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Abstract

Background: The High-Dimensional Propensity Score (hd-PS) algorithm can select and adjust for baseline
confounders of treatment-outcome associations in pharmacoepidemiologic studies that use healthcare claims data.
How hd-PS performance is affected by aggregating medications or medical diagnoses has not been assessed.

Methods: We evaluated the effects of aggregating medications or diagnoses on hd-PS performance in an empirical
example using resampled cohorts with small sample size, rare outcome incidence, or low exposure prevalence. In a
cohort study comparing the risk of upper gastrointestinal complications in celecoxib or traditional NSAIDs
(diclofenac, ibuprofen) initiators with rheumatoid arthritis and osteoarthritis, we (1) aggregated medications and
International Classification of Diseases-9 (ICD-9) diagnoses into hierarchies of the Anatomical Therapeutic Chemical
classification (ATC) and the Clinical Classification Software (CCS), respectively, and (2) sampled the full cohort using
techniques validated by simulations to create 9,600 samples to compare 16 aggregation scenarios across 50% and
20% samples with varying outcome incidence and exposure prevalence. We applied hd-PS to estimate relative risks
(RR) using 5 dimensions, predefined confounders, ≤ 500 hd-PS covariates, and propensity score deciles. For each
scenario, we calculated: (1) the geometric mean RR; (2) the difference between the scenario mean ln(RR) and the
ln(RR) from published randomized controlled trials (RCT); and (3) the proportional difference in the degree of
estimated confounding between that scenario and the base scenario (no aggregation).

Results: Compared with the base scenario, aggregations of medications into ATC level 4 alone or in combination
with aggregation of diagnoses into CCS level 1 improved the hd-PS confounding adjustment in most scenarios,
reducing residual confounding compared with the RCT findings by up to 19%.

Conclusions: Aggregation of codes using hierarchical coding systems may improve the performance of the hd-PS
to control for confounders. The balance of advantages and disadvantages of aggregation is likely to vary across
research settings.

Keywords: Aggregation, Anatomical therapeutic chemical classification, Clinical classification software, Confounding
by indication, Infrequent exposure, Propensity score, Small sample, Rare outcome
* Correspondence: hoa.v.le@gsk.com
1Department of Epidemiology, University of North Carolina at Chapel Hill,
Chapel Hill, USA
2GlaxoSmithKline, Research Triangle Park, Durham, North Carolina, USA

© 2013 Le et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://core.ac.uk/display/193606043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hoa.v.le@gsk.com
http://creativecommons.org/licenses/by/2.0


Le et al. BMC Medical Research Methodology 2013, 13:142 Page 2 of 12
http://www.biomedcentral.com/1471-2288/13/142
Background
Although early detection and assessment of drug safety
signals are important [1-3], post-approval drug safety
studies often face challenges such as small size, rare inci-
dence of adverse outcomes, and low exposure prevalence
after the launch of a new drug. In addition, nonrando-
mized studies of treatment effects in healthcare data are
vulnerable to confounding bias. Propensity Score (PS)
methods are increasingly used to control for measured
potential confounders, especially in pharmacoepidemio-
logic studies of rare outcomes in the presence of many
covariates from different data dimensions of administra-
tive healthcare databases [4-7]. Methods of selecting var-
iables for PS models based on substantive knowledge
have been proposed [8-12], but substantive knowledge
may often be lacking, and the meaning of various med-
ical codes may often be unclear [13]: Seeger et al. pro-
posed that health care claims may serve as proxies in
hard-to-predict ways for important unmeasured covari-
ates [14]; Stürmer et al. used PS models with over 70
variables representing medical codes present during a
baseline period [5]; Johannes et al. created a PS model
that considered as candidate variables the 100 most
frequently occurring diagnoses, procedures, and out-
patient medications in healthcare claims [15]. A recently-
developed strategy for selecting variables from a large
pool of baseline covariates for PS analyses is the use of
computer-applied algorithms [16,17], such as the High-
Dimensional Propensity Score (hd-PS) algorithm. The hd-
PS automatically defines and selects variables for inclusion
in the PS estimating model to adjust treatment effect esti-
mates in studies using automated healthcare data [16,18].
The hd-PS algorithm prioritizes variables within each

data dimension (e.g., inpatient diagnoses, inpatient pro-
cedures, outpatient diagnoses, outpatient procedures,
dispensed prescription drugs) by their potential for
confounding control based on their prevalence and on
bivariate associations with the treatment and with the
study outcome [16,19]. Version 1 of the hd-PS algorithm
excludes variables found in fewer than 100 patients
(exposed and unexposed combined) and variables with
zero/undefined covariate-exposure association or zero/
undefined covariate-outcome association. Once variables
have been prioritized, a predefined number of variables
with the highest potential for confounding per dimension
is chosen to be included in the PS.
Combining medications or medical diagnoses into

higher-level groupings increases the prevalence of the
aggregated covariate which may increase the chances
of a variable being selected by the algorithm. How-
ever, aggregation may also weaken covariate-exposure
and/or covariate-outcome relations and reduce variable
prioritization in the Bross formula [19]. In addition to
the selection issue, control for a selected aggregated
variable may lead to residual confounding in the ad-
justed risk ratios if not all of its components have the
same confounding effect. No study to date has assessed
how hd-PS performance is affected by aggregating med-
ications and/or medical diagnoses, especially in cohorts
with relatively few patients, rare outcome incidence, or
low exposure prevalence. To investigate the impact of
aggregation on hd-PS performance in cohorts with low
outcome incidence or exposure prevalence, we created
an empirical example based on prior research [16,20]
with an observed elevated crude risk ratio, likely due to
confounding by indication in studies of upper gastro-
intestinal (UGI) complications in rheumatoid arthritis
(RA) or osteoarthritis (OA) patients initiating cele-
coxib compared to traditional non-steroidal anti-
inflammatory agents (tNSAIDs). Celecoxib has been
shown to decrease the risk of UGI complications in
several randomized controlled trials (RCT) by approxi-
mately 50% [21-26]. We therefore assume that a treat-
ment effect estimate closer to 0.50 is less biased by
confounding.

Methods
Selection of the study cohort
We constructed an incident user cohort [27] to examine
UGI complication in RA and OA patients initiating
celecoxib or a tNSAID, specifically ibuprofen or diclofenac.
All individuals with a first dispensing between 1 July
2003 and 30 September 2004 of celecoxib, ibuprofen, or
diclofenac were drawn from the Truven Health Analytics
MarketScanW Commercial Claims and Encounters [28].
MarketScan is a longitudinal healthcare claims database
which captures patient demographics, inpatient and out-
patient diagnoses and procedures, and medications from a
selection of large private employers, health plans, govern-
ment agencies and other public organizations. We selected
patients who were age 18–65 years, belonged to a health
insurance plan with full medical and pharmacy benefits,
and had at least 6 months of enrollment history as of the
date of first dispensing of a study or referent drug (the
“index date”). During the 6 months prior to the index
date, patients must have had a diagnosis of RA (ICD-9
code 714.x) or OA (ICD-9 code 715.x, 721.x) but no
NSAID dispensing (including aspirin); and no record of gas-
trointestinal ulcer disorders, gastrointestinal hemorrhage,
active renal, hepatic, coagulation disorders, allergies, malig-
nancy, esophageal or gastroduodenal ulceration.
The study outcome — UGI complication — was de-

fined as an inpatient or outpatient diagnosis for either
first peptic ulcer disease complications including per-
foration, an UGI hemorrhage (ICD-9 code 531.x, 532.x,
533.x, 534.x, 535.x, 578.0), or a physician service code
for UGI hemorrhage (Current Procedure Terminology
(CPT) code 43255 or ICD-9 procedure code 44.43). The
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complication must have occurred during the 60 days after
initiation of the study drug. These outcome definitions
have been validated for 1,762 patients in an independent
hospital discharge database with a positive predictive value
of 90% against medical chart review [29].

Aggregations of medications and medical diagnoses
Major U.S. administrative databases contain prescription
medication information coded with non-hierarchical Na-
tional Drug Codes (NDC) and generic drug names. The
medications can be aggregated using the hierarchical
Anatomical Therapeutic Chemical (ATC) drug classifica-
tion developed by the World Health Organization
(WHO) for drug utilization studies [30]. Similarly, med-
ical diagnoses are represented by International Classifi-
cation of Diseases, 9th Revision, Clinical Modification
(ICD-9) codes. ICD-9 has limited hierarchical relation-
ships [31], but the Clinical Classification Software (CCS)
developed by the Agency for Healthcare Research and
Quality (AHRQ) can be used to aggregate diagnoses into
clinically meaningful groupings [32].
We aggregated medications to five levels of the ATC

classification [30]. This system classifies active substan-
ces into different groups based on their target organ or
system and their therapeutic, pharmacological and
chemical properties. Drugs are classified into fourteen
main groups (1st level) with pharmacological or thera-
peutic subgroups (2nd level). The 3rd and 4th levels are
chemical, pharmacological or therapeutic subgroups,
and the 5th level is the chemical substance. Several ATC
groups are subdivided into both chemical and pharma-
cological groups. The pharmacological group is often
chosen if a new substance fits in both a chemical and
pharmacological 4th level. Substances in the same 4th

ATC level are not pharmacotherapeutically equivalent,
as they may have different modes of action, therapeutic
effects, drug interactions and adverse drug reaction pro-
files. New 4th levels are commonly established if at least
two approved substances fit in the group. A new sub-
stance not clearly belonging to any existing group of re-
lated substances of ATC 4th level will often be placed in
an X group (“other” group). There are very few new sub-
stances in each of the ATC 4th levels with the same ATC
3rd level for each ATC release. New substances belong-
ing to different ATC 3rd levels will have different codes
for “X” groups in ATC 4th level. Therefore, the mixed
bag of “X” group is not an issue for the hd-PS algorithm.
We created several scenarios of code aggregation using

the CCS groupings. In the base scenario, we applied the
hd-PS with up to 5-digit granularity of ICD-9 for in-
patient and outpatient diagnoses. Note that 3-digit ICD-
9 codes are kept separate from 4- and 5-digit codes in
the hd-PS despite the limited hierarchy between these
levels. We transformed ICD-9 diagnoses into four-level
CCS groupings via the cross-mapped ICD-9 to CCS
multi-level diagnoses table [32]. There are 18, 134, 355
and 207 groupings in CCS levels 1, 2, 3 and 4, respec-
tively. However, not all ICD-9 codes have a correspon-
ding CCS code in all four levels. Therefore we created a
“universal” CCS by using the most granular code avai-
lable for each ICD-9 diagnosis code to obtain 355 group-
ings in CCS level 4. We separately investigated different
levels of ICD-9 granularity by using the first 3- or 4-digit
ICD-9 codes [16].

Sampling techniques to generate conditions of different
size, outcome incidence and exposure prevalence
The full cohort consisted of 18,829 patients (7,197 pre-
scribed celecoxib and 11,632 prescribed ibuprofen or
diclofenac); 117 patients developed an UGI complica-
tion. For each aggregation scenario (including no aggre-
gation), we created six conditions of 100 sampled
cohorts. First, we varied the total size of the cohort by
drawing simple random samples of 50% (condition 1)
and 20% (condition 2), 100 times each, without replace-
ment. Second, we varied the outcome incidence by
retaining all noncases, but drawing 50% (condition 3)
and 20% (condition 4) simple random samples without
replacement, 100 times each, from the 117 cases and re-
coding the unselected cases as noncases. Finally, we var-
ied the exposure prevalence by retaining all unexposed
patients, but drawing 50% (condition 5) and 20% (condi-
tion 6) simple random samples, 100 times each, without
replacement, from the exposed subjects and replacing
the unselected exposed subjects with the same number
of randomly selected unexposed patients (Figure 1).

The hd-PS algorithm
We implemented the hd-PS algorithm with five data di-
mensions commonly available in automated healthcare
databases: pharmacy claims; outpatient diagnoses; out-
patient procedures; inpatient diagnoses; and inpatient
procedures. The algorithm identifies the top 200 most
prevalent covariates within each data dimension by cre-
ating binary variables for each diagnosis, procedure and
medication. The prevalence of each variable depends on
the granularity of the coding: the more aggregation, the
higher the prevalence tends to be as subcodes are com-
bined into aggregated codes. Each variable is assessed
for 3 levels of its within-patient occurrence: (1) once; (2)
sporadic (≥ median number of times); or (3) frequent (≥
75th percentile number of times) with details described
elsewhere [16]. With the default setting of 200 variables
for each dimension, 3,000 indicator variables (200 × 3
levels × 5 dimensions) are then prioritized according to
their potential for confounding control based on their
prevalence and bivariate associations with the treatment
and with the study outcome according to the Bross



Figure 1 A visualization of the sampling techniques to generate 6 conditions of different size, outcome incidence and exposure
prevalence from the full cohort.
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formula [19]. By default, the top 500 indicator variables
are selected for the PS.

Statistical analysis
The hd-PS algorithm can augment the automatically-
selected covariates with predefined covariates chosen by
the investigator. For each condition-scenario combin-
ation, we fit 5 log binomial models: (1) an unadjusted
crude model; (2) adjusted for basic covariates (age [con-
tinuous], gender, calendar year of drug initiation); (3) ad-
justed for basic plus extended, pre-selected covariates
(hypertension, congestive heart failure, coronary artery
disease, inflammatory bowel disease, prior dispensing of
gastroprotective drugs, warfarin, antiplatelet drugs, and
oral steroids) selected based on biological rationale in
the literature [16,18,20,33-35]; (4) adjusted for basic plus
hd-PS selected covariates; and (5) adjusted for basic, ex-
tended, and hd-PS selected covariates. The hd-PS was
adjusted for by including indicator variables for each de-
cile of PS in the regression model.
In the base scenario, we used generic drugs and up to

5-digit granularity of ICD-9, CPT or Healthcare Common
Procedure Coding System (HCPCS). We then re-fitted
all models in six scenarios for aggregation of medica-
tions, eight scenarios for aggregation of diagnoses, and
one scenario that combined the medication and diagno-
sis aggregations that appeared to perform best across
the six conditions of cohort samples.
We applied hd-PS to the full study cohort to estimate

the treatment effect and used it as the reference value for
comparison with results from the generated cohort condi-
tions. For the 100 samples in each of the cohort condi-
tions, we calculated summary statistics for the estimated
risk ratios (geometric mean, 25th and 75th percentiles), in-
cluding: the mean percentage of covariates selected by hd-
PS in the full cohort that were also selected by hd-PS in
the samples; the median number of exposed and unex-
posed subjects; the median number of exposed and unex-
posed outcomes. We evaluated each aggregation scenario
by estimating the amount of residual confounding, cal-
culated as the difference in the natural logarithms of the
estimated risk ratio and the natural logarithm of 0.50,
representing the RCT findings [21-26]. To estimate the
change in residual confounding resulting from each ag-
gregation scenario, we calculated the proportional dif-
ference in absolute degree of estimated confounding
between the scenario of interest and the base (no aggre-
gation) scenario. For example, for the 20% exposure
prevalence cohorts (condition 6), the unadjusted (con-
founded but otherwise presumptively unbiased) esti-
mate is RRu = 0.97, and two confounded (but otherwise
presumptively unbiased) estimates are RRc1 = 0.89 (base:
basic, extended and hd-PS covariates; no aggregation)
and RRc2 = 0.81 (combined diagnostic and medication
aggregation). Assuming that the unconfounded (true)
value is RRt = 0.50, estimated confounding in the base
estimate =│ln(0.89) – ln(0.50)│ =0.577; estimated
confounding in the combined aggregation estimate =│ln
(0.81) – ln(0.50)│ = 0.482. Thus, the proportional differ-
ence in absolute degree of estimated confounding between
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the two estimates = (0.482 - 0.577)/0.577 = −16.3%. We
would conclude that the combined aggregation estimate is
16.3% less confounded than the base estimate.
Because of limited data availability, and to mimic as

closely as possible the intention-to-treat analyses in the
trials, we used a single prescription reimbursement claim
as the treatment measure. The current study was ex-
empt by the Institutional Review Board of University of
North Carolina at Chapel Hill.

Results
In the full cohort, there were 7,197 (38%) celecoxib and
11,632 (62%) ibuprofen or diclofenac initiators with 46
and 71 UGI events, respectively. Celecoxib users were
older and had more risk factors for UGI complications
than did the tNSAIDs users (Table 1). The RR for UGI
complication associated with celecoxib versus tNSAIDs
was 1.05 (95% CI: 0.72-1.52) in the crude model, com-
pared to 0.92 (95% CI: 0.62-1.37) in the model that used
hd-PS automated variable selection in addition to the
basic covariates (Table 2). Consistent with the sampling
procedures described above, the median numbers of pa-
tients in cohorts in conditions 1 and 2 were about 3,594
Table 1 Characteristics of initiators of celecoxib or
NSAIDs (ibuprofen or diclofenac) in a cohort 18–65 years
old between 1 July 2003 and 30 September 2004 in the
MarketScan database: age at the date of the first
medication use and co-morbidities/use of medications as
defined during six months prior to the first medication use

Characteristics Celecoxib
n = 7,197 (38%)

Ibuprofen or Diclofenac
n = 11,632 (62%)

n % n %

Age (years)

Median 56.0 52.0

Mean 54.1 50.4

Standard deviation 8.2 9.7

18-35 235 3.3 996 8.6

36-45 854 11.9 2,164 18.6

46-55 2,373 33.0 4,339 37.3

56-65 3,735 51.9 4,133 35.5

Female 4,387 61.0 6,869 59.1

Hypertension 1,748 24.3 2,191 18.8

Congestive heart failure 36 0.5 56 0.5

Coronary artery disease 270 3.8 297 2.6

Chronic renal disease 44 0.6 59 0.5

Inflammatory bowel disease 26 0.4 30 0.3

Use of gastroprotective drugs 1,567 21.8 2,111 18.1

Use of warfarin 220 3.1 128 1.1

Use of antiplatelet 143 2.0 108 0.9

Use of oral steroids 963 13.4 1,356 11.7
and 1,441, respectively; the median outcome incidence
proportions in conditions 3 and 4 were about 0.3% and
0.1%, respectively, and the median exposure prevalence in
conditions 5 and 6 were about 19% and 8%, respectively.
In all cohort conditions except condition 2, where the

total study size was only about 3,790, the geometric
means of the hd-PS adjusted risk ratios were similar to
the full cohort risk ratios. This similarity held even in
cohort conditions 4 and 6, where the number of exposed
patients with an outcome event was approximately 10.
In all conditions except condition 6, where the exposure
prevalence was only 8%, the geometric means of the hd-
PS adjusted risk ratios were at least slightly closer to the
RCT finding than the geometric means of the risk ratios
adjusted for only the basic and extended covariates. A
majority of the covariates that hd-PS identified in the
full cohort were also selected by hd-PS in the samples in
conditions 1, 3, and 5, where the number of exposed
outcomes was at least 20, but also in condition 6, where
there were only 10 exposed outcomes but a large total
number of outcomes.
A scenario with combined aggregations of medications

into ATC level 4 and of diagnoses into CCS level 1 con-
sistently performed best, reducing residual confounding
from 8.9% to 19.3% compared to the base scenario
(Tables 3 and 4). Aggregating medications into chemical,
pharmacological or therapeutic subgroups of ATC level
4, slightly improved adjusted estimates in all cohort con-
ditions except condition 4, the 20% outcome incidence
samples (data not shown). In contrast, aggregations of
medications into groupings of the other ATC levels pro-
duced nearly the same or even worse adjusted risk ratios
in all cohort conditions.
When we experimented with different aggregations for

diagnoses, without any aggregation for medications, ag-
gregating ICD-9 diagnosis codes into different CCS
levels inconsistently changed the adjusted risk ratios.
Note that in our empirical setting, not controlling for
any measure of diagnoses resulted in the estimate closest
to the RCT finding (RRs in column “No Dx” of Table 3).
When we aggregated ICD-9 diagnosis codes into CCS
levels 1 or 2, the adjusted risk ratios in the samples were
generally closer to the RCT finding. In contrast, aggrega-
tions of ICD-9 codes into CCS universal, CCS level 3,
CCS level 4, or 3- or 4-digit ICD-9 groupings did not
improve the adjusted point estimates (data not shown).

Discussion
We hypothesized that aggregations of medications and
medical diagnoses into certain levels of ATC or CCS
would help the performance of the hd-PS, especially
with smaller cohort size, rarer outcome incidence or
lower exposure prevalence. To explore these hypotheses,
we selected a retrospective cohort where, as has been



Table 2 Geometric mean of risk ratios and a summary analysis for different cohort size, outcome incidence and
exposure prevalence of initiators of celecoxib or NSAIDs (ibuprofen or diclofenac) in a cohort 18–65 years old between
1 July 2003 and 30 September 2004 in the MarketScan database

Cohorts and variable
selection methods

Median of
exposed
subjects

Median of
exposed
outcomes

Median of
unexposed
subjects

Median of
unexposed
outcomes

Geometric
mean of RR*

25th-75th
percentile
of RR of
samples†

Mean
variable
coverage

%‡

n (%) n (%) n (%) n (%)

Full cohort§ 7197 (38) 46 (0.64) 11632 (62) 71 (0.61)

Unadjusted 1.05

Basic covariates 0.98

Basic and extended
covariates

0.95

Basic and hd-PS covariates 0.92 100

Basic, extended and hd-PS
covariates

0.94 100

Condition 1: 50% size
sample

3594 (38) 23 (0.64) 5821 (62) 36 (0.62)

Unadjusted 1.02 (0.89-1.20)

Basic covariates 0.96 (0.84-1.11)

Basic and extended
covariates

0.92 (0.80-1.09)

Basic and hd-PS covariates 0.88 (0.74-1.07) 65

Basic, extended and hd-PS
covariates

0.89 (0.74-1.11) 65

Condition 2: 20% size
sample

1441 (38) 0 (0.66) 2325 (62) 14 (0.60)

Unadjusted 1.10 (0.89-1.37)

Basic covariates 1.03 (0.82-1.29)

Basic and extended
covariates

0.99 (0.79-1.24)

Basic and hd-PS covariates 0.94 (0.71-1.21) 41

Basic, extended and hd-PS
covariates

0.95 (0.70-1.25) 41

Condition 3: 50%
outcome incidence
sample

7220 (38) 23 (0.32) 11667 (62) 36 (0.31)

Unadjusted 1.02 (0.89-1.19)

Basic covariates 0.96 (0.84-1.13)

Basic and extended
covariates

0.93 (0.81-1.09)

Basic and hd-PS covariates 0.90 (0.78-1.08) 65

Basic, extended and hd-PS
covariates

0.91 (0.78-1.08) 65

Condition 4: 20%
outcome incidence
sample

7233 (38) 10 (0.14) 11689 (62) 14 (0.12)

Unadjusted 1.00 (0.81-1.37)

Basic covariates 0.94 (0.73-1.25)

Basic and extended
covariates

0.91 (0.69-1.19)

Basic and hd-PS covariates 0.85 (0.69-1.17) 42

Basic, extended and hd-PS
covariates

0.86 (0.70-1.14) 42
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Table 2 Geometric mean of risk ratios and a summary analysis for different cohort size, outcome incidence and
exposure prevalence of initiators of celecoxib or NSAIDs (ibuprofen or diclofenac) in a cohort 18–65 years old between
1 July 2003 and 30 September 2004 in the MarketScan database (Continued)

Condition 5: 50%
exposure prevalence
sample

3599 (19) 22 (0.61) 15230 (81) 95 (0.62)

Unadjusted 1.02 (0.93-1.13)

Basic covariates 0.94 (0.86-1.05)

Basic and extended
covariates

0.91 (0.83-1.02)

Basic and hd-PS covariates 0.88 (0.79-0.98) 81

Basic, extended and hd-PS
covariates

0.88 (0.79-1.00) 81

Condition 6: 20%
exposure prevalence
sample

1440 (8) 9 (0.63) 17389 (96) 108 (0.62)

Unadjusted 0.97 (0.77-1.24)

Basic covariates 0.89 (0.72-1.15)

Basic and extended
covariates

0.86 (0.70-1.08)

Basic and hd-PS covariates 0.89 (0.73-1.13) 73

Basic, extended and hd-PS
covariates

0.89 (0.72-1.14) 73

Abbreviations: basic covariates included continuous age, gender and calendar year; extended covariates included covariates adjusted for in published studies; hd-
PS, high dimensional propensity score.
*Geometric mean of the risk ratio observed in 100 samples at this sampling rate.
†25th-75th percentiles of the risk ratio observed in 100 samples at this sampling rate.
‡Mean percentage of hd-PS variables in the full cohort also identified in samples.
§For the full cohort, all values are the number, not median.
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previously observed, the hd-PS adjustment for confound-
ing yielded an adjusted RR slightly closer to the RCT find-
ings [21-26] than did PS adjustment using a limited
number of investigator predefined covariates [16,18].
Of the 500 covariates identified by hd-PS in the full

cohort, most were also identified by hd-PS in the ran-
dom samples with fewer observations, rarer outcomes,
or lower prevalence of treatments. Aggregations of med-
ications into ATC level 4 alone or in combination with
aggregation of diagnoses into CCS level 1 improved the
hd-PS adjustment for confounding in the full cohort and
most of the samples. The strength of our results on the
effect of aggregating diagnoses is limited, however, by
the fact that the overall confounding by co-morbidity
was attenuated in the presence of 500 hd-PS covariates
from medications, outpatient procedures and inpatient
procedures in our empirical setting.
In general, aggregation of potential covariates into

higher-level groupings increases the number of covariates
that are present in at least 100 observations (the default
requirement of the hd-PS version 1) and increases the
prevalence of the covariate in exposed and unexposed
groups which increases the covariate’s prioritization from
the Bross formula if it is associated with treatment [19].
But aggregation may simultaneously weaken covariate-
exposure and/or covariate-outcome relations, reducing
prioritization in the Bross formula [19]. The latter also has
the potential to change the impact of control for the ag-
gregated covariate on the adjusted risk ratios. The hd-PS
algorithm theoretically may not favor the aggregation of
confounder information. However, in particular cases (e.g.,
small samples, rare outcome incidence and low exposure
prevalence), aggregations potentially help the hd-PS to re-
duce residual bias, for example, in this study. Version 2 of
the hd-PS algorithm, which removed the restriction of a
minimum 100 occurrences per potential confounder, al-
lows important confounders to have a higher chance for
the variable selection process and may improve bias re-
duction for treatment effect in small sample sizes and low
exposure prevalence.
Grouping medications into ATC level 4 instead of the

original generic drugs helped the hd-PS to robustly func-
tion in the samples, except for the 20% outcome inci-
dence (condition 4). The use of other ATC levels for
aggregating medications did not provide benefit and
even resulted in some harm. For example, ATC level 4
code B01AC (platelet aggregation inhibitors excluding
heparin) includes the following level 5 codes: B01AC04
(clopidrogel), B01AC05 (ticlopidine), B01AC07 (dipyrid-
amole), B01AC23 (cilostazol), and B01AC30 (combined



Table 3 Risk ratios for different cohort size, outcome incidence and exposure prevalence of initiators of celecoxib
or NSAIDs (ibuprofen or diclofenac) in a cohort 18–65 years old between 1 July 2003 and 30 September 2004 in
the MarketScan database by using the High-Dimensional Propensity Score (hd-PS) adjustment with different
aggregation methods

Cohort and variable
selection method

Base
scenario

Medications Medical diagnoses Combined

No Rx ATC* Level No Dx CCS† Level ICD-9‡ ATC 4th +
CCS 1st1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th Universal 3-digit 4-digit

Unadjusted 1.05

Basic covariates 0.98

Basic and extended
covariates

0.95

Basic and hd-PS
covariates

0.92 0.94 0.93 0.92 0.92 0.90 0.91 0.88 0.90 0.89 0.92 0.92 0.94 0.95 0.94 0.85

%§ 3.9 2.6 0.0 0.8 −2.9 −1.4 −7.0 −3.7 −4.4 0.10 1.0 3.6 5.1 4.1 −12.1

Basic, extended and hd
PS covariates

0.94 0.91 0.96 0.94 0.94 0.90 0.93 0.91 0.91 0.92 0.95 0.94 0.96 0.96 0.95 0.88

%§ −5.0 3.7 −0.5 −0.7 −6.0 −1.3 −5.0 −4.4 −2.5 1.0 0.6 3.6 4.0 2.1 −10.9

hd-PS covariates
(k = 500)║

Outpatient diagnoses (n) 136 224 198 177 154 144 133 0 32 90 97 54 123 133 139 34

Inpatient diagnoses (n) 9 12 11 11 9 9 7 0 22 18 19 5 16 14 11 23

Medication (n) 167 0 36 76 122 148 177 247 216 186 181 213 171 166 163 194

Outpatient procedures (n) 152 220 211 194 174 161 148 210 188 166 163 187 153 151 151 206

Inpatient procedures (n) 36 44 44 42 41 38 35 43 42 40 40 41 37 36 36 43

Abbreviations: basic covariates included continuous age, gender and calendar year; extended covariates included covariates adjusted for in published studies;
hd-PS, high dimensional propensity score. Base scenario used up to 5-digit ICD-9, procedures, generic drugs for five data dimensions of the hd-PS.
No Rx: the scenario using up to 5-digit ICD-9 and procedures for 4 data dimensions of the hd-PS.
No Dx: scenario using procedures and generic drugs for 3 data dimensions of the hd-PS.
*ATC: 5 levels of the Anatomical Therapeutic Chemical classification.
†CCS: four levels of the Clinical Classification Software; Universal, the most granular CCS code available for each ICD-9 code.
‡ ICD-9: International Classification of Diseases, 9th Revision, Clinical Modification.
§: % proportional difference in absolute degree of estimated confounded between estimates for the specific aggregation scenario and the basic scenario at the
same variable selection method on the natural log scale with RCT finding of 0.5. The presumptive amount of confounding in the basic scenario A = │ln(adjusted
RR) – ln(0.5)│; in each aggregation method B = │ln(adjusted RR) – ln(0.5)│; and C = B/A –1.
║: number of hd-PS covariates retained in the final propensity score model. Total (k=500) and from each data dimension (n).
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drugs). The latter four codes each occurred in fewer than
the 100 observation minimum that hd-PS requires by
default and so would not be eligible for inclusion in the
hd-PS adjustment. With ATC level 5 for medications, the
hd-PS algorithm selected code B01AC04 (frequency
218, covariate-exposure RR = 1.5, covariate-outcome
RR = 3.8 – Table 5). Using ATC level 4 for medications,
the hd-PS selected ATC level 4 code B01AC which had
a slightly higher frequency (253), the same covariate-
exposure (RR = 1.5) but slightly weaker covariate-
outcome (RR = 3.3) associations. Situations like this may
account for the observed improvement in confounding
control in the ATC level 4 aggregation (e.g., RR of 0.83
in 20% exposure prevalence scenario) compared with
scenarios that used ATC level 5 (e.g., RR of 0.88). Add-
itional examples to illustrate the changes in prevalence,
covariate-exposure and covariate-outcome relations from
aggregation of clopidrogel and warfarin from level 5 to
ATC levels 4, 3, 2 and 1 are in Table 5. The ATC level 4
with pharmacological subgroups seems the most appro-
priate level for aggregation of medications in this study.
As for diagnostic codes, ICD-9 code 530.1 includes

530.11 (reflux esophagitis) and the additional codes 530.10
(esophagitis unspecified), 530.12 (acute esophagitis) and
530.19 (other esophagitis). In our study, the latter three
codes each occurred in fewer than the 100 observation
minimum that hd-PS requires by default and so would not
be eligible for inclusion in the PS adjustment. With 5-digit
granularity for diagnoses, the hd-PS selected ICD-9
code 530.11 (frequency 165, covariate-exposure RR = 1.3,
covariate-outcome RR = 5.0 – see, Additional file 1:
Table S6). Using 4-digit granularity for diagnoses, the
hd-PS selected ICD-9 code 530.1 (esophagitis) which had
a higher frequency (217) but slightly weaker covariate-
exposure (RR = 1.2) and covariate-outcome (RR = 4.6)
associations. Situations like this could account for the slight



Table 4 Geometric mean of risk ratios for different cohort size, outcome incidence and exposure prevalence of
initiators of celecoxib or NSAIDs (ibuprofen or diclofenac) in a cohort 18–65 years old between 1 July 2003 and 30
September 2004 in the MarketScan database by using the High-Dimensional Propensity Score (hd-PS) adjustment with
different aggregation scenarios

Cohort and confounding adjustment method Base scenario Combined ATC* 4th level and CCS† 1st level % Proportional difference‡

Condition 1: 50% size sample

Unadjusted 1.02

Basic and hd-PS covariates 0.88 0.83 −9.9%

Basic, extended and hd-PS covariates 0.89 0.84 −8.9%

Condition 2: 20% size sample

Unadjusted 1.10

Basic and hd-PS covariates 0.94 0.87 −12.0%

Basic, extended and hd-PS covariates 0.95 0.88 −11.9%

Condition 3: 50% outcome incidence sample

Unadjusted 1.02

Basic and hd-PS covariates 0.90 0.84 −11.9%

Basic, extended and hd-PS covariates 0.91 0.85 −11.3%

Condition 4: 20% outcome incidence sample

Unadjusted 1.00

Basic and hd-PS covariates 0.85 0.81 −10.4%

Basic, extended and hd-PS covariates 0.86 0.82 −9.8%

Condition 5: 50% exposure prevalence sample

Unadjusted 1.02

Basic and hd-PS covariates 0.88 0.81 −14.4%

Basic, extended and hd-PS covariates 0.88 0.82 −12.7%

Condition 6: 20% exposure prevalence sample

Unadjusted 0.97

Basic and hd-PS covariates 0.89 0.79 −19.3%

Basic, extended and hd-PS covariates 0.89 0.81 −16.3%

Abbreviations: basic covariates included continuous age, gender and calendar year; extended covariates included covariates adjusted for in published studies;
hd-PS, high dimensional propensity score.
Base scenario used up to 5-digit ICD-9, procedures, generic drugs for five data dimensions of the hd-PS.
*ATC: 5 levels of the Anatomical Therapeutic Chemical classification.
†CCS: Four levels of the Clinical Classification Software; Universal, the most granular CCS code available for each ICD-9 code.
‡: % proportional difference in absolute degree of estimated confounded between estimates for the specific aggregation scenario and the basic scenario at the same
variable selection method on the natural log scale with RCT finding of 0.50. The presumptive amount of confounding in the basic scenario A =│ln(adjusted RR) – ln(0.5)│;
in each aggregation method B =│ln(adjusted RR) – ln(0.5)│; and C = B/A – 1.
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worsening of confounding control in the 4-digit ICD-9
aggregation compared with the base case (up to 5-digit
ICD-9). Additional examples to illustrate the changes in
prevalence, covariate-exposure and covariate-outcome re-
lations when we aggregated potential confounders, ICD-9
codes 530.11 (reflux esophagitis) and 530.81 (esophageal
reflux) from 5-digit ICD-9 into 4-, 3-digit ICD-9, and CCS
levels 4, 3, 2 and 1 are in Additional file 1: Table S6. It
is worth noting that not all ICD-9 diagnosis codes have
their equivalent CCS codes in all 4 levels [32]. This
issue was more pronounced in CCS levels 3 and 4.
Using the most granular CCS code available for each
ICD-9 code in the universal CCS did not improve re-
sults in most samples and the full cohort. We also did
not observe any benefit while aggregating ICD-9 codes
into first 3- or 4-digit groupings [16,31]. Since CCS has
only 18 groupings for level 1 and 134 groupings for level
2, it could be argued that the benefit from aggregation
comes about by enabling more variables from the other
data dimensions (medications, inpatient and outpatient
procedures) to fit within the 500 variable maximum in
the hd-PS default. To address this concern, we also
experimented with a maximum of k = 3,000 variables
and consistently observed the benefit of aggregation of
ICD-9 into CCS levels 1 or 2. Similarly, ATC level 1 has
14 groups, whereas level 4 has over 800 groupings, but
aggregation of medications into ATC level 4 outperformed
aggregation into level 1.



Table 5 Changes of prevalence, covariate-exposure and covariate-outcome relations when we aggregated potential
confounders, clopidrogel and warfarin from level 5 to levels 4, 3, 2 and 1 of the Anatomical Therapeutic Chemical
(ATC) classification

Dictionary/Level Code Description Frequency Frequency
type

Covariate
exposure risk

ratio

Covariate-
outcome risk

ratio

Prevalence in
both groups

Included in
lower level

Generic drug Clopidrogrel 218 once 1.5 3.8 0.012

Generic drug Clopidrogrel 218 sporadic 1.4 2.9 0.012

Generic drug Warfarin 319 once 1.6 2.0 0.017

Generic drug Warfarin 319 sporadic 1.7 1.3 0.017

ATC level 5 B01AC04 Clopidrogrel 218 once 1.5 3.8 0.012

ATC level 5 B01AC04 Clopidrogrel 218 sporadic 1.4 2.9 0.012

ATC level 5 B01AA03 Warfarin 319 once 1.6 2.0 0.017

ATC level 5 B01AA03 Warfarin 319 sporadic 1.7 1.3 0.017

ATC level 4 B01AC Platelet aggregation
inhibitors excluding
heparin

253 once 1.5 3.3 0.013

ATC level 4 B01AC Platelet aggregation
inhibitors excluding
heparin

253 sporadic 1.5 2.5 0.013

B01AC04 Clopidrogrel 218 Yes

B01AC05 Ticlopidine 1 0.000 No

B01AC07 Dipyridamole 6 0.000 No

B01AC23 Cilostazol 25 0.000 No

B01AC30 Combinations 11 0.000 No

ATC level 4 B01AA Vitamin K antagonists 319 once 1.6 2.0 0.017

ATC level 4 B01AA Vitamin K antagonists 319 sporadic 1.7 1.3 0.017

ATC level 3 B01AA03 Warfarin 319 Yes

ATC level 3 B01A Antithrombotic agents 637 once 1.5 1.5 0.034

ATC level 2 B01A Antithrombotic agents 637 sporadic 1.6 2.0 0.034

ATC level 2 B01 Antithrombotic agents 637 once 1.5 1.5 0.034

ATC level 2 B01 Antithrombotic agents 637 sporadic 1.6 2.0 0.034

ATC level 1 B Blood and blood forming
organs

1049 once 1.4 1.4 0.056

ATC level 1 B Blood and blood forming
organs

1049 sporadic 1.4 1.9 0.056

ATC level 1 B Blood and blood forming
organs

1049 frequent 1.5 2.0 0.025
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Our study has several limitations. This study empiric-
ally compared estimates from different aggregations and
assumed any treatment effect estimates closer to the
RCT findings to be less biased by confounding. There
was relatively little confounding present in the data, and
the effect estimates did not change much after adjust-
ment for the baseline covariates. The magnitude of the
percentage reductions in confounding depends on the
value selected as the unconfounded value; however, the
precise value selected from the published RCT [21-26]
does not affect the ranking of performance across sce-
narios. Our comparison relies on the assumption that
the codes in the original database are accurate. Also, our
study is based in a single cohort in which hd-PS per-
formed reasonably well. Fully specified simulations with
true risk ratios in diversified scenarios could be used to
prove the advantage of aggregation under certain condi-
tions but would be unable to answer the important
question of magnitude in real world settings. It is never-
theless unclear whether our findings regarding the ef-
fects of aggregation of medications and diagnostic codes
on the performance of the hd‐PS algorithm apply to
other treatment‐outcome pairs that may be subject to
confounding by different factors. Studies with few events
or small size may suffer from small sample bias or over-
fit PS models and outcome models using PS deciles to
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estimate adjusted risk ratios [36,37]. The small number
of UGI complication cases produced imprecise estimates
and insufficient power to confirm differences between
the different methods. The computer time requirements
of the hd-PS algorithm constrained our ability to in-
crease the size of our samples beyond 100 for each co-
hort condition. We thus should compare results with
and without aggregations within each condition, but not
across conditions. However, we are interested in bias
which pertains to expected values of point estimates and
statistical significance plays no defensibly useful role in
the assessment or measurement of bias. Moreover, each
aggregation scenario had six cohort conditions (600
samples). Thus, consistent patterns (the combined ATC
level 4 plus CCS level 1) are supported by a large num-
ber of samples. Users of the hd-PS methodology should
screen and remove instrumental variables and collider
bias candidates [10-12]. This topic is out of the scope of
this study.
Further studies may explore examples of no drug effect

on the outcome, increased drug-outcome risk, more com-
mon outcomes, and compare the aggregation approaches
with the zero-cell correction or exposure-based associ-
ation selection for the hd-PS [38], develop appropriate
methods to replace missing codes in CCS levels, appropri-
ate aggregations for procedures, simultaneous aggregation
of diagnoses, medications and procedures, evaluation of
the hd-PS functions in cohorts with different cohort size,
outcome incidence and exposure prevalence.

Conclusion
Aggregation of drug and diagnostic codes using hier-
archical coding systems may improve the performance
of the hd-PS to control for confounders in cohorts with
small size, low outcome incidence or low exposure
prevalence but the balance of advantages and disadvan-
tages of aggregation is likely to vary across settings.

Additional file

Additional file 1: Table S6. Changes of prevalence, covariate-exposure
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Classification Software (CCS).
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