level information.
We note that the ideal data set to train and test our

forecasting model is one that consists of several years
worth of patient-level and arrival data. The former is cru-
cial to the development of accurate and reliable models
for predicting the probability departure, while the latter
is integral to attainment of a model that can predict the
number of census arrivals with a high degree of accu-
racy. The arrival data used in this analysis consisted of
only approximately a year and a half of admission infor-
mation, thus we are limited in our ability to ascertain
long-term seasonality trends. Our finding of a half-year
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periodicity in arrivals to the NICU (peaks in the spring
and fall months) is consistent with numerous studies,
which have reported seasonality trends in delivery rates
[19-22]. Plausible explanations for this finding include
temperature or photoperiod (affecting hormonal concen-
trations, sperm quality or sexual activity), seasonal vari-
ation in pregnancy loss, or cultural factors [23]. Despite
the evidence for seasonal patterns in delivery rates, the
nature of seasonality effects tend to vary across differ-
ent racial and ethnic groups, maternal education levels,
and marital status of the underlying population [22].
Since the PAR model described in Section “Predicting
the number of arrivals” can be generalized to account
for K-many seasonality effects using the sum of both
cosine and sine terms with different frequencies, differ-
ing arrivals patterns across different study populations
can be easily accommodated under this general frame-
work.
The arrival data used in this analysis and perhaps the

nature of NICU arrival data in general, presented chal-
lenges in the formulation of an efficient and reliable model
for predicting the number of NICU admissions. This fea-
ture is a likely candidate to explain themodest overestima-
tion that was observed in the validation of our forecasting
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forecasting method and a method that models census trends over time only, for (A) 1-day forecasts, (B) 3-day forecasts, (C) 5-day forecasts, and (D)
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model, which became more pronounced for increasing
lengths of forecasts. The primary reason for this is that
census forecasts beyond 1-day rely heavily on accurate
predictions of the number of arrivals for intermediary
days, thus bias in intermediary predictions can give rise
to considerable under- over-estimation in downstream
census forecasts. We note that the observed tendency of
our proposed approach to overestimate the census, partic-
ularly at the later time-points (i.e., 5- and 7-day forecasts),
could be used to recalibrate our census forecasting proce-
dure in a manner similar to [24]; however, arrival, census,
and patient-level data over a longer span of time than what
were used here would be needed to effectively implement
such an approach.
Our justification for using a conditional logistic regres-

sion framework for predicting the number of departures
was motivated by two principle issues. As a result of our
general forecasting framework, our interest was primar-
ily focused on the expected number of departures for a
cohort of patients currently residing in the census. Thus,
treating each patient within a cohort as independent,
the expected number of departures for a given cohort
can be efficiently estimated by summing the individual
predictions for departure for each patient. The idea of
predicting the probabilities of departure as opposed to
length of stay predictions lends itself nicely to a logistic
regression framework. An alternative approach involves
using length-of-stay distributions within a queueing the-
ory analysis. However, unlike the framework described
here, such an approach would not facilitate the attain-
ment of the subject-specific probabilities of departure,
which is of interest to clinicians. Secondly, it is also of
clinical interest to have estimates of the probability that
a patient leaves the NICU some k days into the future,
which can be conveniently extracted using our proposed
approach. While our approach was based on predicting
the probability of “healthy-discharge” from the NICU,
“non-healthy discharge” (Pediatric Intensive Care Unit
(PICU or death in the NICU) represented a relatively
small proportion of the study population considered here
(3% and 2%, respectively). For this reason and because
including such subjects would necessitate a framework
that simultaneously models the probability of leaving the
NICU in a variety of different ways (i.e., health discharge,
PICU, death), adding considerable statistical and compu-
tational and complexity, we opted to exclude these sub-
jects for the development and validation of our proposed
methodology.
The results obtained from validating our forecasting

model demonstrated that the ability to accurately forecast
the NICU census was largely a function of the length of
forecasts, a common feature of nearly all forecasting mod-
els. Furthermore, the estimated MAPE and correlations
among the predicted and observed census between our

forecasting model and an approach based solely on cen-
sus trends over time, suggest that incorporating patient-
specific information has the capacity to improve census
predictions, especially for the longer forecasts (i.e 3, 5,
and 7 day forecasts). Additionally, the narrower widths
of the 95% prediction intervals for our forecasting model
relative to the forecasting model based only on census
trends over time, suggest that more precise predictions
can be obtained using our forecasting model.

Conclusions
In summary, census forecasting models that utilize (i)
arrival trends over time and (ii) patient-specific base-
line and time-varying information make the most of data
which is typically available in the NICU and as demon-
strated, have the potential to be a useful tool for prospec-
tively estimating the NICU census.

Additional file

Additional file 1: An example of the census forecastingmodel.pdf. An
illustration of the proposed forecasting model using a practical example.
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