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Abstract

noise reduction.

method used.

bias to the tissue voxels.

Background: CT perfusion images have a high contrast ratio between voxels representing different anatomy, such
as tissue or vessels, which makes image segmentation of tissue and vascular regions relatively easy. However, grey
and white matter tissue regions have relatively low values and can suffer from poor signal to noise ratios. While
smoothing can improve the image quality of the tissue regions, the inclusion of much higher valued vascular voxels
can skew the tissue values. It is thus desirable to smooth tissue voxels separately from other voxel types, as has been
previously implemented using mean filter kernels. We created a novel Masked Smoothing method that performs
Gaussian smoothing restricted to tissue voxels. Unlike previous methods, it is implemented as a combination of
separable kernels and is therefore fast enough to consider for clinical work, even for large kernel sizes.

Methods: We compare our Masked Smoothing method to alternatives using Gaussian smoothing on an unaltered
image volume and Gaussian smoothing on an image volume with vascular voxels set to zero. Each method was tested
on simulation data, collected phantom data, and CT perfusion data sets. We then examined tissue voxels for bias and

Results: Simulation and phantom experiments demonstrate that Masked Smoothing does not bias the underlying
tissue value, whereas the other smoothing methods create significant bias. Furthermore, using actual CT perfusion
data, we demonstrate significant differences in the calculated CBF and CBV values dependent on the smoothing

Conclusion: The Masked Smoothing is fast enough to allow eventual clinical usage and can remove the bias of tissue
voxel values that neighbor blood vessels. Conversely, the other Gaussian smoothing methods introduced significant

Background

CT perfusion imaging uses many high resolution scans
in a dynamic series to determine parametric image maps
of Cerebral Blood Flow (CBF), Cerebral Blood Volume
(CBV), and Time to Peak (TTP), among other data
types. A characteristic of CT image volumes is the high
contrast ratio of voxel intensity values located in skull
(or calcified regions) versus tissue regions, which can ex-
ceed 15:1. Furthermore, with the injection of a tracer,
voxels representing vascular regions may have intensity
values greater than four times higher than neighboring
tissue regions. Kudo et al. demonstrated that the inclu-
sion of vascular voxels could overestimate CBF [1]. The
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SNR within tissue regions is relatively low. Spatial
smoothing is often applied to trade high spatial reso-
lution for improved SNR characteristics. However, regu-
lar smoothing overestimates many tissue voxels due to
nearby, high-valued vascular voxels.

While the importance of smoothing has been noted in
the literature, it usually receives little discussion [2-4].
Klotz and Konig gave a brief but important description
of their smoothing method as a “running mean smooth-
ing procedure that operates separately on brain and vas-
cular pixels” [5] (pg 173). As such, their approach
operated in 2D and avoided blurring from smoothing
high valued vascular pixels into tissue regions. Our
method also operates separately on brain and vascular
pixels, however we use a Gaussian kernel. Furthermore,
our Masked Smoothing method can execute quickly,
even when applied as 3D, by utilizing a combination of
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separable kernels. This offers an improvement in execu-
tion time of a few orders of magnitude relative to what
could be achieved otherwise.

A “separable” 3D smoothing kernel can be expressed
as the outer product of three vectors, and 3D smoothing
can be applied as three successive 1D smoothings in the
X, ¥, and z directions. While Gaussian kernels and mean
kernels are separable, they do not remain separable if
they must exclude vascular voxels. Our method over-
comes this hurdle.

Related methods

Many smoothing methods are “adaptive” [6] and arrive
at an optimal solution through the progressive refine-
ment of an initial solution. Some methods preserve
edges [7,8], similar to our desire to separate vessel and
tissue voxels. Other methods consider the first or second
spatial derivatives [9-12] or use the Discreet Cosine
Transform [13]. A strength is these methods do not
need a priori knowledge, such as voxel classifications [8].
A 4D extension of bilateral filters varies the weight of
neighboring voxels according to distance and intensity,
or “similarity” differences [14,15], and has been applied
to CT perfusion scans [16]. The TIPS (Time Intensity
Profile Similarity) bilateral filter method [17] calculates
the similarity of neighboring pixels across all image
frames. While this reduces processing time to some de-
gree, the TIPS bilateral smoothing kernel is not strictly
separable. While TIPS offers great flexibility in express-
ing the smoothing formulation, its execution time [17],
even applied as a 2D filter, is much slower than what
can be achieved using separable 3D kernels.

There are two advantages of CT perfusion imaging
over most other image smoothing problems. First, there
are multiple image volumes such that voxels in the same
spatial location will have the same classification. The
second is that there are extreme voxel intensity differ-
ences between voxels of different classifications for some
image volumes. While thresholding the mean image and
the difference of the maximum and minimum images is
a simple but powerful way of identifying vascular voxels,
more sophisticated methods have been presented for the
identification of arteries and veins [18]. Hence Masked
Smoothing makes use of the easy access to a mask image
of the tissue regions that adaptive smoothing or bilateral
filters fail to utilize.

Masked smoothing algorithm

Smoothing methods typically use a weighted sum of
voxels within the smoothing neighborhood of a given
tissue voxel, V,, to assign a new value to V,. The weights
are all nonnegative and sum to one. The smoothing
neighborhood for a given tissue voxel will, in general, in-
clude voxels of different segmentation classes—such as a
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high valued vessel voxel. This inclusion will have a ten-
dency to artificially increase the smoothed value found
at V, from the true underlying tissue value. Our goal is
to apply smoothing by only using voxels of like classes.
Excluding voxels of a different class could be achieved
by setting their weight values to zero, while rescaling the
weights of same class voxels so they sum to one.

We define sum of weights (SW) for V, as the sum of
all weights of voxels that are both within the area of the
smoothing kernel and the mask of the same tissue re-
gion (without rescaling). SW will equal one if the all the
voxels within the smoothing neighborhood of Vy are all
of the same class as V. Otherwise SW will be less than
one. The reciprocal of SW (1/SW) can be used to rescale
the weights so that they sum to one.

Setting some weights to zero and rescaling the
remaining weights associated with each voxel within the
smoothing neighborhood of Vx is computationally cum-
bersome. We can simplify the computation by making
two changes: 1) Rather than resetting the smoothing
kernel weight values of voxels outside of our tissue mask
to zero, we instead set voxel values outside of our tissue
mask to zero. 2) Rather than rescaling the individual
weights within our mask by 1/SW, we rescale the
weighted sum of voxel values by (1/SW), employing the
distributive property. That is, if SW is known for each
voxel, then smoothing the image with non-tissue voxels
set to zero and dividing voxel by voxel by SW will result
in the desired with-in class masked smoothing. Post-
smoothing, non-tissue voxels can be set to zero, replaced
by their original values, or smoothed separately.

Fortunately, calculating SW for each tissue voxel is
easy. SW for each tissue voxel is the result of applying
the smoothing kernel to the binary mask that designates
voxels classified as tissue with a 1 and non-tissue voxels
with 0. This is true since the within-tissue class weights
get multiplied by the mask image value of one, whereas
the weights for voxels outside our mask are multiplied
by zero. Smoothing the binary image is then simply the
sum of the weights that are within class, i.e. SW. While
we made the above argument for voxels classified as tis-
sue, the same argument can be made in general for any
classification.

To summarize, the smoothing process for a given
image, Img,g, is: 1) create an image mask, Msk, with 1
values at voxel locations representing tissue, and 0
otherwise; 2) Create Imp.seq by setting all non-tissue
voxels of Im,;, to zero; 3) Apply the desired smoothing
to Impseeqa and Msk, creating Sm(Impageq) and Sm
(Msk); 4) Create the “Masked Smoothing” image by set-
ting tissue voxels to the voxel-wise quotient Sm
(Imypaskeq)/Sm (Msk), and non-tissue voxels to their ori-
ginal values. By using a separable smoothing kernel in
Step 3) the Masked Smoothing method will be orders of
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magnitude faster than directly using the 3D kernel for
the calculation.

Masked smoothing assertions

We developed Masked Smoothing as an alternative to basic
Gaussian smoothing, which we term “Simple Smoothing”,
and a method where the vessel voxels are set to zero prior
to smoothing in an attempt to minimize the impact on tis-
sue voxels, which we term “Removed Smoothing”. We be-
lieve that if Simple Smoothing, Removed Smoothing, and
Masked Smoothing are used to process the same image,
then tissue voxels that neighbor vessel voxels will best
maintain their true value with Masked Smoothing. Further-
more, we believe that the differences between smoothing
methods can lead to meaningful consequences in the deter-
mination of critical CT perfusion parameters. That is, if
each smoothing method is applied to the individual time
frames of a CT perfusion scan, then tissue voxels that are
located near vessel voxels will have significant and mean-
ingful differences in the resulting values of CBE, CBV and
TTP depending on the smoothing method used.

Methods

The Masked Smoothing method was tested against two
smoothing methods (Simple and Removed Smoothing)
that are similar, but which do not limit the smoothing to
tissue voxels. The smoothing methods were tested using
simulated data, phantom data, and anonymized CT per-
fusion data from patients. The simulations provide a
framework for determining the noise reduction and bias
for each method. The phantom data allows us to test for
bias using real scanner data. The CT perfusion data
from 23 patients allows an assessment of the impact of
bias caused by smoothing the CT Perfusion time series
images on the calculation of CBE, CBV, and TTP.

Smoothing methods

The three smoothing methods were implemented in
Matlab (Mathworks, Natick, MA) using Gaussian smooth-
ing kernels:

1) Simple Smoothing: The unmodified image volume is
smoothed using a Gaussian kernel.

2) Removed Smoothing: The vascular voxels are set to
zero, and the image is smoothed as in (1) above.

3) Masked Smoothing: First, Simple Smoothing is
performed on the binary tissue mask. Second, the
voxel-by-voxel ratio of the Removed Smoothing
image and the smoothed tissue mask image (i.e. the
result of the first step of this method) is returned as
the Masked Smoothing image. Voxel values outside
of the tissue mask are assigned the original image
value, except for the phantom experiment. We used
this case to also demonstrate that Masked
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Smoothing can be used to separately smooth both
the object and object background.

Simulation experiment

Parameters

We created a simulated volume that included a tissue re-
gion; a long thin vascular region, which could be varied in
intensity and width; and a border that was set to zero. The
dimension of the simulated volume was 100x100x100,
and used voxel sizes of 0.4 x 0.4 x 0.4 mm. Each simula-
tion used the following parameters:

1) Intensity ratio: The intensity ratio is the ratio
between the value assigned to vascular voxels and
the tissue region. The tissue value was set to 50. The
simulations used intensity ratios of: 2 to 1, 3 to 1,
and 4 to 1, which correspond to vascular voxel
values of 100, 150, and 200.

2) SNR: Gaussian noise was added to all simulation
iterations. The standard deviation for the noise
generator was set to 50, 25, and ~16.6, which
corresponded to SNR values 1, 2, and 3 (lowest noise).

3) Vessel width: Is the cross-sectional width of the
vascular region. Values used were: .8, 1.6, 2.4 mm.

4) Smoothing kernel -FWHM: The isotropic Gaussian
smoothing kernel size was set to Full Width Half
Max (FWHM) values of 1, 2, and 4 mm.

Iteration
For each iteration of a simulation run:

1) The simulated volume was formed with intensity
values of tissue voxels set to 50. Vascular voxels
were selected according to “Vessel Width”, and
assigned an intensity value according to the variable
“Intensity Ratio”.

2) Gaussian noise was added at a level determined by
the Signal to Noise Ratio (SNR), Figure 1, image a.

3) All three smoothing methods were applied. All
methods used the same Gaussian kernel with the
kernel size determined from the variable “Kernel
FWHM?”, Figure 1, images b-d.

4) The value at a tissue location located midway along,
and directly next to, the vascular voxels was selected
and the value with noise and smoothing applied was
recorded. Figure 2 shows the intensity profile for the
different smoothing methods for a vertical line
passing through the images of Figure 1.

Assessment

500 iterations were used to determine the mean and
standard deviation for a selected tissue voxel that neigh-
bored the vessel voxels for different settings of parame-
ters. Since in-tissue values in all cases were set to 50, the
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Figure 1 Simulation vessel with tissue background - raw and
smoothed images. Top Left rectangle is the raw image from the
simulation. Top Right rectangle is of Simple Smoothing applied to
the raw image. Bottom Left rectangle is of Removed Smoothing
applied to the raw image and the Bottom Right rectangle is of
Masked Smoothing applied to the raw image. A smoothing kernel
of 2 mm was used for each, with a vessel size of 2 mm and a raw
image Signal to Noise level of 2.

calculated mean value from 500 iterations even if a high
level of noise is added is expected to be very close to 50
unless a bias is present. The four parameters (Intensity Ra-
tio, SNR, Vessel Width, and Smoothing Kernel FWHM)
were individually varied using the values given above for
each. When one parameter was varied the other values
were set to default values (Intensity Ratio =2 to 1, SNR =2,
Vessel Width=1.6 mm, and FWHM =2 mm). One
simulation run (500 iterations) was performed for each
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parameter set allowing for examination of deviation
from the expected tissue value of 50 for each smooth-
ing method.

CT phantom experiment

Thirty image volumes of a CT phantom were collected
using a Phillips Gemini PET/CT; 0.5 mm thickness, 0 in-
crement, 80 kV, 125 mAs, collimation: 32x1.25 1, rota-
tion time: 0.5 sec, FOV 250, 512 matrix, with voxel size
0.49 x 0.49 x 0.5 mm. All three methods of smoothing,
using a 5 x 5 x 5 mm Gaussian kernel, were applied to
the first image volume. Additionally, the mean across
images volumes was calculated, which was used as the
reference because of the reduced noise characteristics.
One slice is shown for each smoothing method, and the
mean (Figure 3). Two lines were chosen that passed
through a large and small object identified on the CT.
The line profiles for these lines are shown in Figures 4
and 5. Finally a line of 41 pixels in length was identified
directly above of the larger object. The mean and stand-
ard deviation was calculated for this set of voxels across
all 30 image volumes (i.e. 30 x 41 voxels), for the Simple
and Masked smoothing methods, and compared to the
mean and standard deviation calculated from the
41 voxels of the mean image. To demonstrate a vari-
ation from the simulation experiment, we performed
masked smoothing, separately, to both the non-object
region and object region.

140 T T T T

120 -

voxel intensity

*  No smoothing
~— Simple Smoothing

*  Removed Smoothing

O Masked Smoothing ) a®

1 1

-40 1 1 1
0 10 20 30 40

50 60 70 80 30 100

voxel number along cross-section

Figure 2 Vertical line profile for smoothing methods from Figure 1. The boundary and vessel voxels are identical for the Masked Smoothing
and original values, since Masked Smoothing was only applied to the tissue values. The Simple and Removed smoothing methods had identical results
except near the vessel voxels. The Simple Smoothing method over estimates the true value of the tissue near the vessel and underestimates the true
value near the boundary. The Removed Smoothing methods underestimates the true value both near the boundary and vessel. For points away from
both the boundary and vessel the three smoothing methods gave identical results. The smoothing kernel applied was 2 x 2 x 2 mm for all methods.
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Figure 3 Image slice from phantom study: raw, mean, and
smoothed images. Top left image is a slice from the first of 30
image volumes. Top right image is the mean of the same slice
across all image volumes. Lower left image is the same slice as the
upper left but with Gaussian smoothing applied. Lower right image is
the same slice as the upper left but with Masked Smoothing applied.

Influence of smoothing method on CBF, CBV, and TTP values
Twenty-three CT perfusion studies were selected from
the Neurosurgery department’s stroke research database,
at the University at Buffalo. Each dataset consisted of
nineteen CT perfusion volumes from a Toshiba Aquilion
ONE, 320 slice scanner (with voxel sizes of
A42x.42x.5 mm) which were collected from patients pre-
senting with symptoms of a stroke. Images were converted
from Dicom to NifTI format, and corrected for motion
using SPM8 (www filion.uclac.uk/spm). Image volumes
were “skull striped”, and vascular voxels were identified
using in-house software written in Matlab. The middle
cerebral artery was automatically identified and a center
portion was segmented and used for the arterial input
function. A similar procedure was used to select the sagit-
tal sinus, and these values were used to ensure the proper
scaling of the arterial input function. A parametric image
of CBF values was calculated using the maximum slope
method, while a CBV image was calculated using the inte-
gral of tracer activity divided by the integral of arterial
activity.

Tissue voxels immediately adjacent to a selected artery
were selected by performing a voxel-wise dilation of the
voxels representing a selected artery followed by an

intersection with the tissue masks resulting in the elim-
ination of the vascular voxels. For each smoothing
method we calculated CBF, CBV, and TTP values for the
selected neighboring tissue voxels, using a Gaussian ker-
nel size of 4 x 4 x 4 mm, FWHM. Mean and voxel-wise
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statistics were calculated to examine differences in CBF,
CBYV, and TTP due to the smoothing method used.

Ethics
This project is approved by the University at Buffalo
Health Sciences Institutional Review Board.

Results

Simulation experiment

Figure 2 displays line profiles, each corresponding to a
vertical line across each image of Figure 1, to demon-
strate the effects of the Simple, Removed, and Masked
Smoothing methods.

Simulation experiment intensity ratio
Tissue mean and standard deviation results for different
Intensity Ratios are provided in Table 1. When the

Table 1 Simulation—intensity ratio: mean values and
(standard deviation)

Method\Intensity ratio 1.5t01 2to1 4to1
Noise — No smoothing 49.7 (25.1) 50.3 (25.0) 490 (25.7)
Simple smoothing 582 (1.6) 66.3 (1.6) 993 (1.7)
Removed smoothing 336 (1.3) 335 (1.3) 33.5(14)
Masked smoothing 50.0 (1.9) 50.0 (1.9) 500 (2.1)

As the ratio of the intensity of the arterial voxels compared to tissue voxels
increased, the values from Masked Smoothing and Removed Smoothing held
constant. However, the removed smoothing values were significantly reduced
compared to their true underlying value of 50. Masked Smoothing values were
equal to their true underlying value in all cases. Tissue voxels for the Simple
Smoothing method increased with the increase in the arterial ratio.

intensity ratio was varied and the other variables were
fixed, all smoothing methods provided over a 10 fold de-
crease of the standard deviation (Table 1). For the Sim-
ple Smoothing method the tissue mean increased with
an increase in intensity of the neighboring vessel voxels.
The Simple Smoothing method has a 100% increase
(bias) for the tissue mean for the highest level of vessel
voxel intensity (4 to 1). The Removed Smoothing
method showed a bias which lowered the value (~28%
decrease) and was unaffected by changes in the intensity
of neighboring vessel voxels. The Masked Smoothing
method did not show any significant bias in the calcula-
tion of the mean tissue value. The standard deviation
resulting from the Removed Smoothing was slightly
lower than the standard deviation of from the Simple
and Masked Smoothing approaches.

Simulation experiment — SNR

Tissue mean and standard deviation results for different
SNRs are provided in Table 2. The Simple Smoothing
method showed an upward bias, while the Removed
Smoothing method exhibited a downward bias. The
biases were essentially identical for all three noise con-
ditions. The standard deviation decreased with a de-
crease in the level of noise (increase of SNR) used in
the simulation for all smoothing methods. The standard
deviation was markedly smaller for all smoothing
methods compared to the non-smoothed images. The
Masked Smoothing method did not show a bias in the
calculation of the mean tissue value.
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Table 2 Simulation—SNR: mean values and (standard
deviation)
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Table 4 Simulation—smoothing kernel FWHM: mean
values and (standard deviation)

Method\SNR 1 2 3 (least noise) Method\kernel FWHM 1 2 4 mm
Noise — No smoothing 53.6 (49.0) 499 (27.1) 50.8 (16.9) Noise — No smoothing 51.7 (25.1) 499 (25.9) 50.0 (24.0)
Simple smoothing 664 (3.3) 66.4 (1.6) 604 (1.1) Simple smoothing 64.6 (4.1) 664 (1.6) 604 (0.6)
Removed smoothing 336 (26) 336(1.3) 336 (0.8) Removed smoothing 357 (3.6) 336(13) 396 (0.5)
Masked smoothing 50.0 (3.9) 499 (1.9 50.0 (1.3) Masked smoothing 502 (5.1) 50.0 (2.0) 50.0 (0.7)

The standard deviation values were lower for low SNR than for high SNR.
Standard deviation values were slightly poorer for the Masked Smoothing
method, which is explained by fewer voxels being averaged because
non-tissue voxels were excluded.

Simulation experiment: change of vessel diameter

Tissue mean and standard deviation results for different
vessel widths are provided in Table 3. When the width
of the simulated vessel increased, the Simple Smoothing
method biased the mean tissue value to greater levels,
while the Removed Smoothing method biased the mean
value to lesser values. The Masked Smoothing method
did not show any bias associated with the mean tissue
value. All smoothing methods greatly reduced the stand-
ard deviation of the results.

Simulation experiment: change of smoothing kernel FWHM
The Simple Smoothing method yielded an upward bias for
tissue mean values, while the Removed Smoothing method
yielded a downward bias. The magnitude of the bias de-
creased with increased filter size. Masked Smoothing dis-
played no significant bias of the tissue mean value. For all
methods, the standard deviation of the smoothed tissue
value decreased when the Smoothing Kernel FWHM in-
creased. Mean and standard deviation values for our three
FWHM values and three smoothing methods is provided
in Table 4.

All reported biases

For all simulations the number of iterations was 500,
and the standard deviation was relatively small com-
pared to the size of the bias. Hence, all biases reported
above were strongly significant (p < 0.0001).

Table 3 Simulation—vessel width: mean values and
(standard deviation)

Method\Vessel diameter 1 2 3 mm
Noise — No smoothing 51.2 (26.0) 50.2 (24.5) 485 (25.5)
Simple smoothing 613 (1.6) 66.5 (1.7 68.6 (1.6)
Removed smoothing 388 (14) 336 (14) 6 (1.3)
Masked smoothing 50.0 (1.8) 1(2.0) 50.1 (2.1)

Masked Smoothing is much closer to the true value of 50 than either of the
other smoothing methods. The standard deviation values are markedly better
for all smoothing methods than the No Smoothing data. A clear bias is
evident for the Simple and Removed Smoothing methods.

Only the Masked Smoothing method had mean values close to the true
underlying value of 50. Standard deviation values decreased as the kernel
size increased.

Phantom data experiment

The line profiles passing through the small and large ob-
ject show that each smoothing method is essentially iden-
tical for voxels away from the object (Figures 4 and 5).
However, where the profiles cross through the object, the
Simple Smoothing method has significantly lower valued
voxels than the reference, i.e. mean across all image vol-
umes. In contrast, for several voxels on either side of the
object, the Simple Smoothing method has higher intensity
values than the reference. The Masked Smoothing method
has values close to the reference both for voxels located
within the object, and outside of the object. We notice
that there are a few voxels at either side of the object
where the reference values lay between central values for
the object and background. This is an indication of the
limitation in the scanner resolution and reflects partial
volume and an inherent smoothness of the raw data. Simi-
lar effects are seen for the line profile passing through the
smaller object.

The mean and standard deviation for the 41 voxel line
parallel and adjacent to the large object, for all 30 collected
image volumes was 6.90 (13.08) HU. With Simple Smooth-
ing, using 5 x 5 x 5 mm Gaussian kernel, the mean in-
creased to 29.78 HU, but the standard deviation decreased
to 1.76. With the corresponding Masked Smoothing ap-
plied the mean equaled 8.26 HU, i.e. much closer to the
original. Further, the standard deviation equaled 1.96 HU,
close to same value seen with Simple Smoothing.

Patient CT perfusion data - calculation of CBF, CBV, and
TTP values

The ROIs of the tissue voxel that neighbored vascular
voxels, formed for each of the 23 datasets had a mean size
of 376,575 voxels, and was used for determining the mean
parameter values. The calculated values for CBE, CBY,
and TTD, for the three smoothing methods are reported in
Table 5. Mean values for CBV were greater than 50%
higher, and CBF were greater than 100% higher, for the
Simple Smoothing method than the Masked Smoothing
method. Mean values for both CBV and CBF were both
more than 30% lower for the Removed Smoothing method
than the Masked Smoothing method. The mean TTP
values for all smoothing methods were similar.
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Table 5 Mean Parametric values for subjects’ CT
perfusion scan data

Method\Parameter CBF (ml/(cc x min)) CBV (ml/cc) TTP (min)
Simple smooth 148 12 52
Removed smooth 35 029 54
Masked smooth 67 048 54

CBF and CBV values were higher and lower than would be expected
physiologically for the Simple and Removed Smoothing methods, respectively.
Time to Peak (TTP) values were similar for all methods.

All voxel-by-voxel comparisons for CBE, CBV, and TTP
were significantly different (p < < .0001, paired t-test) for
all pairwise comparisons of Simple Smoothing, Removed
Smoothing, and Masked Smoothing methods, with the ex-
ception of TTP calculated from Removed and Masked
Smoothing. Identical results (voxel by voxel) were found
in comparing TTP calculated from volumes smoothed
with the Removed Smoothing and Masked Smoothing
methods. Despite finding a significant difference between
TTP calculated with Simple Smoothing and either Re-
moved or Masked Smoothing, the magnitude of the differ-
ence was very small (1.14 seconds, while the time between
volumes was 3 seconds). For illustration, we display the
results of the three smoothing methods for one slice using
an 8 x 8 x 8 mm kernel (Figure 6).

Execution time of the Masked Smoothing method was
66 seconds for the 512x512x320x19 voxel CT perfusion
image volume using a Gaussian Filter with size 2 x 2 x
2 mm FWHM, which required a 25 x 25 x 21 voxel ker-
nel. Execution time using an 8 x 8 x 8 mm FWHM
Gaussian filter, which required a kernel of 99x99x93
voxels, was 81 seconds. Execution time was measured
using “tic” and “toc” Matlab functions, on a multi-user
Dell PowerEdge R710 server with Dual 2.4 GHz proces-
sors, and 48 GB RAM.

Discussion

Our simulation and phantom data show that the Simple
(i.e. ordinary Gaussian smoothing) and Removed Smooth-
ing introduce a significant bias to tissue voxels that neigh-
bor vessels, whereas our Masked Smoothing method did
not introduce a bias. Our experiment using patient data
revealed that the bias of the Simple and Removed
Smoothing methods had a large impact on the calculation
of CBF and CBV. The Removed Smoothing method had
the lowest values for CBF and CBV and were influenced
by factoring in zero values in the place of neighboring vas-
cular values. The Simple Smoothing method had in-
creased CBF and CBV values for tissue voxels that
neighbor vessels that were not physiologically reasonable.
The Masked Smoothing method had physiologically rea-
sonable values for CBF and CBV, between the extremes
returned by the Removed and Simple smoothing methods
(Table 5). Given that the Masked Smoothing method does
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not introduce bias (as opposed to the Removed and
Simple Smoothing methods), is easy to implement, and
executes fast enough to allow clinical use, we advocate its
use over the other methods for the smoothing of CT per-
fusion images.

Study design

We used simulated data to test the performance charac-
teristics of the three smoothing methods in situations
where the smoothing neighborhood for a tissue voxel in-
cluded the much higher valued vessel voxels. In all simu-
lations the tissue and vessel intensity values remained
constant, allowing us to measure the effect of varying
vessel characteristics (both vessel size and tracer concen-
tration), the effect of varying SNR, and influence of the
smoothing kernel FWHM. Using phantom imaging we
were able to further show potential biases caused by the
different smoothing methods. Using real world data
from 23 patients, we also compared Simple, Masked,
and Removed Smoothing to examine whether the theor-
etical improvement seen on simulations can have a real
life impact in the calculation of CBF, CBV, and TTP.
Using this approach we not only showed that Masked
Smoothing did not have the bias of the other methods,
but we also demonstrated the large practical impact this
has on determining physiological parametric images for
CBF and CBV.

Change of intensity ratio/vessel width

Our simulation experiments indicate that the Simple
Smoothing method has a large upward bias for tissue
voxels surrounding a vessel that increases as the inten-
sity of the vessel voxel increases. By setting the vessel
voxels to zero for the purpose of smoothing, the Re-
moved Smoothing method has a downward bias for tissue
voxels neighboring a vessel voxel that is both fixed and in-
dependent of the vessel voxel’s intensity level. The Masked
Smoothing method avoided bias by compensating for vox-
els set to zero. Increasing the vessel width increased the
bias for the Simple Smoothing method, which reflects that
a greater number of high intensity vessel voxels are within
the smoothing neighborhood of the tissue voxel. The Re-
moved Smoothing method also increased its bias (down-
ward) with an increase in vessel size. This is reasonable,
since for a given smoothing neighborhood the Removed
Smoothing method would have a greater number of vas-
cular voxels set to zero as the vessel width increases.
Again, by compensating for voxels that were set to zero
the Masked Smoothing method did not exhibit a bias.

Change of SNR/smoothing kernel FWHM

All smoothing methods provided a large decrease in the
noise level. Increasing the noise level caused an increase
in the standard deviation measured for all methods, but
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Figure 6 Simple, Removed, and Masked Smoothing images, with sample line profile. Top row: Simple and Removed Smoothing images;
Bottom row: Masked Smoothing image and the line profile of each along the line connecting the edge marks of the images. The line profile of
the Masked Smoothing image preserves the high intensity value for a vessel that is crossed near the line center, whereas the peak is much
smaller for the Simple Smoothing method, and smallest for the Removed Smoothing method. The Simple Smoothing method has much higher
values around the peak, due to the smoothing of the vessel’s intensity into neighboring tissue. Along the right edge the Masked Smoothing
method maintained the higher intensity values of the tissue, whereas the Simple and Removed Smoothing methods have lower values that are
influenced by surrounding zero values. An 8x8x8 mm smoothing kernel was selected for this illustration to simplify the line profile.

Line Profile, Yoxel X-coor Location wvs CBY

Simple Smooth
Removed Smooth
—Masked Smooth ]

il N

1 1 L L L L
50 100 150 200 250 300 350 400 450 500

had no effect on the calculated mean value. Increasing
the filter kernel for all methods reduced the measured
standard deviation. Increasing the filter size from 1 mm
to 2 mm increased the bias for both Simple and Re-
moved Smoothing. However, increasing the smoothing
kernel further to 4 mm resulted in the smallest bias. The
change in bias reflects the weighted proportion of voxels
that are within the smoothing neighborhood. With the
4 mm smoothing kernel, the smoothing is incorporating
a significant number of voxels from the “other-side” of

the vessel, hence lessening the influence of the vessel it-
self. As in all cases, the Masked Smoothing exhibited no
significant bias.

Influence of smoothing method on the calculation of CBF,
CBV, and TTP

Smoothing is a critical noise reduction pre-processing
step prior to the calculation of physiologic parameters as
we have demonstrated previously using simulations
[19-21]. The CBF and CBV derived from the Simple and
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Removed Smoothing methods differed, approximately,
by a factor of four for tissue voxels close to vessels, thus
demonstrating the critical importance of the smoothing
method. The CBF and CBV values, calculated using the
Masked Smoothing method, were in-between and signifi-
cantly different from the other smoothing methods, and
closest to physiologically expected values. Since the
Masked Smoothing approach showed no bias on the simu-
lated data, we believe these CBF and CBV values are the
most accurate. The TTP values for the Removed and
Masked Smoothing were identical because the time activ-
ity curves for a given voxel will only differ by a scaling
multiple, and were close to the Simple Smoothing method.

Filter selection

We used a Gaussian smoothing kernel for our implemen-
tation because it is commonly used for medical images,
and allows for fast implementations because it is separ-
able. Our 3D execution times for an entire volume was
significantly faster than a 2D TIPs bilateral filter on a sin-
gle slice. Klotz and Konig [5] also applied smoothing sep-
arately on brain and vascular voxels. Their approach used
multiple applications of a mean filter, whereas we utilized
a Gaussian kernel. Our approach would also work with
mean filters, since they are also separable. There are very
fast methods for implementing mean filters; and further-
more, multiple passes of a mean filter can be used to ap-
proximate a Gaussian filter. However, internal timings
during development favored our approach.

Segmentation and segmentation

The Masked Smoothing method assumes that satisfac-
tory segmentation is available. However, if the thickness
between planes is high then partial volume effects may
hinder segmentation. If a vessel voxel were to be classi-
fied as a tissue voxel, then neighboring tissue voxels will
be biased upward, especially as the tracer concentration
peaks in the vessel. However, this bias cannot exceed the
bias from using Simple Smoothing. Because of the quan-
titation, some voxels partially represent both underlying
tissue and vessel. This is not a problem in practice. If
this voxel is excluded, the estimate for a nearby tissue
voxel proceeds without using the value. If the voxel is
included, then a neighboring voxel may be biased
upward, but the effect will be minimal since the voxel
partially represents tissue and thus will not reach espe-
cially high intensity levels. This is similar to the situation
seen with the phantom data, where the mean of the raw
data shows a gradual increase to the higher intensity
object. In this case the Masked Smoothing best approxi-
mated the best estimate of the true value found by cal-
culating the mean across 30 image volumes. Finally, our
method allows both the arterial and tissue regions to be
smoothed separately.
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Conclusion

We demonstrated that the Masked Smoothing method ex-
ecutes rapidly and can readily integrate into existing
smoothing kernels. The Masked Smoothing method does
not introduce a bias in situations where nearby voxels
have a different classification and a large difference in in-
tensity values. This accuracy, coupled with speed, gives the
Masked Smoothing method the potential to significantly
improve the clinical processing of perfusion imaging.
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