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ABSTRACT
One of the simplest models of adaptation to a new environment is Fisher’s Geometric
Model (FGM), in which populations move on a multidimensional landscape defined
by the traits under selection. The predictions of this model have been found to be
consistent with current observations of patterns of fitness increase in experimentally
evolved populations. Recent studies investigated the dynamics of allele frequency
change along adaptation of microbes to simple laboratory conditions and unveiled
a dramatic pattern of competition between cohorts of mutations, i.e., multiple
mutations simultaneously segregating and ultimately reaching fixation. Here, using
simulations, we study the dynamics of phenotypic and genetic change as asexual
populations under clonal interference climb a Fisherian landscape, and ask about the
conditions under which FGM can display the simultaneous increase and fixation of
multiple mutations—mutation cohorts—along the adaptive walk. We find that FGM
under clonal interference, and with varying levels of pleiotropy, can reproduce the
experimentally observed competition between different cohorts of mutations, some
of which have a high probability of fixation along the adaptive walk. Overall, our
results show that the surprising dynamics of mutation cohorts recently observed during
experimental adaptation of microbial populations can be expected under one of the
oldest and simplest theoretical models of adaptation—FGM.

Subjects Evolutionary Studies, Genetics, Mathematical Biology
Keywords Fisher Geometric Model, Clonal interference, Genetic hitchiking, Natural selection

INTRODUCTION
Understanding the mechanisms and dynamics underneath the adaptive process is still a
great challenge in evolutionary biology. Even in relatively simple environments, evolution
experiments demonstrate that this process often involves complex dynamics such as:
(1) competition between clones carrying different adaptive alleles (Desai & Fisher, 2007;
Perfeito et al., 2007; Maharjan & Ferenci, 2015); (2) hitchhiking, along with beneficial
alleles, of neutral and even deleterious mutations (Gerrish & Lenski, 1998; Desai & Fisher,
2007; Perfeito et al., 2007; Lang et al., 2013; Maharjan & Ferenci, 2015); (3) second-order
selection of mutations which lead to increased mutation rates and mutator phenotypes
(Sniegowski, Gerrish & Lenski, 1997; Tenaillon et al., 2001; Desai, Fisher & Murray, 2007;
Perfeito et al., 2007; Barrick et al., 2009; Wielgoss et al., 2013; Maharjan & Ferenci, 2015);
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or (4) the emergence of negative frequency-dependent interactions between genotypes
(Gerrish & Lenski, 1998; Maharjan, 2006; Desai, Fisher & Murray, 2007; Desai & Fisher,
2007; Perfeito et al., 2007; Herron & Doebeli, 2013; Lang et al., 2013; Maharjan & Ferenci,
2015). It is increasingly evident that not only these dynamics influence the adaptive process
but also that they emerge as a result of the adaptive process. For instance, the fixation of
mutator phenotypes has been typically observed in adapting populations, as their higher
mutation rate provides them with a higher probability of acquiring and hitchhiking with
rare beneficial mutations (Chao & Cox, 1983; Taddei et al., 1997; Tanaka, Bergstrom &
Levin, 2003; Desai & Fisher, 2007; Gentile et al., 2011; Torres-Barceló et al., 2013; Lang et al.,
2013). More recently, experimental findings frommicrobial evolution experiments coupled
with sequencing analysis unveiled that a dramatic level of polymorphism in populations
can occur during adaptation (Lang et al., 2013; Frenkel, Good & Desai, 2014; Maddamsetti,
Lenski & Barrick, 2015). Interestingly, mutation cohorts, consisting of multiple mutations
that segregate and reach fixation simultaneously, are observed in populations adapting
to simple environmental laboratory conditions. In large populations, the input of new
mutations can be so high that new mutants emerge in backgrounds already carrying other
mutations, leading to the formation and competition between mutation cohorts. Such
competition results in longer times for mutations to reach fixation and complex dynamics,
as different mutations aggregate in separate groups. Indeed, synchronous increase or
decrease in frequency of these mutations, competition between distinct cohorts and the
simultaneous fixation of the mutations that form the cohorts is a pervasive observation
during this laboratory microbial adaptations (Sniegowski, Gerrish & Lenski, 1997; Tenaillon
et al., 2001; Barrick et al., 2009; Wielgoss et al., 2013; Lee & Marx, 2013; Lang et al., 2013;
Maddamsetti, Lenski & Barrick, 2015).

A classicalmodel of adaptation to a novel environment, theorized almost 100 years ago by
Fisher before the structure of DNA was discovered, is Fisher’s Geometrical Model (FGM).
It is a simple model where a population adapts towards a fixed phenotypic optimum
(Fisher, 1930). FGM considers the process of adaptation assuming that individuals are
defined by their traits under selection, which are geometrically represented in a defined
multidimensional landscape. In this model, directionality in selection emerges by assuming
that fitness is related to the distance of each phenotype to the optimum. Thus, a population
moves towards the fitness peak through the gradual accumulation of beneficial mutations.
FGM has been extensively studied beyond its original scope to make predictions under
different scenarios about the distribution of beneficial mutations during adaptation (Orr,
1998; Martin & Lenormand, 2008; Bataillon, Zhang & Kassen, 2011), the level of epistasis
between mutations (Martin, Elena & Lenormand, 2007; Blanquart et al., 2014), the effects
of deleterious mutations accumulated under relaxed selection (Martin & Lenormand,
2006; Perfeito et al., 2014), the effect of drift load in the fitness at equilibrium (Otto &
Orive, 1995; Lourenço, Galtier & Glémin, 2011), sympatric speciation in an environment
with multiple fitness peaks (Barton, 2001; Sellis et al., 2011) and the effect of mutation
pleiotropy (the number of traits affected by a single mutation) in adaptation (Welch &
Waxman, 2003; Chevin, Martin & Lenormand, 2010; Lourenço, Galtier & Glémin, 2011).
Martin (2014) recently proposed that FGM basic assumptions can emerge from models
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which consider the nature of complex metabolic networks within a cell. FGM predictions
are largely compatible with observations coming from experimental evolution studies,
mostly in microorganisms (MacLean, Perron & Gardner, 2010; Chou et al., 2011; Khan
et al., 2011; Sousa, Magalhaes & Gordo, 2012; Gordo & Campos, 2013; Weinreich & Knies,
2013; Tenaillon, 2014).

Herewe askwhether the patterns of competition and fixation of simultaneous segregating
mutations (mutation cohorts) along an adaptive walk observed experimentally can
be reproduced under FGM. We study FGM under clonal interference by simulating
populations with a large mutational input (NU � 1, where N is the population size
and U the genomic mutation rate), where both beneficial and deleterious mutations
occur, therefore generating competing polymorphisms (Gordo & Campos, 2013). Since
the simplest version of FGM assumes full mutational pleiotropy, which is a restrictive
assumption and thought to bear poor biological realism (Welch & Waxman, 2003; Orr,
2005; Chevin, Lande & Mace, 2010; Wang, Liao & Zhang, 2010; Wagner & Zhang, 2011;
Lourenço, Galtier & Glémin, 2011), we also studied a model assuming partial pleiotropy.
The degree of mutational pleiotropy is expected to influence the dynamics of adaptation
(Wagner & Zhang, 2011). In our model of partial pleiotropy, similar to that of Lourenço,
Galtier & Glémin (2011), a single mutation can only change a subset of traits (m), taken at
random from the full set of traits (n) that contribute to fitness. When populations have
small sizes or mutation rates are low, the analytical expressions for predicting the rate of
adaptation under this model suggest that mutational pleiotropy can affect the dynamics of
adaptation of populations approaching a fitness peak (Lourenço, Galtier & Glémin, 2011).
However, such analytical results rely on a strong simplifying assumption: the populations
aremonomorphicmost of the time. This assumption is quite restrictive given the increasing
experimental evidence for high rates of beneficial mutations both in natural (Eyre-Walker
& Keightley, 2007; Jensen, Thornton & Andolfatto, 2008) and in experimental populations
(Perfeito et al., 2007; Good et al., 2012), which promptly produce competition between
segregating mutations arising in distinct lineages and drive the dynamics of mutation
cohorts described above. To address these more relevant scenarios, we use stochastic
simulations of FGM for populations undergoing strong clonal interference. We consider
large populations and values of mutation rate and mean effect of mutations that are in
reasonable agreement with current estimates for microbial populations (Gordo, Perfeito &
Sousa, 2011; Perfeito et al., 2014).

Most of theoretical analysis done so far focused on predicting the equilibrium mean
fitness, and did not address the time scale at which such equilibrium is in fact reached. As
experiments where evolution is followed for longer and longer periods are emerging (Lang
et al., 2013; Barrick & Lenski, 2013), it is also important to have theoretical expectations
on the full dynamics of the approach to equilibrium under classical models of adaptation,
both at the phenotypic and genotypic level, as we do here. By tracking each individual
mutation during the adaptive walk as the populations approach the optimum, we find
that the simplest version of FGM can generate the complex mutation cohort dynamics
observed in microbial adaptation experiments, under specific evolutionary parameters
within a biological realistic range.
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METHODS
Simulation methods of fisher geometrical model
FGM considers each individual as a point in a n-dimensional space, where n is the number
of traits under selection. Each individual is characterized by a vector of coordinates
(z1,z2,...,zn) that gives the position of the individual in the fitness landscape. This vector
represents the phenotypic values for each trait. Without loss of generality, we define the
optimum as the origin of the n-dimensional space. As commonly done, we assume that
fitness is given by a Gaussian function of the distance to the optimum, w = exp(−

∑n
i=1z

2
i ).

We assume that mutations, as rare events, follow a Poisson distribution with a genomic
mutation rate U, per individual, per generation. Each mutation changes m traits chosen
at random from the total n traits, and the effect it causes in each affected trait follows a
normal distribution with mean 0 and variance σ 2. We consider a Wright–Fisher model
and assume multinomial sampling with fixed population size N. The contribution of
each individual to the next generation is proportional to its fitness and it is based on a
multinomial sampling of the population. We assume large population sizes, as typical in
microbial laboratory adaptation experiments (Barrick & Lenski, 2013), and consider values
of genomic mutation rates (U ) that are reasonable for microbes. Indeed, the order of
magnitude of the genomic mutation rate has been previously estimated for many species
of organisms and falls within U ∼ 0.001 (Drake et al., 1998; Lee et al., 2012). We explored
values for the complexity within a range that is in accordance with estimates obtained
from experiments using different organisms including viruses, bacteria and multicellular
organisms (reviewed in Lourenço, Galtier & Glémin (2011), specifically Fig. 2 of that paper).
We also explored different values of the mean effect of mutations (E(S)=−mσ 2, under
the assumptions of partial pleiotropy in FGM, described above) ranging from very small
−0.1%, to much larger (−20%), as estimated from different mutation accumulation
experiments in different organisms (Martin & Lenormand, 2006; Eyre-Walker & Keightley,
2007;Gordo, Perfeito & Sousa, 2011). The code for the simulations is provided as Files S1–S4.

RESULTS
Dynamics of approach to equilibrium mean fitness
We start by studying the dynamics of fitness increase along tens of thousands of generations
for different levels of phenotypic complexity (n), pleiotropy (m) andmean effect mutations
(E(S)). Figures 1A–1D shows that the initial rate of fitness increase is lower under low
pleiotropy across all values of the mean fitness effect of mutations (E(S)) studied. The effect
is particularly strong for |E(S)|> 0.01. However, in the long run, populations with lower
pleiotropy reach higher levels of mean fitness (see also Fig. S1). Increasing complexity,
while maintaining a similar level of pleiotropy, shows a similar pattern for the fitness
plateau, where we find that populations with fewer traits reach higher fitness values within
the simulated time period (Figs. 1E and 1F).

Mutation cohorts of fixed in the initial steps of adaptation
Next, we studied the dynamics of mutation fixation along the adaptive walk. We first
studied populations with maximum pleiotropy and various degrees of complexity across
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Figure 1 Dynamics of mean fitness increase under FGMwith partial pleiotropy. (A–D) Dynamics of mean fitness of asexual populations with
varying degrees of pleiotropy (m). All populations have high complexity (n= 96) and distributions of fitness effects (DFEs) with different means are
studied. Other parameters are population size N = 104, mutation rate U = 0.001, initial fitness w0 = 0.5. The variance for the mutation effects σ 2

varies asm varies, so that E(S) (which is−mσ 2 in this model) has the value indicated in each panel. (E–F) The effect of increasing phenotypic com-
plexity (n) on the dynamics of fitness increase. Other population parameters are: N = 104, U = 0.001, variance σ 2

= 0.004,m = 3 and the initial
fitness w0= 0.5. Short-term dynamics are highlighted as an inset.
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Figure 2 FGM can lead to simultaneous fixation of mutation cohorts. (A–I) The probability distribution of the number of mutations fixed during
the first fixation event in the adaptive walk, i.e., mutation cohort size. Parameter values used in these simulations are as follows: population size N =
104 and initial fitness w0 = 0.5 are the same across all panels; the other parameters vary as indicated in each panel (mutation rate U increases from
0.0001 (G–I) to 0.01 (A–C), implying higher levels of clonal interference; phenotypic complexity n (and pleiotropym = n) increase from (A), (D)
and (G) to (C), (F) and (I); and, within each panel, s2 varies, implying different distributions of arising mutations with mean selective effects of E(S)
indicated by the different shades). Data is shown for 100 simulations per combination of parameters.

different E(S) andmutation rates, and asked howmanymutations fix simultaneously in the
first step, i.e., the mutation cohort size at the first fixation step. Figure 2 shows that fixations
of cohorts of mutations can be very common, reflecting the degree of clonal interference
occurring in these large populations. Across all parameters, the major determinant of the
number of mutations fixing in cohorts is the mean effect of mutations (E(S)), with lower
effect mutations promoting fixation of cohorts of larger size. The other relevant parameter
to the size of the fixed cohorts is, as expected, the mutation rate, with an increasedmutation
rate showing the largest cohorts of mutations fixed. Therefore, the combination of small
effect mutations generated at a high rate leads to the fixation of larger mutation cohorts.
We performed the same analysis on simulations where we relax the assumption of full
pleiotropy. Populations with partial pleiotropy (m= 3, 10 or 20) for the highest level of
complexity previously tested (n= 30) show patterns that are qualitatively similar (Fig. S2).
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Figure 3 Number of mutations fixed (mutation cohort size) along the adaptive walk. (A–L) Parameter values are population size N = 104, the
initial fitness w0 = 0.5, mutation rate U = 0.001 and other parameters as indicated in each panel (with phenotypic complexity n taking the values
indicated to the left of panels A, E and I, and mean effect of mutations E(S) taking the values indicated above panels A, C, D and E). In all panels full
pleiotropy is assumed (m= n). Data is shown for 100 simulations per combination of parameters.

The main difference detected occurs in simulations with a high mutation rate, where the
likelihood of observing large stronger effect mutation cohorts increases relative to the case
of full pleiotropy. Additionally, both in the cases of full or partial pleiotropy, the complexity
of evolving populations shows a minimal effect on the size of the fixed mutation cohorts.
Therefore, the number of mutations observed fixing simultaneously in the first step of
adaptation is mainly determined by the mutation rate and the mean selective effect of
mutations.

Mutation cohorts fixed along the adaptive walk
In order to understand how the probability of observing the fixation of mutation cohorts
changes along the adaptive walk, we next study the distribution of mutations fixed beyond
the first step of adaptation. Figure 3 shows the pattern of mutation cohorts fixed along an
adaptive walk lasting 30,000 generations. Each point in the panels of Fig. 3 corresponds
to a fixation event occurring during this time period, with the number of mutations (i.e.,
the size of the cohorts) that compose each of these fixations represented in the y-axis.
The probability of observing cohorts consisting of a large number of mutations later in
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the adaptive walk is strongly dependent on the average selective effect of the mutations
(contrast in Figs. 3A, 3E and 3I with 3D, 3H and 3L ). Lower effect mutations lead to
the fixation of cohorts of larger sizes not only in the first steps, but also as populations
approach the equilibrium fitness. Interestingly, we observe that, for the lower values of
mean mutation effect, the likelihood of fixing mutation cohorts of larger sizes (from 4 to
8 mutations) increases for populations with a higher complexity, throughout the adaptive
walk. For high values of |E(S)| and populations with a lower number of traits, fixation of
large mutation cohorts becomes an increasingly rare event once they approach the fitness
equilibrium.

Overall, along the adaptive walk, the size of fixed mutation cohorts tends to shrink, at a
faster pace for large values of |E(S)|. These simulations therefore suggest that, for long-term
adaptation of populations approaching a fixed optimum, fixation of single mutations is
expected to become the dominant pattern. However, when |E(S)| is small (panels in Fig.
3, where |E(S)| is 0.001 or 0.003) that regime may take a substantial time to be reached.

We have also explored the role of partial pleiotropy on the size of mutation cohorts
fixed along the adaptive walk. The results are qualitatively similar to the ones observed for
populations with full pleiotropy, with the size of mutation cohorts generally decreasing as
populations get closer to the fitness peak, but the decrease taking longer periods of time
as |E(S)| becomes smaller (see Fig. S3A). Furthermore, the distributions of cohort sizes of
the mutations simultaneously fixed along the adaptive walks, for populations under partial
and full pleiotropy, are similar, as shown in Fig. S3B. Overall, these observations indicate
that partial pleiotropy plays a minor contribution to the fixation of multiple mutations.

Dynamics of mutation cohorts
Finally, we study the dynamics of polymorphism expected in populations climbing the
Fisherian landscape. We first focus our simulations on short-term evolution, a time scale
for which polymorphism data has been obtained recently for yeast strains adapting to
a simple laboratory environment (Lang et al., 2013). Figure 4 shows the dynamics of
frequency change of each individual mutation segregating in populations evolving for
1,000 generations. Aggregation of cohorts of mutations can be clearly observed across the
different replicate populations, all simulated with the same evolutionary parameters. The
parameter set shown was chosen to be one where we could find a pattern similar to that
observed in the evolution experiments done in yeast (Lang et al., 2013). In the replicate
simulated populations, just as in the replicate experimental ones, cohorts of different
sizes emerge and compete against each other, with some achieving fixation and others
being outcompeted. Although this phenomenon of ‘‘cohort interference’’ is more likely
for cohorts competing at lower frequencies (where many mutations are segregating), it
can also be observed when mutations reach high frequencies (e.g., Figs. 4A and 4C). Even
under the same parameter values different patterns can be observed among the replicates:
sequential fixation of cohorts of low size in some populations (e.g., Figs. 4D and 4G) and
fixation of cohorts of large size in other populations (e.g., Figs. 4E, 4F and 4I). The same
qualitative behavior is observed when simulating a higher number of replicate populations
adapting under FGM (see Fig. S4).
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Figure 4
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Figure 4 Dynamics of frequency change of individual mutations along time across independently evolving populations. (A–I) Aggregation of
multiple mutations in cohorts can be easily detected by the simultaneous increase in frequency of different mutations (in different colors). Compe-
tition between cohorts can be commonly observed during the first 1,000 generations of adaptation. Parameter values used are population size N =
105, initial fitness w0 = 0.5, mutation rate U = 0.003, n= 10,m= 3 and E(S)=−0.012. Gaussian noise (mean 0, variance 0.02), mimicking experi-
mental error, was added to the dynamics for increasing visibility and comparison with experimental data.

The formation of mutation cohorts under FGM can be observed across several
parameter sets, under different values of complexity and mean mutation effects (see
Fig. S5 for examples). Yet some sets of parameters lead to results more consistent with the
observations originating from evolution experiments than others. In the yeast evolving
populations analyzed in Lang et al. (2013), an average of 25 different mutations segregating
and an average of 6 fixations were observed, across the replicate populations. Moreover,
considerable fitness increases could be detected (around ∼6% after 500 generations).
Across the sets of parameters we explored, this level of fitness increase and high number
of mutations was unlikely when simulating FGM with high complexity (n= 90, rightmost
panels in Figs. S5A and S5B). Moreover, out of 40 independently evolving populations in
Lang et al. (2013), in all but one replicate more than twomutation cohorts were observed to
be segregating (population BYB1-B01). A pattern with few mutation cohorts was detected
in the simulations sets we performed under full pleiotropy, low complexity and strong
effect mutations (leftmost top panel in Fig. S5A).

Under the parameter values assumed in Fig. 4, we followed the dynamics of frequency
change beyond 1,000 generations to ask about the extent to which polymorphisms would
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be lost in the long run. Remarkably the simulations indicate that polymorphisms can be
maintained for a very long time (sometimes more than 10,000 generations) (see Fig. S6).
The simulations also indicate that the emergence of new mutation cohorts of large size
becomes less frequent than that observed during the first 1,000 generations. Data from
experiments involving longer time periods may thus help determining if the predictions of
this model are met.

DISCUSSION
With the advances of next generation sequencing, increased power to observe the dynamics
of adaptation at the resolution of individual mutations has emerged. The data recently
gathered indicates that adaptation of microbial populations adapting in laboratory
environments exhibit patterns very distinct from the classic single selective sweep model of
periodic selection. Instead the dynamics of molecular evolution in these microbes evolving
in real time shows that aggregates of beneficial mutations segregate and fix simultaneously
(Lang et al., 2013; Maddamsetti, Lenski & Barrick, 2015; Zanini et al., 2016). Even though
Fisher’s model is a phenotypic model of adaptation, the easiness by which this simple
non-gene centric model is able to produce dynamics of fitness change similar to those
observed in such experiments, lead us to ask if such dynamics of molecular change could
be expected under this model. The simulations performed show that Fisher’s Geometric
Model, in its simplest version, can reproduce dynamics of cohort interference such as
the ones observed in experimental settings. As observed for the frequencies of sequenced
mutations in evolve and re-sequence experiments in yeast and bacteria, the mutation
dynamics of simulated populations under FGM can be non-monotonic and exhibit patters
of interference between clones belonging to distinct mutation cohorts. The number of
mutations that compose these cohorts are found to be variable and the polymorphisms
emerging can last for thousands of generations. We note that FGM does not consider social
and ecological interactions that are likely to be important in explaining genetic diversity
in natural populations (Cordero & Polz, 2014), nor does it consider frequency dependent
selection, which has been shown to also occur in laboratory evolving microbial populations
adapting to simple ecological conditions (Maharjan et al., 2012; Herron & Doebeli, 2013).

Remarkably, when simulating the dynamics of individual mutations produced under
FGM, we could find parameter sets leading to patterns very similar to the ones that
are increasingly being assayed through whole genome sequencing of evolving microbial
populations (e.g., compare Fig. 4 with Fig. 1 in Lang et al. (2013)). Although such patterns
are dependent on the parameters used (see Fig. S5), they could be observed in simulated
populations assuming a set of parameters within a biological plausible range: a mean effect
of mutations around 1%, consistent with measurements in microbes (Kibota & Lynch,
1996; Zeyl & DeVisser, 2001), and a genomic mutation rate of 3×10−3, consistent with
Drake’s rule (Drake et al., 1998; Lee et al., 2012).

Under FGM, cohort interference can be common during the initial steps of adaptation,
and is more likely when themean effect of mutations is small andmutation rates are not too
small. In these scenarios many small effect mutations simultaneously segregate, each taking
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a long time to reach fixation, which likely results in the acquisition of additional mutations
(either beneficial, neutral or slightly deleterious) in the same genetic background. In
contrast, when E(S) is large, beneficial mutations sweep to fixation faster, and the likelihood
of acquiring additional mutations in their background diminishes. As expected the size of
the interfering cohorts increases as the mutation rate increases, since an increased amount
of mutations segregating in these high U populations prevents the fast fixation of a single
mutation.

Given that levels of complexity and pleiotropy may differ across genomes and
environments, we further enquired if the patterns described above would change for
populations where differences between complexity and pleiotropy are very large. We thus
performed simulations with n= 500 and a low degree of pleiotropy (m= 3) for different
values of E(S). Adaptation in these scenarios occurs substantially slower, due to the very
high dimensionality of the fitness landscape (Fig. S7A). The sizes of mutation cohorts
initially fixed can also be large (when |E(S)| is small), similarly to the simulations under
lower complexity (Fig. S7B). However, fixations now involve long waiting times, often
more than 2,000 generations (Fig. S7C). The simulations also indicate that fitness increase
resulting from the fixation of mutation cohorts can be very small (Fig. S7D). Thus, both
data of mutation frequency dynamics and of fitness increase along time are required to
determine the levels of complexity of the fitness landscape.

The relationship between the size of cohorts and both the mean effect of mutations
and the mutation rate is also detected when we study adaptation over longer periods
(Fig. 3). The size of fixed cohorts tends to shrink along the adaptive walk, and does
so at a faster pace for large values of E(S). Therefore, for populations approaching a
fixed optimum the pattern of long-term adaptation is expected to become dominated
by fixation of single mutations. However if E(S) is small such pattern may take many
thousands of generations to be detected (right panel in Fig. 3), a time scale that is out of
reach for most laboratory experiments so far studied. The famous long-term evolution
experiment (LTEE) in Escherichia coli constitutes an important exception, where patterns
of adaptation can be studied over periods as long as 60,000 generations (Lenski et al., 1991;
Maddamsetti, Lenski & Barrick, 2015). The access to samples frozen every 500 generations
allows the tracking of individual mutations and the reconstruction of the evolutionary
genetic history of an individual population. Maddamsetti, Lenski & Barrick (2015) tracked
the emergence of 42 mutations in one of the evolving populations and showed competition
and interference between lineages carrying several mutations, including the simultaneous
fixation of these sets. In this population however, not only clonal interference was observed
but also frequency-dependent selection was important in driving the dynamics of mutation
cohorts. On a shorter-term experiment also with E. coli but now evolving in a chemostat
Maharjan et al. (2015) detected synchronous sweep of multiple mutations but the levels of
polymorphism were also driven by frequency dependent interactions between clones. As
we show here clonal interference alone can lead to dynamics of cohort interference, but
given the emergence of frequency dependent selection even in the simplest environments,
as well as its potential critical role in natural microbial populations (Cordero & Polz, 2014),
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it will be important in future work to model other fitness landscapes which can allow for
the simultaneous occurrence of both processes.

CONCLUSIONS
In the current work, we study a simple version of the Fisher’s Geometrical Model that
assumes partial or full pleiotropy. Despite its simplicity, FGM has been successfully used to
reproduce patterns of the dynamics of the adaptive process (Chevin, Martin & Lenormand,
2010; Martin, 2014). A common pattern emerging from the short-term dynamics of
populations ofmicroorganisms evolving in laboratory conditions is the finding thatmutants
carrying multiple segregating mutations can go to fixation (Lang et al., 2013;Maddamsetti,
Lenski & Barrick, 2015). Before resorting to more complex models of fitness landscapes
(Cordero & Polz, 2014), we inquired whether a simple and less parameterized model, such
as FGM, could capture the essence of this sort of observation under reasonable parameters.
Assuming large population sizes close to those in the experiments, and mutation rates
typical of microbes, thus naturally driving population to a clonal interference regime, we
show that FGM, both under full and partial pleiotropy, generates patterns of segregation and
competition of cohorts of mutations that are consistent with experimental observations.
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