
*For correspondence:

i.braakman@uu.nl

†These authors contributed

equally to this work

Present address: ‡dr heinekamp

Benelux BV, Riethoven,

Netherlands; §Hogeschool

Utrecht, Institute of Life

Sciences, Utrecht, Netherlands

Competing interest: See

page 20

Funding: See page 20

Received: 27 February 2017

Accepted: 26 July 2017

Published: 28 July 2017

Reviewing editor: Reid Gilmore,

University of Massachusetts

Medical School, United States

Copyright Snapp et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Structure and topology around the
cleavage site regulate post-translational
cleavage of the HIV-1 gp160 signal
peptide
Erik Lee Snapp1†, Nicholas McCaul2†, Matthias Quandte2‡, Zuzana Cabartova3,
Ilja Bontjer4, Carolina Källgren5,6, IngMarie Nilsson5,6, Aafke Land2§,
Gunnar von Heijne5,6, Rogier W Sanders4, Ineke Braakman2*

1Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United
States; 2Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research,
Faculty of Science, Utrecht University, Utrecht, Netherlands; 3National Institute of
Public Health, National Reference Laboratory for Viral Hepatitis, Prague, Czech
Republic; 4Department of Medical Microbiology, Laboratory of Experimental
Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center,
Amsterdam, Netherlands; 5Department of Biochemistry and Biophysics, Stockholm
University, Stockholm, Sweden; 6Science for Life Laboratory, Stockholm University,
Solna, Sweden

Abstract Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to

the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the

ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide

cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble

subunit gp120 to a near-native conformation. We here detail the mechanism by which co-

translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and

residues downstream of the canonical cleavage site form an extended alpha-helix in the ER

membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal

peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed

cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage

results in decreased viral fitness compared to wild-type HIV.

DOI: https://doi.org/10.7554/eLife.26067.001

Introduction
Proteins destined for the secretory pathway are translated and translocated into the endoplasmic

reticulum (ER), which provides a specialized environment for their folding, disulfide bond formation,

and N-linked glycosylation. Targeting of soluble and type-I transmembrane proteins to the ER is

mediated via cleavable signal peptides, near-N-terminal hydrophobic stretches of 14–50 amino acids

that are recognized by SRP (von Heijne, 1985; Kurzchalia et al., 1986; Lütcke et al., 1992;

Walter and Blobel, 1981; Blobel and Dobberstein, 1975; Hegde and Bernstein, 2006). Cleavable

signal peptides are variable in sequence but share characteristics of an N-terminal region with typi-

cally 0–2 basic residues, a membrane-spanning hydrophobic a-helix (H) region, and a C-terminal

region that often contains a signal-peptide cleavage site (von Heijne, 1983; von Heijne, 1984).

Signal-peptide cleavage is mediated by the signal-peptidase complex, which, like oligosaccharyl

transferase, associates with the translocon (Görlich et al., 1992; Gilmore, 1993). In a second
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cleavage step signal peptides are cleared from the ER membrane by signal-peptide peptidase, an

intramembrane rhomboid-like protease (Weihofen et al., 2002). Signal peptides are widely believed

to be cleaved co-translationally (Blobel and Dobberstein, 1975; Jackson and Blobel, 1977;

Martoglio and Dobberstein, 1998), but cleavage may well occur anywhere from early co-transla-

tional to late post-translational, depending on the protein. The minimal requirement for cleavage is

the emergence of the cleavage site in the ER lumen, which translates to ~70 synthesized residues of

a nascent polypeptide chain (Daniels et al., 2003; Kowarik et al., 2002; Hou et al., 2012), and its

recognition by the signal-peptidase complex. Yet, examples such as preprolactin, influenza virus

hemagglutinin (HA) and human cytomegalovirus US11 show that cleavage can follow initial folding

and/or glycosylation and sometimes requires longer nascent-chain lengths (Daniels et al., 2003;

Rutkowski et al., 2003; Rehm et al., 2001).

The HIV-1 envelope glycoprotein gp160 represents an extreme case of late post-translational

cleavage and the mechanism for delayed cleavage has been a long-standing problem (Li et al.,

2000; Land et al., 2003; Li et al., 1996). The gp160 signal peptide acts as a membrane tether for at

least 15 min after synthesis and requires at least some folding of the ectodomain for cleavage

(Land et al., 2003). When proper folding is prevented by maintaining gp160 in a reduced state with

DTT treatment or by blocking N-linked glycosylation using tunicamycin, the signal remains uncleaved

and gp160 fails to exit the ER (Land et al., 2003). Gp160 begins as a transmembrane protein whose

folding requires formation of conserved disulfide bonds, abundant glycosylation, proline isomeriza-

tion, and trimerization before the protein leaves the ER (Land et al., 2003; Willey et al., 1988;

Earl et al., 1990; Earl et al., 1991; Land and Braakman, 2001; van Anken et al., 2008). In the

Golgi complex, gp160 glycans are modified and furin proteases cleave the trimeric glycoprotein into

its two subunits, which stay non-covalently attached and are incorporated into new virions at the

plasma membrane (Araújo and Almeida, 2013; Sundquist and Kräusslich, 2012). Gp160 is essen-

tial for virus entry as gp120 recognizes CD4, the HIV receptor on the cell surface, and one of the HIV

coreceptors CCR5 and CXCR4, whereas gp41 mediates fusion with the target membrane

(Blumenthal et al., 2012). The soluble subunit gp120 dominates gp160 folding and can fold and be

secreted on its own, in the absence of gp41 (Land et al., 2003). Signal-peptide cleavage of gp120 is

similarly delayed as for full-length gp160 and obeys the same rules (Land et al., 2003; van Anken

et al., 2008). Therefore, for certain assays, we use gp120 interchangeably with gp160.

Late cleavage of a signal peptide requires a two-component mechanism that prevents initial rec-

ognition of the cleavage site by the signal-peptidase complex and then enables cleavage at a later

time. In this study, we identify the structural basis of delayed signal-peptide cleavage and propose a

novel role for gp160 signal-peptide cleavage as a built-in quality control mechanism.

Results

Residues up- and downstream of the signal-peptide cleavage site
prevent co-translational cleavage
To examine whether the signal peptide directly impaired co-translational cleavage, we replaced the

natural gp160 signal peptide (30 residues) with the unrelated signal peptides of influenza virus hem-

agglutinin (HA), cystatin (cys), Igk, and two synthetic, optimal (opt), or suboptimal (sub) signal pepti-

des (Barash et al., 2002). The timing of signal-peptide cleavage was assayed using a radioactive

pulse-labeling approach (Land et al., 2003). Briefly, HeLa cells expressing wild-type or mutant

gp120 were incubated with 35S-methionine and 35S-cysteine for 5 min and chased for the indicated

times. Cells were transferred to 4˚C and iodoacetamide was added to prevent further formation and

isomerization of disulfide bonds. Cells were lysed in Triton X-100 and the detergent lysates were

immunoprecipitated with the polyclonal antibody 40336, which recognizes all forms of gp160. The

immunoprecipitates were deglycosylated and subjected to reducing 7.5% SDS-PAGE to resolve sig-

nal-peptide-cleaved and uncleaved forms.

After completion of synthesis, unprocessed deglycosylated gp120, with its signal peptide still

attached (Ru) runs as a single band of ~70 kDa (Land et al., 2003) (Figure 1A). After a 60-min chase,

a second band with increased mobility appears, representing signal-peptide-cleaved gp120 (Rc). In

contrast, immediately after synthesis all gp120 constructs with non-native signal peptides already
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ran as a single band at the position of signal-peptide-cleaved gp120, indicating that the gp120 sig-

nal peptide is necessary for delayed signal cleavage.

We next investigated whether the gp120 signal, alone, was sufficient for post-translational cleav-

age, and swapped the signal peptides of gp120 and the unrelated transmembrane protein, influenza

virus HA. The HA-signal-peptide construct (HA-gp120) again was detected as co-translationally

cleaved gp120 (Figure 1B). The gp120 signal peptide alone hence did not convert HA into a post-

translationally cleaved protein. Both wild-type and signal-peptide-swapped HA (gp120-HA) ran as a

single band on the gel. Therefore, features of both mature gp120 and its signal peptide are neces-

sary for post-translational cleavage.

To establish the minimal requirements of the gp160 sequence sufficient for post-translational

cleavage, we designed a series of GFP constructs that contained the gp160 signal peptide and an

increasing number of mature gp160 residues before GFP (Figure 2A, Figure 2—figure supplement

1A). GFP expression and localization were monitored by fluorescence microscopy (Figure 2—figure

supplement 1B) and signal-peptide cleavage was assessed by immunoblot (Figure 2B).

As expected, GFP attached to the gp160 signal peptide was correctly targeted to the ER and

accumulated in the ER due to the engineered retrieval signal KDEL (Figure 2—figure supplement

1B SP+1, SP+10). Immunoblot analysis revealed a single band of GFP when one residue of mature

gp160 sequence linked the signal peptide and GFP (SP+1), which migrated at the same position as

control, GFP-KDEL (Figure 2B). Addition of four more residues of mature gp160 (SP+5) delayed the

processing and resulted in signal-cleaved and uncleaved GFP species. Processing decreased even

more with additional gp160 residues and the inclusion of ~10 downstream residues turned the signal
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Figure 1. The interplay of gp120 and its natural signal peptide causes post-translational cleavage. (A) HeLa cells expressing wild-type gp120 (Wt) and

gp120 with exogenous signal peptides, HA (HA), Ig k (Ig k), cystatin (Cys), Optimal (Opt), and Suboptimal (Sub), were radiolabeled for 10 min and

chased for 1 hr or not (0’). After immunoprecipitation gp120 samples were deglycosylated and analyzed using reducing 7.5% SDS-PAGE. Gels were

dried and exposed to Kodak-MR films. (B) As in (A) except Wt gp120, gp120 with the signal peptide of HA (HA-gp120), wild-type HA (HA-HA) and HA

with the signal peptide of gp120 (gp120-HA) were labeled for 5 min and chased for indicated times. Ru: reduced gp120 with the signal peptide still

attached; Rc: signal-peptide cleaved gp120; wt: wild-type gp120. Gels shown are representative of at least three independent experiments performed

with fresh cells and transfections (biological replicates).

DOI: https://doi.org/10.7554/eLife.26067.002
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peptide into a predominantly uncleaved signal anchor. We examined whether the population of

cleaved and uncleaved molecules in steady state represented distinct populations or a low rate of

cleavage. Pulse-chase experiments showed that cleavage only occurred during the pulse-labeling

period and not anymore after synthesis (Figure 2—figure supplement 1C and D), demonstrating

that signal-peptide cleavage of the GFP-reporter constructs was not progressive. We concluded that

gp160 residues downstream of the signal cleavage site, in combination with the signal peptide itself,

were sufficient to modulate cleavage efficiency of the gp160 signal peptide.

Post-translational cleavage is conserved across HIV-1 subtypes
Studies to date have primarily focused on the efficiency of signal-peptide cleavage of two closely-

related isolates of HIV-1 Env, HXB2 (Li et al., 2000) and LAI (Land et al., 2003), which differ by only

a single amino acid in the signal peptide (M24 in HXB2 and I24 in LAI) and 25 residues in gp120. To

establish whether post-translational signal-peptide cleavage is conserved between different HIV-1

subtypes we examined the consensus sequence for each subtype and compared them to the

sequence of subtype B strain HXB2 (Figure 3A). The amino acids responsible for the switch from sig-

nal peptide to signal anchor (Figure 2AB, +4 to +10) were shown to be highly conserved across all

subtypes. Indeed, an alignment of more than 4100 sequences shows 99–100% conservation of these

amino acids, with the exception of L34 which was 89% conserved (Supplementary file 1). As the res-

idues immediately before and after the cleavage site are involved in recognition by the signal-pepti-

dase complex (von Heijne, 1983; Choo and Ranganathan, 2008), we also examined the residues

from positions �5 to +3 relative to the cleavage site. While the precise amino-acid conservation var-

ied (16% for K33% to 87% for C28), amino-acid differences between sequences largely conserved

the character of the amino acid in question (Supplementary file 1).

The subtype-C consensus sequence demonstrated the greatest deviation from the HXB2

sequence in and around the cleavage site (Figure 3A). We therefore chose a subtype-C isolate with

A

KDEL

KDEL

GFP

GFP

SP

SP

GFP-KDEL

ER-GFP

SP+1

SP+10

KDEL

KDEL

GFP

GFPSP

B +30+25+20+15+10+9+8+7+6+5+1 G
F
P
-K
D
E
L

E
R
-G
F
P

Ru

Rc

Figure 2. Downstream residues of gp160 regulate signal-peptide cleavage. (A) Schematic of different GFP reporter constructs generated for imaging

and immunoblot experiments. All reporters have the identical monomeric GFP-KDEL cassette. For ER GFP, the GFP-KDEL cassette is preceded by the

bovine prolactin signal peptide (open box SP). The reporters with the HIV Env signal peptide (grey box SP) are fused to one or more amino acids of the

mature gp120 domain followed by the GFP-KDEL cassette. (B) Western Blot analysis of control constructs (GFP-KDEL, ER-GFP) or gp160 signal peptide

with 1-30 downstream residues (SP +1, . . ., 30). GFP-KDEL and SP +1 run lower on gel as they lack the additional residues downstream of the cleavage

site. Ru: unprocessed molecules with signal peptide still attached; Rc: signal peptide-cleaved molecules. All images shown are representative of at least

two independent experiments performed with fresh cells and transfections (biological replicates).

DOI: https://doi.org/10.7554/eLife.26067.003

The following figure supplement is available for figure 2:

Figure supplement 1. Characterization of SP-GFP fusion constructs.

DOI: https://doi.org/10.7554/eLife.26067.004
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poor sequence conservation (93IN101), to compare signal-peptide cleavage with HXB2, using the

GFP reporter system. Despite the low sequence similarity between the two isolates (Figure 3B),

results for both 93IN101 SP+1 and SP+10 were comparable to those of HXB2, with efficient process-

ing of SP+1 and delayed processing of SP+10. Notably the C isolate had a different ratio of cleaved

and uncleaved, consistent with its slightly more efficient processing. Nevertheless, we concluded

that post-translational signal-peptide cleavage is a conserved phenomenon across HIV-1 subtypes.

The signal peptide acts as a signal anchor before cleavage
We asked where the uncleaved signal peptide resides for the unprocessed protein. We hypothesized

that the uncleaved signal peptide was either trapped in the Sec61 translocon, where signal pepti-

dase is thought to reside primarily (Gilmore, 1993) or that the uncleaved protein was released lat-

erally into the ER membrane where the uncleaved signal peptide may act as a transient signal

anchor.

To distinguish between these possibilities, we performed two different complementary assays.

First, we assessed the mobility of several constructs in live cells using photobleaching analyses. A

signal anchor should behave like a single-pass transmembrane protein, with a characteristic diffusion

coefficient, while a protein trapped in the Sec61 translocon should exhibit very low mobility, as has

been reported for the translocon (Nikonov et al., 2002). We compared diffusion rates of different

GFP constructs determined from fluorescence recovery after photobleaching (FRAP) measurements

(Figure 4A and B). Diffusion coefficients (D) differ from fast soluble proteins in the ER lumen (D = 8–

12 mm/s2), to slower transmembrane proteins (D = 0.3–1 mm/s2), and very slow proteins attached to

the translocon/ribosome complex (D = 0.04 mm/s2) (Nikonov et al., 2002). Signal-peptide-cleaved

GFP (Figure 4B, SP+1) diffused rapidly (D = 9.6 ± 2.7 mm/s2), comparable with the ER-GFP control

(D = 10.2 ± 1.6 mm/s2) and indicative of a soluble protein. Addition of ten gp160 residues down-

stream of the cleavage site to GFP (SP+10) slowed signal-peptide cleavage dramatically and resulted

in a much lower D (D = 1.7 ± 0.6 mm/s2). The value was too high for a membrane protein, much too
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Figure 3. Env posttranslational signal-peptide cleavage is conserved between subtypes. (A) Alignment of the signal peptide of HIV-1 Env reference

strain HXB2 and the consensus sequences for subtypes A-E (www.hiv.lanl.gov). (B) Sequence alignment of HXB2 and subtype C strain 93IN101. Residues

underlined are conserved between the two strains. (C) Western Blot analysis of HXB2 and 93IN101 SP +1 GFP and SP +10 GFP reporters. Blot shown is

representative of two independent experiments performed with fresh cells and transfections (biological replicates).
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fast for a translocon protein, but much slower than for a soluble protein. The immunoblot data sug-

gested that a mixed population is present in cells and our data are consistent with membrane and

soluble species contributing to the diffusion coefficient. To validate membrane localization and to

rule out that uncleaved SP+10 GFP was retained in the ER through trapping in the translocon, we

used a carbonate-extraction approach, which releases translocon-bound clients into solution

(Görlich et al., 1992) and retain integral membrane proteins in the pellet fraction (Figure 4C). Sig-

nal-cleaved SP+10 was fully soluble, while uncleaved SP+10 GFP was only found in the pellet frac-

tion, indicating that it was fully integrated in the membrane and not in the translocon protein

channel. Thus, the presence of a minimum of 5 to 10 gp120 amino acids downstream of the cleavage

site prevented co-translational signal-peptide cleavage an anchored GFP to the membrane through

this signal peptide.

The signal-peptide-cleavage site is at the membrane-lumen interface
To establish whether the signal-peptide-cleavage site is exposed outside the ER membrane in wild-

type gp120, we determined which residue is the first protruding into the ER lumen by in-vitro trans-

lation of a construct composed of 88 N-terminal gp120 residues (including the signal peptide)
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Figure 4. The uncleaved signal peptide acts as a signal anchor. (A) FRAP analysis of gp160 signal-peptide constructs as in Figure 2. Cos-7 cells

expressing SP+1 and SP+10 GFP reporters were subjected to FRAP analysis. A small region of interest (white outlined box) was photobleached with

intense laser light and imaged with low laser light to visually (A) and quantitatively (B) compare mobilities and fluorescence-intensity recovery rates. (A)

Both reporters are mobile and unbleached reporters diffuse into the photobleached region of interest. Scale bar = 10 mm. (B) Plot of representative

fluorescence recoveries into the photobleach region of interest reveals that SP+10 is slower to recover. Number of cells analyzed, diffusion constants

and, statistical values can be found in Figure 4—source data 1. (C) Western Blot analysis of pellet and supernatant (sup) fractions from a carbonate

extraction of cells expressing SP+10. Split band for GFP in Sup is likely due to fragmentation (Wei et al., 2015). Blots in panel C are representative of

at least two independent experiments (biological replicates).

DOI: https://doi.org/10.7554/eLife.26067.006

The following source data is available for figure 4:

Source data 1. Summary of FRAP data.
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coupled to the P2 domain of leader peptidase (Lep) in the presence of rough microsomes as a

source of ER membranes (Nilsson and von Heijne, 1993) (Figure 5A). The construct contains two

glycosylation sites. The first, within Lep, was readily glycosylated and served as a translocation con-

trol. The second glycosylation site was moved through positions 39–47 to determine the position at

which it became glycosylated. N-linked glycosylation requires a minimal distance from the ER mem-

brane of ~11–12 residues and therefore, glycosylation can be used as a ‘molecular ruler’ of lumenal

exposure (Nilsson and von Heijne, 1993; Bañó-Polo et al., 2011).

Positions 39 and 40 were poorly glycosylated and thus located close to the ER membrane

(Figure 5B and C). Glycosylation of the second site sharply increased at position 41 and beyond,

which thus is located 11–12 residues away from the membrane-water interface. This result strongly

supports the interpretation that the cleavage site of gp160’s signal peptide is at the membrane-
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Figure 5. The signal-peptide cleavage site is buried in the membrane. (A) Cartoon of the first 89 residues of gp160 attached to the P2 domain of

protein leader peptidase (Lep) at the C-terminus. A first glycosylation site in Lep was used as translocation control. The second site was introduced at

positions 39–47 to determine at which position the distance to the membrane is sufficient for glycosylation. Arrow indicates site of signal-peptide
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of B were quantified and percentage of second glycosylation product was plotted against position of the engineered glycosylation site. The data in
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lumen interface, with T31 barely exposed in the ER lumen. The active site of signal peptidase is pre-

dicted to be 0.4–1.1 nm beyond the membrane surface (Liang et al., 2003). It therefore is likely that

the shielding of the cleavage site by membrane phospholipids contributes to the delayed cleavage

of the signal peptide.

Secondary structure prevents co-translational signal-peptide cleavage
Taken together, our results suggest a model in which the signal peptide and flanking gp120

sequence are sufficient to delay signal-peptide cleavage and that the cleavage site is poorly accessi-

ble. The signal peptide and flanking domain hence appear to regulate signal-peptide cleavage. To

characterize the physical properties of the gp160 signal peptide, the sequence was analyzed with

the online prediction tool SignalP (Bendtsen et al., 2004). A classical signal peptide, prolactin,

exhibits a clear separation of N-, H-, and C-regions and a high signal-peptide probability in the hid-

den Markov model (Bendtsen et al., 2004) (Figure 6A). In contrast, gp160’s signal peptide contains

a predicted hydrophobic H-region that overlaps substantially with the C-region containing the cleav-

age site (Figure 6A). This predicted structure was highly unusual, as analyses of numerous other

cleaved signal peptides did not exhibit overlap of H and C regions (our unpublished data). The prob-

abilities for the gp160 signal peptide to be a cleavable signal peptide or an uncleaved signal anchor

were 0.628 and 0.358, respectively. Similar probabilities were obtained for gp160 sequences from

five different subtypes. SignalP analysis further corroborated our biochemical findings that the down-

stream residues of the mature gp120 influence probability of signal-peptide cleavage. When we

tested the impact of the mature HA sequence on the gp160 signal peptide, separation between the
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Figure 6. The C region of the gp160 signal peptide overlaps with the hydrophobic core region. (A) Signal-peptide prediction tool SignalP 3.0 (36) was

used to assess signal peptides of prolactin, gp160, and gp160 signal peptide followed by HA (as used in Figure 1B). The characteristic N-terminal

charged region (N), the hydrophobic membrane-spanning region (H), and the C-terminal region (C) containing the cleavage site were plotted. Vertical

bars represent the first amino acid after the cleavage site. (B) TopPred1 (Goldman, Engelman, and Steitz scale), TopPred2 (Kyte and Doolittle scale),

TMPred, TMHMM, HMMTOP, PHDHTM, and NetSurf Helix were used to predict the transmembrane domain of the gp160 signal peptide. The

predicted transmembrane domains are represented by grey bars below the HXB2 sequence (residues 12–45). The cleavage site is marked by a vertical

line. (C) Robetta (Kim et al., 2004) was used to predict the structure of the area around the signal-peptide cleavage site of wild-type gp160. Residues

M26, A30 and T31 are shown as sticks. Alpha helices colored in grey. (D) SignalP prediction of gp160 M26P signal peptide. (E) as in (C) except M26P

gp160 was used for the prediction. Structures shown are representative of the 5 predicted structures received from the Robetta server.

DOI: https://doi.org/10.7554/eLife.26067.009

The following figure supplement is available for figure 6:

Figure supplement 1. De-novo structure predictions of gp160 wild-type and M26P signal peptide.

DOI: https://doi.org/10.7554/eLife.26067.010
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H- and C-region visibly improved and cleaved signal-peptide probability increased to a near perfect

0.936 (Figure 6A), consistent with our experimental findings (Figure 1B).

The SignalP predictions combined with our finding that T31 is at the lumen-membrane interface

suggest that the membrane-spanning alpha helix of the gp160 signal peptide extends beyond posi-

tion 31, allowing immersion into the membrane and occluding the cleavage site. Secondary structure

is known to inhibit cleavage by proteases and could account for the initial resistance of the gp160

signal peptide to signal-peptidase activity (Fluhrer et al., 2012). Indeed, the majority of transmem-

brane-domain prediction algorithms suggested that residues 33 up to 44 of gp160 form an

extended alpha helix (Figure 6B). De novo structure predictions using Robetta (Kim et al., 2004)

also show the alpha helix overlapping with the cleavage site (Figure 6C). Together, these analyses

suggest a model in which an extended a-helical structure around the cleavage site impairs accessibil-

ity to signal peptidase.

Breaking secondary structure causes co-translational signal-peptide
cleavage
If helical structure around the cleavage site is prohibitive, disruption of the helix would be predicted

to lead to co-translational signal-peptide cleavage of gp160. Importantly, a point mutation in the sig-

nal peptide should not directly impact mature gp160, whose sequence is unaltered. To break sec-

ondary structure, we introduced a proline in the signal peptide close to the cleavage site. Prolines

are common in signal peptides but are absent in 99.9% of known HIV-1 gp160 sequences

(Supplementary file 1). SignalP analysis revealed that mutation M26P increased signal-peptide

cleavage probability from 0.628 to 0.928 and clearly separated H- and C-regions (Figure 6D). Simi-

larly, de novo structure predictions also showed a break in alpha-helical structure around the cleav-

age site (Figure 6E, Figure 6—figure supplement 1).

To study timing of signal-peptide removal and the potential impact on the folding and maturation

of gp160, we analyzed the fate of M26P gp160 in our folding assay (Figure 7A). On a reducing gel

(Cells R) wild-type gp160 with its signal peptide still attached (Ru) runs as a single band of ~100 kDa

after synthesis (Land et al., 2003). From 15 min onward signal peptide-cleaved gp160 (Rc) appears

just below Ru. Upon proper folding, trimerization, furin cleavage, and arrival at the plasma mem-

brane, gp120 sheds from gp41 and is detected in the medium (Moore et al., 1990).

Immediately after synthesis M26P gp160 already ran primarily as a single band in the position of

signal-peptide-cleaved gp160 (Figure 7A, Cells R). As predicted, cleavage occurred co-translation-

ally. The overall signal of EndoH-sensitive cell-associated M26P gp160 and kinetics of gp120 shed-

ding were comparable to wild-type type protein (Figure 7A). Even though M26P gp160 signal

peptide was rapidly removed, the mutant took as long as wild-type gp160 to fold and exit the ER.

We did not detect any difference in aggregation or degradation of wild-type versus M26P gp160.

A second, faster-migrating band of M26P (asterisk) was identified as cytosolic and attributed to

suboptimal targeting to the ER due to weaker SRP binding: it did not change between reducing and

non-reducing gels (Figure 7A, asterisk), or when DTT was removed from cells (Figure 7B, asterisk),

indicating that it did not form disulfide bonds, it still contained the signal peptide, but did not con-

tain the ~25 GlcNAc moieties that are left after deglycosylation with Endo H.

On non-reducing gel (Cells NR) the mobility of a protein is determined by its mass (as in reducing

gels) as well as its compactness due to disulfide bonds (Braakman et al., 1991). Early gp160 folding

intermediates (IT) run close to completely reduced gp160 and represent molecules with few or

short-distance disulfide bonds (Land et al., 2003). Over time, disulfide bonds continue to form and

isomerize, which leads to more compact folding intermediates. Between 15 and 30 min after synthe-

sis, a distinct high-mobility band appears, representing gp160 that has folded properly and has

achieved its native set of disulfide bonds (Land et al., 2003). Unexpectedly, co-translational signal-

peptide cleavage of M26P gp160 significantly altered the oxidative folding pathway; folding inter-

mediates acquired high compactness more quickly during synthesis (Figure 7A, Cells NR). Increased

compactness is caused by a larger number of disulfide bonds or disulfides between more distant cys-

teines or both. Despite this increased rate of compaction, the appearance of the distinct native (NT)

band and shedding of M26P gp120 from gp41 took as long as for wild-type gp160 (Figure 7A).

Because M26P loses its signal peptide co-translationally, it already begins with a mass difference

of ~3 kDa compared to wild type. To ensure that this mass difference alone did not result in the

more rapid folding phenotype on gel, we included 5 mM DTT in the pulse medium to postpone
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Figure 7. M26P leads to co-translational signal-peptide cleavage. Experiments were done as in Figure 1. (A) HeLa cells expressing wild-type and M26P

gp160 were radiolabeled for 10 min and chased for the indicated times. Samples were deglycosylated with endoH and subjected to reducing (Cells R)

and non-reducing (Cells NR) 7.5% SDS-PAGE. Medium samples were reduced and not deglycosylated. Lane profiles depicting the folding-intermediate

(NR) smear of wild-type and M26P gp160 were determined from autoradiographs. (B) As in A except that wild-type and M26P gp120 were used and

Figure 7 continued on next page
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disulfide-bond formation until the start of the chase (without DTT) (Figure 7B). Postponing disulfide-

bond formation synchronized folding intermediates and diminished differences in co-translational

folding that may exist between wild type and M26P. Again, M26P folding intermediates acquired

high compactness more rapidly than wild-type gp160, with the majority of protein accumulating

close to the native band after 15 min of chase. Taken together, these experiments support the

model that secondary structure around the cleavage site inhibits co-translational signal-peptide

cleavage.

Given the large differences in oxidative folding between wild type and M26P, we used limited

proteolysis to examine conformational differences (Hoelen et al., 2010; Kleizen et al., 2005). In

short, cells subjected to pulse-chase analysis were lysed in the absence of protease inhibitors and

incubated on ice with 5 mg/ml trypsin for exactly 15 min. Protease inhibitors then were added and

samples were immunoprecipitated and deglycosylated as before (Figure 7A) and analyzed by non-

reducing (Figure 7C NR) and reducing (Figure 7C R) 15% SDS-PAGE.

At all 3 time points the digests from both wild-type and M26P gp120 contained a doublet of ~13

kDa (») whether reduced (R) or not (NR) (Figure 7C). Except for a small difference in definition these

fragments were invariant, did not contain the N-terminus (as the signal peptide will have been

cleaved from M26P but still is present in wild-type gp120) and did not contain detectable disulfide

bonds. Differences did arise in the larger N-terminal fragments. With disulfide bonds intact (NR),

M26P proteolysis produced a single diffuse band of ~30 kDa (>), whereas the wild-type gp120

digest contained three diffuse bands, at ~35 (.), ~20 kDa (○), and ~15 kDa. Upon reduction, all dif-

fuse bands, of both wild type and M26P, dissociated into many well-defined bands (Figure 7C R)

that must have been disulfide linked in the diffuse large fragments. The patterns of wild type and

M26P were similar, albeit with a mobility shift explained by the presence of the signal peptide in the

wild-type fragments, implying that these fragments were N-terminal. M26P was digested into a

slightly larger number of fragments, indicative of subtle conformational differences and more confor-

mational heterogeneity than wild-type gp120. The three disulfide-linked diffuse bands from wild-

type gp120 indicated that the protease had cleaved between 3 clusters of relatively local disulfide

bonds, most likely between the variable loops. In contrast, the single large band of M26P implies

the presence of long-distance disulfide bonds between these 3 clusters. This is consistent with the

increased compactness on non-reducing gel after the pulse (Figure 7A), as long-distance disulfide

bonds would confer more compactness than short-distance ones.

Co-translational signal-peptide cleavage causes localized misfolding in
gp120
Because wild-type and M26P Envelope accumulated in the same ‘native’ position on SDS-PAGE gel,

we extended the conformational assay from Figure 7C to both proteins after folding (Figure 7D).

Strikingly, at the end of the 2-h chase both M26P and wild-type gp120 were highly protease resis-

tant under non-reducing conditions (Figure 7D). Even when we increased the protease concentra-

tion to 100 mg/ml trypsin, we still immunoprecipitated a fragment of almost full-length size from

Figure 7 continued

samples were pulse labeled for 5 min in the presence of 5 mM DTT and chased in the absence of DTT. (C + D) HeLa cells expressing wild-type and

M26P gp120 were pulse labeled as above and chased for either 0, 2, or 5 min (C) or 2 h (D). At the end of each time point, detergent cell lysates were

proteolyzed with 5 or 100 mg/ml trypsin for exactly 15 min on ice. Proteolyzed samples were processed as in Figure 1 and analyzed by 15% SDS-PAGE.

(E) HeLa cells expressing wild-type or M26P gp160 were pulse labeled and chased as above. Detergent cell lysates were immunoprecipitated in parallel

with either polyclonal antibody 40336 or antibodies A32, D7324, or CD4-IgG. After immunoprecipitation, samples were processed as in Figure 1. (F)

Quantifications of experiments from E. Values were normalized compared to immunoprecipitation by 40336. Statistics were calculated using an

unpaired t-test with Welch’s correction. Exact p values can be found in Figure 7—source data 1. IT: folding intermediates; NT: native gp160; *:

uncleaved unglycosylated M26P gp160 that had not targeted properly to the ER, likely due to its suboptimal signal sequence. Gels shown are

representative of at least 3 independent experiments (biological replicates).

DOI: https://doi.org/10.7554/eLife.26067.011

The following source data is available for figure 7:

Source data 1. Autoradiographs from Figure 7F were quantified and each antibody normalized to the recognition of polyclonal antibody 40336 which

recognizes all forms of gp160.

DOI: https://doi.org/10.7554/eLife.26067.012
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both proteins. As before, these large fragments dissociated into well-defined bands upon reduction

(Figure 7D, R), indicating that in both natively-folded proteins the cleavage must have primarily

occurred within the variable loops as this would allow disulfide bonds to hold the structure intact. As

we found no significant difference in the fragments after reduction, we concluded that both wild-

type and M26P contained a similar set of disulfide bonds and a similar conformation.

To further probe differences in the antigenic structures of wild-type and M26P gp160, we used

conformation-specific antibodies. We pulse labeled samples as before and chased for 0, 30 min or 2

h before detergent lysis, immunoprecipitation, deglycosylation, and analysis by reducing SDS-PAGE

(Figure 7E). Gp160 signals were quantified and normalized to recognition by polyclonal antibody

40336 (Figure 7F). We did not detect any significant differences at early chase times (0 and 30 min),

likely due to the large heterogeneity in folding intermediates for gp160. Only when we examined

the 2-h samples, which contained mostly ‘native’ gp160, did we detect significant differences

between wild-type and M26P gp160. Antibody A32, which recognizes a 3D epitope in the inner

domain of gp120 around disulfide 54–74, showed a significant decrease in recognition of M26P

(Figure 7F). Misfolding was not limited to gp120, as antibody D7324, which recognizes an epitope

near the disulfide bond in gp41, also showed a significant decrease in M26P recognition (Figure 7F).

Given that the inner domain of gp120 interacts with gp41 in the trimer (Garces et al., 2015), it is

possible that misfolding of the inner domain led to the misfolding in gp41. Immunoprecipitation

with CD4-IgG did not show a difference between wild-type and M26P gp160 (Figure 7F). We con-

cluded that co-translational signal-peptide cleavage resulted in localized misfolding in gp160. This

misfolding however, was not sufficient to cause M26P to be retained in the ER or degraded.

Co-translational signal-peptide cleavage of gp160 affects function
Because co-translational signal-peptide cleavage significantly altered the complex oxidative folding

process of gp160, we anticipated the M26P mutation to affect gp160 function. We therefore

assessed the impact of the M26P mutation on virus replication and fitness compared to the wild-

type virus. SupT1 cells were transfected with 20 mg wild-type or mutant virus using electroporation,

and viral titers were determined by CA-p24 ELISA at multiple time points (Figure 8A). M26P virus

exhibited a slight delay in replication compared to wild-type virus, with virus levels being significantly

lower at days 3 and 4, although the M26P mutant caught up with the wild-type virus at day 7.

Because we expected that the maintenance of delayed signal-peptide cleavage across HIV-1 sub-

types would confer a selective advantage, we tested the fitness of the M26P mutant virus compared

to the wild-type virus, in a direct virus-competition assay. SupT1 cells were infected with a mix of wt:

M26P LAI virus (50 pg in total) in two ratios, 1:1 and 1:10, both in duplicate cultures (Figure 8B). On

days 1, 2, 3, 4 and 7 viral titers were monitored by CA-p24 ELISA (Figure 8—figure supplement 1);

this was not continued after virus was passaged to new cells. After 4 and 35 days of culturing, the

virus was harvested, sequenced and the electropherograms were quantified. When mixed at a 1:1

ratio the wild-type virus had outcompeted M26P virus by day 4 and the M26P mutant was only pres-

ent as a minority variant at day 35. Moreover, when added in a ten-fold excess, the M26P mutant

dominated the population at day 4, but again only formed a minority variant by day 35. These data

indicate that the M26P mutant has a selective disadvantage to the wild-type virus.

We next assessed whether the M26P virus was less infectious than the wild-type virus on TZM-bl

target reporter cells. Although not statistically significant, a trend was observed that the M26P

mutant was less infectious, consistent with the competition data. We also noticed a greater variabil-

ity in the M26P samples (Figure 8C). Possibly, the increased rate of attaining the native conforma-

tion led to larger heterogeneity in Env conformations, consistent with the increased fidelity of

folding when folding rates are delayed by chaperones or lower temperature (Daniels et al., 2003;

Hebert et al., 1996; Denning et al., 1992; Sekhar et al., 2012; Sherman and Qian, 2013).

To examine the effect of co-translationally cleaved gp160 on viral infectivity in the absence of

other HIV factors, and to assess the effect in the context of a different isolate, we moved to a pseu-

dovirus system using JR-FL gp160. TZM-bl cells were infected with 1000 pg of JR-FL wild-type or

M26P pseudo-virus and infectivity was measured using a luciferase reporter assay. While wild-type

JR-FL pseudo-virus readily infected target cells, M26P pseudo-virus was almost non-infectious

(Figure 8D). We also compared the infectivity of LAI pseudo-virus containing the Ig k and cystatin

signal peptides (Figure 8E) and found them to be significantly less infectious than wild-type LAI

pseudo-virus. Taken together, our results suggest that delayed cleavage of the signal peptide

Snapp et al. eLife 2017;6:e26067. DOI: https://doi.org/10.7554/eLife.26067 12 of 25

Research article Biochemistry Cell Biology

https://doi.org/10.7554/eLife.26067


E

V
ir

a
l 

In
fe

c
ti

v
it

y

(x
1

0
6
 L

u
c

if
e

ra
s

e
 U

n
it

s
)

Wt Ig  SP Cys SP
0.0

0.5

1.0

1.5

2.0

2.5

SP-swap Infectivity

*** ***

D

V
ir

a
l 

In
fe

c
ti

v
it

y

(x
1

0
6
 L

u
c

if
e

ra
s

e
 U

n
it

s
)

Wt M26P
0

2

4

6

8

JR-FL Infectivity

****

C

V
ir

a
l 

In
fe

c
ti

v
it

y

(x
1

0
6
 L

u
c

if
e

ra
s

e
 U

n
it

s
)

Wt M26P
0

5

10

15

20

LAI Infectivity

n.s

0 4 35

0

50

100

1:1

0 4 35

0

50

100

1:10
Wt

M26P

B Competition

Day Day

A

0 1 2 3 4 5 6 7 8
100

101

102

103

104

105

106

107

Day

C
A

-p
2

4
 (
p

g
/m

l)

Wt

M26P

**

***

Virus Replication

Figure 8. Co-translational signal-peptide cleavage causes functional gp160 defects. (A) SupT1 cells (5x106) were infected with 20 mg of wild-type or

M26P-mutant pLAI DNA constructs using electroporation. Replication was monitored by CA-p24 ELISA. The replication curves shown represent the

averaged values of 6 independent experiments. p=0.0058 (**) and 0.003 (***). (B) SupT1 cells (Krogh et al., 2001) were infected with a total of 50 pg

CA-p24 equivalent wild-type or M26P-mutant LAI virus (produced by transfected HEK293T cells) in ratios 1:1 and 1:10, each in duplicate (biological

replicate). After 4 and 35 days, the isolated virus from each culture was sequenced and the electropherograms were quantified. (C,D,E) TZM-bl reporter

cells were infected with: 500 pg of wild-type or M26P LAI virus (produced by HEK293T cells) (n.s, p=0.0833) (C), 1,000 pg of wild-type or M26P-mutant

JR-FL pseudo-virus (produced by HEK293T cells) (p<0.0001). One M26P data point was excluded as it lay well below the background. (D), 1,000 pg of

wild-type, Ig k (p=0.0004) or cystatin-SP (p=0.0005) mutant LAI pseudo-virus (produced by C33A cells) (E) and infectivity was measured by Luciferase

activity. The data in panels A, C and D are derived from 3 independent experiments, using 3 independently produced (pseudo-)virus stocks (biological

replicates), each performed in quadruplicate (technical replicates). The data in panel B are derived from 2 independent experiments, using 2

independently produced virus stocks (biological replicates) and sequenced with two independent primers (technical replicates). The data in panel E are

derived from 1 pseudovirus stock (biological replicate), performed in quadruplicate (technical replicates). All significance values were calculated with an

unpaired, two-tailed t test with Welch’s correction.

DOI: https://doi.org/10.7554/eLife.26067.013

The following figure supplement is available for figure 8:

Figure supplement 1. Viral replication in competition assays.

DOI: https://doi.org/10.7554/eLife.26067.014
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contributes to maximizing production of functional gp160 and that co-translational signal-peptide

cleavage results in fast folding of lower-quality gp160.

Discussion
We found that the dramatically delayed cleavage of the signal peptide of HIV-1 gp160 functions as

folding regulator to ensure correct formation of disulfide bonds and functional structure. This

delayed cleavage is evolutionarily conserved across HIV-1 subtypes and is important for viral func-

tion. Secondary structure in the form of an alpha helix extends through the cleavage site preventing

early access and cleavage by signal peptidase. Uncleaved gp120 hence transiently resides in the ER

as a signal-anchored type-II transmembrane protein with the cleavage site shielded by membrane

phospholipids. The integral-membrane intermediate is retained in the ER, and we here suggest that

the signal peptide acts a quality-control mechanism to ensure that gp160 exits the ER in an optimally

folded form. Forced co-translational cleavage by insertion of a helix-breaking proline in the signal

peptide led to changes in gp120 folding and reduced Env function.

Residues flanking the cleavage site influence removal of a signal peptide as the ER signal pepti-

dase does not limit its activity to a strict consensus sequence (Choo and Ranganathan, 2008;

Li et al., 1988; Andrews et al., 1988). While this enzyme may be a specific protease in terms of its

location and topology, the signal peptidase nonetheless does show hallmarks of a typical protease:

structural descriptors for cleavage are exposure, flexibility, and local interactions (Hubbard et al.,

1991; Kazanov et al., 2011; Novotný and Bruccoleri, 1987; Overall, 2002; Timmer et al., 2009).

Proteases prefer loops and disfavor a-helices and b-sheets. The helix-breaking M26P mutation sup-

ports our conclusion that lack of co-translational Env signal-peptide cleavage is primarily the result

of secondary structure around the cleavage site. NMR studies of E.coli signal peptidase in complex

with alkaline phosphatase signal peptide revealed that the cleavage region adopted a poorly struc-

tured ‘U-turn’ shape (De Bona et al., 2012). The loop originated from proline in position �5 to the

cleavage site confirming the role of proline in separating hydrophobic and C-terminal region of sig-

nal peptides by inducing formation of unstructured turns or loops predicted in the literature earlier

(von Heijne, 1983; Jain et al., 1994). Enrichment of proline near signal-peptide cleavage sites is not

limited to E. coli: a database of all verified signal peptides from Archaea to mammals shows ~20% of

all cleavable signal peptides containing at least one proline in the �1 to �5 position relative to the

cleavage site (Choo et al., 2005). Gp160 sequences are virtually devoid of proline in that position

(Table 1). Ninety-five percent of all analyzed sequences contain M26 or I26 with only 5 sequences

out of >4100 containing a proline in the �1 to �5 position (Table 1, Supplementary file 1). In addi-

tion to helical structure, a dearth of water at the lipid-immersed cleavage site hinders signal-pepti-

dase activity, as all hydrolysis reactions by definition require water.

The SignalP algorithm used in this study is trained to distinguish between cleavable signal pepti-

des and uncleavable signal anchors (Bendtsen et al., 2004; Nielsen et al., 1997). We show here

that a signal peptide with mixed probabilities may well function as a transient signal anchor. A

sequence with similar signal-peptide/anchor probabilities hence may suggest a similar ‘bipolar’

anchor/peptide behavior, provided that targeting is efficient and does not affect the probability

computation. The distinction between a signal peptide that is engaged by the translocon and a sig-

nal anchor immersed in the lipid bilayer is subtle because the lateral gate of the translocon allows

partial immersion in the bilayer within the translocon (Li et al., 2016; Gogala et al., 2014;

Voorhees et al., 2014). This confirms earlier biochemical data demonstrating lipid interactions of

the nascent chain in the translocon (Martoglio et al., 1995; Martoglio and Dobberstein, 1995;

Do et al., 1996; Higy et al., 2004).

During folding, the transient signal anchor of gp120 tethers it to the membrane, restricting con-

formational freedom of the N-terminus. Tethering of the protease domain of the Semliki Forest virus

capsid protein to the membrane via a non-cleavable signal anchor resulted in more efficient folding

(Kowarik et al., 2002), and we propose that tethering gp120 might be similarly beneficial for gp120

folding. In-silico folding simulations of knotted proteins demonstrated that efficiency of knot-domain

formation was enhanced by tethering of the N-terminus (Soler and Faı́sca, 2012). Indeed, many pro-

teins have their N-termini restrained by ribosome-associated chaperones such as E. coli trigger fac-

tor (Kaiser et al., 2006; Kaiser et al., 2011), which prevent early, non-productive folding

interactions. In the context of gp160 this can be illustrated by our finding that the M26P mutant
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immediately collapses into a more compact, disulfide-bonded state leading to a substantially more

heterogeneously folded gp160 population. Post-translational cleavage of gp160 restricts conforma-

tional freedom, thereby preventing the initial collapse, and increases folding fidelity while ultimately

allowing release from its tether, which is essential for its role in viral infectivity.

Previously, we have shown that signal-peptide cleavage requires folding and N-glycosylation of

gp120 (Land et al., 2003), and that five out of ten conserved disulfide bonds are required for cleav-

age (van Anken et al., 2008). Crystal structures of gp120 show that it adopts a hairpin conforma-

tion, with its N- and C-termini in close proximity (Garces et al., 2015). Given that the far N-terminus

is a b-strand in the native protein whereas our studies have suggested this region to be a-helical

early on (which prevents co-translational cleavage), a late folding event (possibly integration of the

N- and C-termini) likely triggers the conformational change in the N-terminus, allowing cleavage to

occur. This is underscored by the poor cleavage of the various reporter constructs that lacked the

C-terminal residues of gp120 necessary to initiate this conformational change.

The M26P mutation had a dramatic impact on infectivity of JR-FL pseudovirus. However, consid-

ering the conservation of post-translational cleavage, one might have expected a more pronounced

effect of the M26P mutation on LAI virus infectivity. Although wild-type LAI readily outcompeted the

co-translationally cleaved M26P Env-containing virus, the difference in infectivity of target cells was

subtle. The defects caused by co-translational cleavage may be much larger in vivo.

As the association between subunits gp120 and gp41 involves gp120’s N-terminus, it is appropri-

ate that this conserved interface suffered from early cleavage; we found that co-translational signal-

peptide cleavage caused localized misfolding in gp41 and in the inner domain of gp120. Because

the stability of the gp120/gp41 association differs substantially between HIV-1 strains this may

explain the more dramatic impact of the M26P mutation in the context of the JR-FL isolate versus

LAI. Strain-specific differences in stability of subunit association may be the reason why the effect of

Table 1. M26 and I26 have highest conservation in gp160 sequences An alignment of 4236 gp160

sequences (Supplementary file 1) was used to compare absolute occurrence of each amino acid in

position 26 of the signal peptide (SP) and the respective cleavable SP probability predicted by

SignalP 3.0.

Position 26 SP probability Absolute occurrence

Y 0.458 0

I 0.51 1375

F 0.591 7

V 0.604 16

M 0.628 2638

L 0.697 143

C 0.699 1

W 0.751 1

T 0.777 39

G 0.792 0

A 0.805 2

S 0.848 5

K 0.863 0

Q 0.897 0

E 0.901 4

D 0.906 0

R 0.909 3

N 0.923 0

H 0.928 1

P 0.928 1

DOI: https://doi.org/10.7554/eLife.26067.015
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a heterologous signal peptide on gp160 function has been controversial thus far. The gp160 signal

peptide was often replaced without detected negative effects (Li et al., 1996; Lasky et al., 1987;

Li et al., 1994) whereas in other cases replacement led to decreased infectivity (Pfeiffer et al.,

2006). Heterologous signal peptides may compensate for functional defects by increased expression

of gp160 and the resulting increase in incorporation into new virions. Although as few as 9–14 native

trimers on the virion surface suffice for infection (Zhu et al., 2006; Klasse, 2007), suboptimal Env

trimers may require increased density for function.

Despite great sequence variability, signal peptides of different secretory proteins have been con-

sidered interchangeable. While this may be true for their primary role, ER targeting, it becomes

increasingly obvious that signal peptides fulfill diverse other functions starting from the moment

they emerge from the ribosome. Hydrophobicity of prokaryotic signal peptides (Valent et al., 1997;

Lee and Bernstein, 2001) or in yeast proteins (Ng et al., 1996) determines whether protein translo-

cation is SRP-dependent or independent and generally the targeting efficiency of a signal peptide

regulates expression levels. Gp160 for instance shows increased expression over the course of infec-

tion when the N-terminal charges in the signal peptide decrease (Li et al., 1994; da Silva et al.,

2011; Asmal et al., 2011; Gnanakaran et al., 2011). Low efficiency in targeting may result in dual

localization of the mature protein, which in the case of calreticulin gives rise to functional ER-lumenal

and cytosolic pools (Shaffer et al., 2005). Actively tuning translocation efficiency of distinct sets of

proteins allows the cell to react to ER stress (Kang et al., 2006). To lower the burden on the ER,

newly synthesized proteins that fail to translocate are degraded in the cytosol and inefficient SRP

binding triggers Argonaute2-dependent mRNA degradation (Kang et al., 2006; Karamyshev et al.,

2014).

In addition to targeting, signal peptides may influence topology of the mature protein, as was

shown for the human prion protein, PrP (Ott and Lingappa, 2004; Hegde et al., 1998), or they may

regulate folding [e.g. gp160, US11, and EspP (Rehm et al., 2001; Szabady et al., 2005)]. In this

sense, they are specialized, membrane-bound versions of soluble pro-peptides that function as intra-

molecular chaperones before their removal. They function in places that cellular chaperones cannot

reach. These soluble pro-peptides may contain a cysteine that supports intramolecular disulfide-

bond isomerization as seen with bovine pancreatic trypsin inhibitor (Weissman and Kim, 1992a,

1992b) or a specific sequence interacting with the folding protein (insulin). Signal peptides

immersed in the membrane cannot fulfill these roles very robustly as most of the signal peptide is

not available for interaction, but in essence the functions of soluble pro-peptides and intramembrane

signal peptides may be similar.

The more we learn about different functions of signal peptides the more understandable their

variability. Every function requires a regulatory mechanism, and soluble pro-peptides may set the

example. We do conclude that rather than their blunt exchange, signal peptides do deserve atten-

tion, as they are not as inert as often anticipated.

Materials and methods

Plasmids, antibodies, reagents, and viruses
The full-length molecular clone of HIV-1LAI (pLAI) was the source of wild-type and mutant viruses

(Peden et al., 1991). The QuikChange Site-Directed Mutagenesis kit (Stratagene) was used to intro-

duce mutations into env in plasmid pRS1 as described before; the entire env gene was verified by

DNA sequencing (Sanders et al., 2004). Mutant env genes from pRS1 were cloned back into pLAI

as SalI-BamHI fragments.

For transient transfection of gp120/160 we modified pcDNA3 by introducing an Intron A

sequence upstream of the start ATG (Chapman et al., 1991), and named the plasmid pMQ. Influ-

enza A virus hemagglutinin (HA, from avian H3N2 HA/Aichi/68) was also subcloned into pMQ. All

mutants were generated from wild-type gp120 or gp160 with the corresponding primer pairs using

QuikChange. Non-native signal peptides were purchased as gene fragments (IDT) and inserted into

pMQ gp120 digested with XbaI and KpnI using Gibson Assembly (Gibson et al., 2009) or pMQ

X31-HA digested with XbaI and HindIII. For immunoprecipitations we used the previously described

polyclonal rabbit anti-gp160 antibody 40336 (Land et al., 2003) and ‘P’, polyclonal rabbit serum

raised by the Braakman lab against purified HA and characterized to recognize folded, misfolded,
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and denatured HA. Although we studied gp160 of the LAI isolate, we followed the canonical HXB2

residue numbering (GenBank: K03455.1), which relates to the LAI numbering as follows: because of

an insertion of five residues in the V1 loop of LAI gp160, all cysteine residues beyond this loop have

a number that is 5 residues lower in HXB2 than in LAI: until Cys131, numbering is identical, but

Cys162 in LAI becomes 157 in HXB2, etc.

GFP constructs ER-RFP, ER-GFP, ER-GFP-KDEL and gp120 sfGFP have been previously described

(Costantini et al., 2015; Snapp et al., 2006; Aronson et al., 2011). This construct was used as the

backbone for all of the different SP-GFP constructs. The HIV-1 gp160 SP constructs included the SP

and one to thirty post-SP amino acids (+1 to +30). Mutants were created either in PCR 3’ reverse oli-

gos or using the QuikChange kit from Stratagene, as recommended by the manufacturer.

For the membrane integration assay an ApaI site was introduced after the N-terminal 89 residues

of HXB2 gp160, expressed from pcDNA3 (van Anken et al., 2008). To create a Lep P2-domain

fusion protein an ApaI site at position 85–86 and an XhoI site at the 3´-end were introduced into

lepB. The P2 domain of Lep containing a natural glycosylation site at position 215–217 (NET) was

introduced as ApaI-XhoI fragment. Glycosylation acceptor sites (NST) were inserted at appropriate

positions in gp160 (N39, N40, N41 and N47) by site-specific mutagenesis (QuikChange Site-Directed

Mutagenesis Kit, Stratagene). All inserted fragments and mutants were confirmed by sequencing at

Eurofins MWG Operon (Ebersberg, Germany).

Cells and transfections
The SupT1 cell line (ATCC CRL-1942, RRID:CVCL_1714) was cultured in Advanced RPMI 1640

medium (Gibco), supplemented with 1% fetal calf serum (v/v, FCS), 2 mM L-glutamine (Gibco), 15

units/ml penicillin and 15 mg/ml streptomycin. The TZM-bl reporter cell line (Cat# 8129–442, RRID:

CVCL_B478), obtained from NIH AIDS Research and Reference Reagent Program, Division of AIDS,

NIAID, NIH (John C. Kappes, Xiaoyun Wu, and Tranzyme, Inc., (Durham, NC)), the HEK293T cell line

(ATCC CRL-3216, RRID:CVCL_0063), and the C33A cell line (ATCC HTB-31, RRID:CVCL_1094) were

cultured in Dulbecco’s modified Eagle medium (Gibco) containing 10% FCS, 100 units/ml penicillin

and 100 mg/ml streptomycin. HeLa cells (ATCC CRL-7924, RRID:CVCL_0058) were maintained in

MEM containing 10% FCS, nonessential amino acids, glutamax and penicillin/streptomycin (100 U/

ml). Twenty-four hours before pulse labeling HeLa cells were transfected with pMQ gp120/gp160 or

HA constructs using polyethylenimine (Polyscience) as described before (Hoelen et al., 2010). COS-

7 cells (ATCC CRL-1651, RRID:CVCL_0224) were grown in RPMI lacking phenol red plus glutamine,

10% heat-inactivated FCS, and penicillin/streptomycin. All cell lines were maintained at 37˚C with 5%

CO2 and routinely tested negative for mycoplasma contamination. All cell lines were assumedly

authenticated by their respective sources and were not further authenticated for this study.

Virus production
Virus stocks were produced by transiently transfecting HEK293T cells with wild-type or mutant pLAI

constructs using the Lipofectamine 2000 Transfection Reagent (Invitrogen) according to the manu-

facturer’s protocol. Alternatively, virus stocks were produced by transfecting C33A cells by calcium-

phosphate precipitation (van Anken et al., 2008).The virus-containing culture supernatants were

harvested 2 days post-transfection, stored at �80˚C, and the virus concentrations were quantitated

by CA-p24 ELISA as described previously (Moore and Jarrett, 1988). These values were used to

normalize the amount of virus used in subsequent infection experiments.

Virus replication
A total of 5 � 106 SupT1 cells were transfected with 20 mg wild-type or M26P mutant pLAI DNA con-

structs using electroporation. Virus spread was monitored for 8 days, by visual inspection for the

appearance of syncytia and by CA-p24 ELISA as indicators of virus replication.

Competition assay
A total of 105 SupT1 cells were infected with a total of 50 pg LAI virus (produced on HEK293T cells).

The wild-type:M26P sample in a 1:1 ratio contained 25 pg virus each. For the 1:10 ratio wild-type:

M26P sample, 5 pg wild-type virus was combined with 45 pg M26P mutant virus. Virus spread was

monitored by visual inspection for the appearance of syncytia and by CA-p24 ELISA as indicators of
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virus replication. Decreasing amounts of supernatant were passaged when the cells were (almost)

wasted due to infection by the replicating virus. Viruses were cultured for 35 days and passaged cell-

free onto uninfected SupT1 cells when virus replication was apparent. Virus replication was quanti-

tated for the first 7 days by CA-p24 ELISA. On days 4 and 35 cellular DNA was extracted from

infected cells using the QIAamp DNA Mini kit (Qiagen) according to the manufacturer’s instructions

and the complete env genes from proviral DNA sequences were PCR-amplified using the Expand

High Fidelity PCR System (Roche) as described before (Eggink et al., 2008). DNA sequences then

were sequenced using forward and reverse primers and the peak heights extracted from the electro-

pherograms were determined using the ab1PeakReporter utility (Life Technologies).

Single cycle infection
The TZM-bl reporter cell line stably expresses high levels of CD4 and HIV-1 coreceptors CCR5 and

CXCR4 and contains the luciferase and b-galactosidase genes under the control of the HIV-1 long-

terminal-repeat (LTR) promoter (Wei et al., 2002). Single-cycle infectivity assays were performed as

described before (Bontjer et al., 2009; Bontjer et al., 2010). In brief, one day prior to infection, 17

� 106 TZM-bl cells per well were plated on a 96-well plate in DMEM containing 10% FCS, 100 units/

ml penicillin and 100 mg/ml streptomycin and incubated at 37˚C with 5% CO2. A fixed amount of

virus LAI virus (500 pg of CA-p24) or a fixed amount of JR-FL or LAI pseudo-virus (1,000 pg of CA-

p24) was added to the cells that were at 70–80% confluency in the presence of 400 nM saquinavir

(Roche) to block secondary rounds of infection and 40 mg/ml DEAE in a total volume of 200 ml. Two

days post infection, the medium was removed, cells were washed with phosphate-buffered saline

(50 mM sodium phosphate buffer, pH 7.0, 150 mM NaCl) and lysed in Reporter Lysis buffer (Prom-

ega). Luciferase activity was measured using a Luciferase Assay kit (Promega) and a Glomax lumin-

ometer (Turner BioSystems) per the manufacturer’s instructions. Uninfected cells were used to

correct for background luciferase activity. All infections were performed in quadruplicate.

Folding assay
HeLa cells transfected with wild type or mutant gp160/gp120 or HA constructs were subjected to

pulse-chase analysis as described before (Land et al., 2003). In short, cells were starved for cysteine

and methionine for 15–30 min and pulse labeled for 5 min with 55 mCi/ 35 mm dish of Express 35S

protein labeling mix (Perkin Elmer). Where indicated (+DTT) cells were incubated with 5 mM DTT for

5 min before and during the pulse. The pulse was stopped and chase started by the first of 2 washes

with chase medium containing an excess of unlabeled cysteine and methionine. At the end of each

chase, medium was collected and cells were cooled on ice and further disulfide bond formation and

isomerization was blocked with 20 mM iodoacetamide. Cells were lysed and detergent lysates and

medium samples were subjected to immunoprecipitation with polyclonal antibody 40336 against

gp160 or polyclonal rabbit serum P against HA.

Deglycosylation, SDS-PAGE, and autoradiography
To identify gp160 folding intermediates, glycans were removed from lysate-derived gp120 or gp160

with Endoglycosidase H (Roche) treatment of the immunoprecipitates as described before

(Land et al., 2003). Samples were subjected to non-reducing and reducing (25 mM DTT) 7.5% SDS-

PAGE. Gels were dried and exposed to super-resolution phosphor screens (FujiFilm) or Kodak MR

films (Kodak). Phosphor screens were scanned with a Typhoon FLA-7000 scanner (GE Healthcare Life

Sciences) and quantifications performed in ImageQuantTL (RRID:SCR_014246) and graphs prepared

with Graphpad (RRID:SCR_000306).

Light microscopy
Images were collected on a Zeiss Axiovert 200 with a 63x oil 1.4NA Planapo objective and a QImag-

ing Retiga 2000R CCD. Imaged cells were grown in 8-well Lab-Tek chambers (Nunc). Images were

collected with Qimaging software and processed using Adobe Photoshop CS2. All figures were pre-

pared using Adobe Photoshop CS2 and Adobe Illustrator CS.
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Carbonate extraction
A 10 cm dish of transiently transfected Cos7 cells was scraped into 1 ml hypotonic buffer solution

(10 mM Tris-HCl, pH 7.5 plus Boehringer-protease inhibitor mini-tablets) and dounce homogenized.

Homogenates were spun first at 8000 xg to clear nuclei and debris, then at 100,000 xg for 1 hr and

the resulting pellet then was extracted in sodium carbonate buffer (0.2 M sodium carbonate pH

11.5) for 30 min on ice followed by a second centrifugation at 100,000 xg. The extract and mem-

brane pellet then were mixed with SDS-PAGE sample buffer to create equal volumes of extract

supernatant and membrane solutions and analyzed by 12% tris-tricine SDS-PAGE and Western Blot.

Fluorescence recovery after photobleaching (FRAP)
FRAP and fluorescence loss in photobleaching were performed by photobleaching a small ROI and

monitoring fluorescence recovery or loss over time, as described previously (Siggia et al., 2000;

Snapp et al., 2003). Fluorescence intensity plots and D measurements were calculated as described

previously (Siggia et al., 2000; Snapp et al., 2003). To create the fluorescence recovery curves, the

fluorescence intensities were transformed into a 0–100% scale and were plotted using Kaleidagraph

3.5 (RRID:SCR_014980). The p values were calculated using a Student’s two-tailed t-test in Excel

(Microsoft) or Graphpad (RRID:SCR_000306). Composite figures were prepared using Photoshop

(RRID:SCR_014199) and Illustrator (RRID:SCR_014198) software (Adobe).

In vitro translation
Constructs cloned into pcDNA3 were transcribed and translated in the TNT T7 Quick Coupled tran-

scription-translation system (Promega). Using 10 ml of reticulocyte lysate and 150–200 ng of DNA

template, 1 ml of L-[35S]-Met (5 mCi) and 1 ml of EDTA-stripped, nuclease-treated dog pancreas rough

microsomes (RM) were added at the start of the reaction, and samples were incubated for 90 min at

30˚C. Translation products were analyzed by SDS-PAGE, and gels were visualized and quantified on

a Fuji FLA-3000 PhosphorImager (Fuji film) with Image Reader 8.1J/Image Gauge software. The Mul-

tiGauge (Fujifilm) software was used to generate a profile of each gel lane and to calculate the peak

areas of the glycosylated protein band.

SignalP
SignalP 3.0 Server was used to predict signal-peptide probabilities of HXB2 gp160 wild type and

mutants, X31 HA, and prolactin using a hidden Markov model (Bendtsen et al., 2004;

Nielsen et al., 1997).

TM predictions
The HXB2 sequence of gp160’s 70 N-terminal residues was used to identify predicted TM spans

with algorithms HMMTOP (Tusnády and Simon, 2001; Tusnády and Simon, 1998), TMPred

(Hofmann and Stoffel, 1993), TMHMM (Krogh et al., 2001; Sonnhammer et al., 1998), TopPred

(Claros and von Heijne, 1994; von Heijne, 1992), PHDhtm (Rost and Sander, 1993), DGapp TM full

protein scan with TM lengths of 12–24 residues (Hessa et al., 2007), and NetSurfP (Petersen et al.,

2009).
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