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Abstract Based on the effective field theory (EFT) of cos-
mological perturbations, we explicitly clarify the pathology
in nonsingular cubic Galileon models and show how to cure it
in EFT with new insights into this issue. With the least set of
EFT operators that are capable to avoid instabilities in nonsin-
gular cosmologies, we construct a nonsingular model dubbed
the Genesis-inflation model, in which a slowly expanding
phase (namely, Genesis) with increasing energy density is
followed by slow-roll inflation. The spectrum of the pri-
mordial perturbation may be simulated numerically, which
shows itself a large-scale cutoff, as the large-scale anomalies
in CMB might be a hint for.

1 Introduction

Inflation is still being eulogized for its simplicity and also crit-
icized for its past-incompleteness [1,2]. A complete descrip-
tion of the early universe requires physics other than only
implementing inflation.

To the best of current knowledge, the inflation scenario
will be past-complete, only if it happens after a nonsingular
bounce which is preceded by a contraction [3–7], or a slow
expansion phase (namely, the Genesis phase) with increasing
energy density [8–10]. These two possibilities will be called
bounce-inflation and Genesis-inflation, respectively. Besides
being past-complete, a bounce-inflation or Genesis-inflation
scenario may explain the probable large-scale anomalies in
cosmological microwave background (CMB) [6,11]. The
nonsingular Quintom bounce [12–14] (see also [15]), the
ekpyrotic universe [16,17], the Genesis scenario [18–21],
and the slow expansion scenario [22–25] have acquired inten-
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sive attention. In classical nonsingular (past-complete) cos-
mologies, the null energy condition (NEC) must be violated
for a period.

The ghost-free bounce models [26–30] have been obtained
in cubic Galileon [31] and full Horndeski theory [32–34].
However, recently, it has been proved in Ref. [35] that there
exists a “no-go” theorem for the cubic Galileon, i.e., the gra-
dient instability (c2

s < 0 with cs being the sound speed of
the scalar perturbations) is inevitable in the corresponding
models. See also [36] for the extension to the full Horndeski
theory, and [37] for the attempts to avoid the “no-go” in Horn-
deski theory. Relevant studies can also be found in [38–40].

Recently, in Ref. [41] (see also [42]), we dealt with this
issue in the framework of the effective field theory (EFT)
[43–46], which has proved to be a powerful tool. In EFT, the
quadratic action of the scalar perturbation could always be
written in the form (see [41] for detailed derivations)

S(2)
ζ =

∫
d4xa3c1

[
ζ̇ 2 − c2

s
(∂ζ )2

a2

]
; (1)

where we have neglected higher-order spatial derivatives of
the scalar perturbation ζ , the sound speed squared of scalar
perturbation

c2
s =

(
ċ3

a
− c2

) /
c1, (2)

with the coefficients c1, c2 and c3 being time dependent
parameters in general, and c1 > 0 is needed to avoid the ghost
instability. The condition for avoiding the gradient instability
is c2

s ∼ ċ3/a − c2 > 0, which is usually integrated as

c3

∣∣∣
t f

− c3

∣∣∣
ti

>

∫ t f

ti
ac2dt. (3)

The condition of satisfying the inequality is to have c3 cross
0, which is hardly possible in models based on the cubic
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Galileon [35,36]. However, we found that it can easily be
satisfied by applying the EFT operator R(3)δg00 (with R(3)

being the 3-dimensional Ricci scalar on the spacelike hyper-
surface and δg00 = g00 + 1), so that the gradient instability
can be cured.

Though the integral approach (3) is simple and efficient,
some details of curing the pathology might actually be
missed. In this paper, based on the EFT, using a “non-integral
approach”, we revisit the nonsingular cosmologies. We begin
straightly with (2), and we clarify the origin of pathology and
show how to cure it in EFT with new insights into what is
happening (Sect. 2). To have practice in this clarification,
we build a stable model of the Genesis-inflation scenario by
using the R(3)δg00 operator (Sect. 3). As a supplementary
remark, we discuss a dilemma in the Genesis scenario (Sect.
4).

2 Re-proof of the “no-go” and its avoidance in EFT

The EFT is briefly introduced in Appendix A. In the unitary
gauge, the quadratic action of tensor perturbation γi j is (see
[41] for the derivation of Eqs. (4)–(8))

S(2)
γ = M2

p

8

∫
d4xa3QT

[
γ̇ 2
i j − c2

T
(∂kγi j )

2

a2

]
, (4)

where QT = f + 2m2
4

M2
p

> 0, c2
T = f/QT > 0, f and m2

4 are

coefficients defined in the EFT action (A4).
The quadratic action of the scalar perturbation ζ is given

by Eq. (1) with

c1 = QT

4γ 2M2
p
[2M4

pQT ḟ H − 2M2
pQT

×(2 f M2
p Ḣ + f̈ M2

p − 4M4
2 )

−6 ḟ M2
pm

3
3 + 3 ḟ 2M4

p + 3m6
3], (5)

c2 = f M2
p, (6)

c3 = aM2
p

γ
QT Qm̃4 , (7)

γ = HQT − m3
3

2M2
p

+ 1

2
ḟ , Qm̃4 = f + 2m̃2

4

M2
p

, (8)

where M4
2 , m3

3 and m̃2
4 are coefficients defined in the EFT

action (A4), and they could be time dependent in general.
Only if c1 > 0 and c2

s > 0, the model is free from ghost
and gradient instabilities, respectively. In nonsingular cosmo-
logical models based on the cubic Galileon [28–30], c1 > 0
is not hard to obtain, as can be seen from Eq. (5), since the

cubic Galileon contributes the
m3

3(t)
2 δK δg00 operator in EFT.

However, since c3 is also affected by
m3

3(t)
2 δK δg00 through

γ , c2
s < 0 is actually inevitable, as will be demonstrated in

the following.
Since c1 > 0, the requirement of c2

s > 0 equals

(
Hγ + Q̇T

QT
γ + Q̇m̃4

Qm̃4

γ − c2
T

γ 2

Qm̃4

− γ̇

)
QT Qm̃4

γ 2 > 0.

(9)

Here, QT �= Qm̃4 is required, which cannot be embodied by
the Horndeski theory [32–34]. Thus whether c2

s > 0 or not
is controlled by the parameter set (H , γ , QT , c2

T , Qm̃4 ).
In the following, with condition (9), we will re-prove the

“no-go” theorem for the cubic Galileon, and clarify how to
cure it in EFT. Different from the proof in [35,41,42], the
re-proof is directly based on the derivative inequality instead
of integrating it, which we called “non-integral approach”.
We assume that after the beginning of the hot “big bang” or
inflation, γ = H > 0, γ̇ < 0 and Qm̃4 = 1.

2.1 Case I: initially γ < 0

Since initially γ < 0, γ has to cross 0 from γ < 0 to γ > 0
at tγ . The analysis below is also applicable for all cases with
γ crossing 0 from γ < 0 to γ > 0.

In the ekpyrotic and bounce models, initially γ = H < 0.
In the Genesis model [18] and the slow expansion model [23],

H > 0 during the Genesis, but actually γ = H − m3
3

2M2
p

< 0,

as discussed in Sect. 4. Both belong to Case I.
In the cubic Galileon case, f = QT = Qm̃4 = 1. Around

tγ , condition (9) is

−γ̇ > 0. (10)

We see that c2
s < 0 is inevitable around tγ , since γ̇ > 0.

Thus the nonsingular models based on the cubic Galileon is
pathological, as first proved by LMR in [35].

In the EFT case, around tγ , condition (9) requires

(
Q̇T

QT
γ + Q̇m̃4

Qm̃4

γ − c2
T γ 2

Qm̃4

− γ̇

)
Qm̃4 > 0. (11)

We might have c2
s > 0, only if (considering only the case

where only one of QT and Qm̃4 is modified while the unmod-
ified one is unity) around γ = 0

Q̇T

QT
γ > γ̇ , (12)

or Qm̃4 < 0, or
Q̇m̃4

Qm̃4

γ > γ̇ + c2
T γ 2

Qm̃4

(for Qm̃4 � 0).

(13)
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In solution (12), at tγ , γ = 0 suggests QT = 0. Here, since
γ = 0 at tγ , c1 ∼ QT /γ 2 diverges. One possibility of remov-
ing this divergence is that γ ∼ (t − tγ )p and QT ∼ (t − tγ )n

around tγ , with n � 2p and p, n being constants. In Ijjas and
Steinhardt’s model [37], γ ∼ t − tγ , while QT ∼ (t − tγ )2,
which belongs to this case.

In the bounce model based on the cubic Galileon, Eq. (8)

gives γ = H − m3
3

2M2
p

�= H . Generally, the NEC is violated

when Ḣ > 0, while the period of c2
s < 0 corresponds to

the phase with γ � 0 and γ̇ > 0. These two phases do not
necessarily coincide, see Eq. (8). As pointed out by Ijjas and
Steinhardt [37], it is the sign’s change of γ that causes the
pathology. Here, we reconfirmed this point.

In solution (13), if Qm̃4 > 0, at tγ , γ = 0 suggests Qm̃4 =
0; while if Qm̃4 < 0, since Qm̃4 = 1 eventually, Qm̃4 must
cross 0 at tm̃4 (generally tm̃4 �= tγ ), at which Q̇m̃4γ > c2

T γ 2

must be satisfied. In both cases, Qm̃4 = 0 is required, as
proposed by Cai et al. [41] and Creminelli et al. [42].

We see again the details of Qm̃4 crossing 0. In both the
Genesis model and the bounce model, initially Qm̃4 = 1, so
if Qm̃4 < 0 around tγ , Qm̃4 must cross 0 twice. Thus it seems
that Q̇m̃4γ > c2

T γ 2 is hard to implement. However, with (2)
and (7), one always could solve Qm̃4 for any given c2

s ,

Qm̃4 = γ

aM2
p

∫
a

(
c1c

2
s + c2

)
dt, (14)

where QT = 1.

2.2 Case II: γ > 0 throughout

Since γ > 0 throughout, we must have γ̇ � 0 during some
period initially,1 otherwise γ will diverge in the infinite past.

In the cubic Galileon case, condition (9) is

Hγ − γ 2 − γ̇ > 0. (15)

In the bounce model, H < 0 in the contracting phase, and
in the Genesis model, H ∼ 0 in the Genesis phase, both
suggest Hγ − γ 2 − γ̇ < 0.2 Thus c2

s < 0 is inevitable in
the corresponding phases, so the nonsingular models based
on the cubic Galileon is pathological.

We see the Genesis model in the cubic Galileon version
again in detail. During the slow expansion (Genesis phase),
H ∼ 1/(−t)n with the constant n > 1. Thus

1 Of course, in Case II, we could also have γ̇ < 0 during some period,
but what we focus on is the period (i.e., γ̇ � 0) where pathologies
appear.
2 In the case where γ grows from 0 initially, (15) is also obeyed no
more.

γ̇

Hγ
� Ḣ

H2 ∼ (−t)n−1 � 1, (16)

which implies Hγ � γ̇ . Thus with (15), we see that c2
s < 0

is inevitable in the slow expansion phase. It seems that if
n = 1, Hγ � γ̇ might be avoided. However, when n = 1,
we have H = p/(−t) and a ∼ 1/(−t)p with constant p, thus
a → 0 in the infinite past. From (16), we see that c2

s > 0
requires p = H2/Ḣ > 1. Therefore, the universe is singular,
or from another point of view, it is geodesically incomplete
since the affine parameter of the graviton geodesics

∫ t f
ti

adt
is finite for p > 1 when ti → −∞.

In the EFT case, condition (9) requires

(
Q̇T

QT
γ + Q̇m̃4

Qm̃4

γ − c2
T γ 2

Qm̃4

+ Hγ − γ̇

)
Qm̃4 > 0. (17)

We might have c2
s > 0, only if (considering only the case

where either QT or Qm̃4 is modified)

Q̇T

QT
> c2

T γ − H + γ̇

γ
, (18)

or
Q̇m̃4

Qm̃4

<
c2
T γ

Qm̃4

− H + γ̇

γ
(initially Qm̃4 < 0). (19)

Generally, −Hγ + γ̇ > 0, as in the Genesis model and the
bounce model. Thus the solution (18) suggests Q̇T > 0, so
that we will have QT = 0 in the infinite past. Thus based
on (12) and (18), it seems that though the pathology can be
cured by applying QT , QT = 0 is inevitable. A model with
(18) has been proposed by Kobayashi [36] (QT ∼ 1

(−t)p ,
p > n > 1). During the Genesis γ ∼ H ∼ 1/(−t)n , n > 1,
(17) is

(
Q̇T /QT

)−1 γ̇

γ
= n/p < 1. (20)

Initially, QT ∼ 1
(−t)p = 0.

In solution (19), Qm̃4 must cross 0 at tm̃4 to Qm̃4 > 0,
as pointed out by Cai et al. [41] and Creminelli et al. [42].
Around tm̃4 , Q̇m̃4 > c2

T γ must be satisfied.
In (17), if Qm̃4 > 0 throughout,

Q̇m̃4

Qm̃4

>
c2
T γ

Qm̃4

− H + γ̇

γ
(21)

is obtained. Thus, similar to (18), we have Qm̃4 = 0 (which
definitely requires γ = 0) in the infinite past. In the Genesis
model, Qm̃4 ∼ 1/(−t)p and γ ∼ 1/(−t)n with p > n, since
Q̇m̃4/Qm̃4 > γ̇ /γ . However, p > n indicates Q̇m̃4 < γ

in the infinite past (Qm̃4 = 0), which violates the inequal-
ity (21). Thus Qm̃4 > 0 throughout seems unworkable
(Table 1).
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Table 1 Pathology in
nonsingular cubic Galileon
cosmological models and its
cure in EFT by either QT or
Qm̃4

Initially γ < 0 γ > 0 throughout

Nonsingular cubic Galileon models

Crossing 0 for γ ? � ×

c2
s < 0 is inevitable (“no-go”)?

� �

Phase with c2
s < 0

(Pathological phase)
γ̇ > 0 around γ � 0 Hγ − γ̇ < γ 2

Curing pathology in EFT

Conditions of c2
s > 0 (11) (17)

Applying QT (12) (18)

Applying Qm̃4 (13) (19)

3 Application to Genesis-inflation

In this section, we will build a nonsingular model with the
solution (19), in which the slow-roll inflation is preceded
by a Genesis phase. A Genesis phase is a slowly expanding
phase originating from the Minkowski vacuum with a drastic
violation of NEC, i.e., ε � −1; thus the energy density is
increasing with the expansion of the universe and hence is
free from the initial singularity [18,19] (see also [22]). As
will be shown below, our model cannot only get rid of the
pathology of instability, but also give rise to a flat spectrum
with interesting features at large scales.

3.1 The setup of the model

The action of the model is

S =
∫

d4x
√−g

[
M2

p

2
R + M2

pg1(φ)X + g2(φ)X�φ

+g3(φ)X2 − M4
pV (φ) + m̃2

4(t)

2
R(3)δg00

]
, (22)

where X = −∇μφ∇μφ/2, �φ = ∇μ∇μφ, and φ is a dimen-
sionless scalar field, so dimensionless are g1(φ), g2(φ), g3(φ)

and V (φ) .
Mapped into the EFT action (A4), (22) corresponds to

f = 1, (23)

�(t) = M4
pV − 1

2
g2φ̇

2(3H φ̇ + φ̈) + 1

4
g3φ̇

4, (24)

c(t) = M2
p

2
g1φ̇

2 − 1

2
g2φ̇

2(3H φ̇ − φ̈)

+1

2
g2,φφ̇4 + 1

2
g3φ̇

4, (25)

M4
2 (t) = −1

4
g2φ̇

2(3H φ̇ + φ̈) + 1

4
g2,φφ̇4 + 1

2
g3φ̇

4, (26)

m3
3(t) = −g2φ̇

3, (27)

m2
4 = 0, (28)

m̃2
4 �= 0. (29)

We can get the background equations

3H2M2
p = M2

p

2
g1φ̇

2 − 3g2H φ̇3

+1

2
g2,φφ̇4 + 3

4
g3φ̇

4 + M4
pV, (30)

ḢM2
p = −M2

p

2
g1φ̇

2 + 3

2
g2H φ̇3

−1

2
g2φ̇

2φ̈ − 1

2
g2,φφ̇4 − 1

2
g3φ̇

4, (31)

0 = g1φ̈ + 3g1H φ̇ + 1

2
g1,φφ̇2

−9g2H2φ̇2

M2
p

− 3g2 Ḣ φ̇2

M2
p

−6g2H φ̇φ̈

M2
p

+ 2g2,φφ̇2φ̈

M2
p

+ g2,φφφ̇4

2M2
p

+3g3H φ̇3

M2
p

+ 3g3φ̇
2φ̈

M2
p

+ 3g3,φφ̇4

4M2
p

+ M2
pVφ,

(32)

where “,φ = d/dφ” and “,φφ = d2/dφ2”.
Initially, the universe is slowly expanding (in the Genesis

phase), H � 0. We set V = 0, g1 = − f1e2φ , g2 = f2 and
g3 = f3, see e.g. Ref. [9], with f1,2,3 being dimensionless

constants. Thus with Eq. (30), we have
M2

p
2 g1φ̇

2 + 3
4g3φ̇

4 =
0, which suggests

e2φ = 3 f3
2M2

p f1
φ̇2. (33)

The solution is

φ̇ = 1

(−t)
, t < 0. (34)
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Equation (31) reads Ḣ = f3−2 f2
4M2

p
φ̇4. Thus we get

H = f3 − 2 f2
12M2

p

1

(−t)3 (35)

after the integration. In principle, there could be a constant,
i.e., H = f3−2 f2

12M2
p

1
(−t)3 + const, however, in that case we will

have H ≈ const initially, which is geodesically incomplete
(see also [47]).

Additionally, from Eq. (35), we have

a(t) = e
∫
Hdt = exp

(
f3 − 2 f2
24M2

pt
2

)
� 1 +

(
f3 − 2 f2
24M2

pt
2

)
,

(36)

while we set a(−∞) = 1.
During inflation, we set g1 = 1 and g2 = g3 = 0, since we

require that the inflationary phase is controlled by a simple
slow-roll field.3

3.2 The primordial perturbation and its spectrum

In the unitary gauge, the quadratic action of the scalar per-
turbation is presented in the form of Eq. (1). The coefficients
ci are (substituting Eqs. (23)–(29) into (5)–(7))

c1 = φ̇2

4M2
pγ

2 [2φ̇2M2
p(g2,φ + 2g3)

−2g2M
2
p(3H φ̇ + φ̈) + 3g2

2 φ̇4] − ḢM2
p

γ 2 , (37)

c2 = M2
p, (38)

c3 = aM2
p

γ
Qm̃4 , (39)

where

γ = H + g2

2M2
p
φ̇3, Qm̃4 = 1 + 2m̃2

4

M2
p

. (40)

The sound speed squared c2
s of the scalar perturbation is

defined in Eq. (2). Here, when m̃2
4 ≡ 0 or Qm̃4 = 1, the

sound speed squared of the scalar perturbation is reduced to

c2
s0 = 1

+ 4φ̇2[g2M
2
p(φ̈ − H φ̇) + g2

2 φ̇4 + φ̇2M2
p(g2,φ + g3)]

4ḢM4
p + φ̇2[2g2M

2
p(3H φ̇ + φ̈) − 3g2

2 φ̇4 − 2φ̇2M2
p(g2,φ + 2g3)] .

(41)

3 The behaviors of these gi in the two phases can easily be matched
together by making use of some shape functions [7,48].

It is easy to see that c2
s0 = 1 for inflation, since g2 =

g3 = 0, but not for Genesis. However, using the operator
m̃2

4(t)
2 R(3)δg00, we could always set c2

s = 1 in the Gene-

sis phase, which requires m̃2
4 = − 2M2

p( f2+ f3)
4 f2+ f3

. This suggests

Qm̃4 = − 3 f3
4 f2+ f3

is a constant at | − t | � 1, which is consis-
tent with the solution (19).

The equation of motion of ζ is

u′′ +
(
c2
s k

2 − z′′

z

)
u = 0, (42)

with u = zζ , z = √
2a2c1; the prime denotes the derivative

with respect to the conformal time τ = ∫
dt/a. The initial

state is the Minkowski vacuum, thus u = 1√
2csk

e−icskτ for ζ

modes deep inside the horizon. The power spectrum of ζ is

PR = k3

2π2

∣∣∣∣uz
∣∣∣∣
2

. (43)

In the following, we will analytically estimate the spectrum
of the scalar perturbation. We set c2

s = 1 throughout for
simplicity, which could be implemented by using Qm̃4(t), as
will be illustrated by the numerical simulation.

In the Genesis phase, substituting Eqs. (34), (35) into (5),
we have

c1 = 108 f3M4
p

(4 f2 + f3)2 (−t)2. (44)

Thus

z = 6
√

6 f3M2
p

4 f2 + f3
(−t) · exp

(
f3 − 2 f2
24M2

pt
2

)
. (45)

Then it is straightforward to obtain z′′
z ≈ ( f3−2 f2)2

72M4
pτ

6 ≈ 0
τ 2 ,

where τ = ∫ 1
a dt ≈ t . Thus the solution of Eq. (42) is

u1 =
√−πτ

2
[C11 · H (1)

1/2(−kτ) + C12 · H (2)
1/2(−kτ)], (46)

where C11 and C12 are functions of k, H (1)
ν and H (2)

ν are
Hankel functions of the first and the second kind of νth order,
respectively. The initial condition u = 1√

2k
e−ikτ indicates

C11 = i, C12 = 0. (47)

In the inflation phase, c1 = εM2
p, thus z =

√
2εa2M2

p. We

set ε � 1 as a constant during inflation. Then z′′/z ≈ (2 +
3ε)/τ 2. The solution of Eq. (42) is
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u2 =
√−πτ

2
[C21 · H (1)

ν2
(−kτ) + C22 · H (2)

ν2
(−kτ)] (48)

with ν2 ≈ 3/2 + ε.
We require that u1(τm) = u2(τm) and u′

1(τm) = u′
2(τm),

with τm approximately corresponding to the beginning time
of inflation phase, and we obtain

C21 = − i

4
e−ikτm

√ −π

2kτm
[2kτmH (2)

ν2−1(−kτm)

+(2ν2 − 1 − 2ikτm)H (2)
ν2

(−kτm)], (49)

C22 = i

4
e−ikτm

√ −π

2kτm
[2kτmH (1)

ν2−1(−kτm)

+(2ν2 − 1 − 2ikτm)H (1)
ν2

(−kτm)]. (50)

The power spectrum of ζ is given by

PR = P inf
R · |C21 − C22|2, k � aH, (51)

where P inf
R = H2

inf
8π2M2

pε
· ( k

aH

)3−2ν2 is the power spectrum

of the scalar perturbation modes that exit the horizon during
inflation. We see that for the perturbation modes exiting the
horizon in the Genesis phase, −kτm � 1, |C21 − C22|2 �
(−kτm)2, thus PR ∼ k2 is strong blue-tilted, while for the
perturbation modes exiting the horizon in the inflation phase,
−kτm � 1, |C21 − C22|2 � 1, thus PR ∼ k3−2ν2 = k−2ε is
flat with a slightly red tilt.

Tensor perturbation is unaffected by the R(3)δg00 operator.
Its quadratic action is given in Eq. (4) with QT = 1 and
c2
T = 1. The spectrum of primordial GWs can be calculated

similarly; see also Ref. [8]. Since z′′T /zT = a′′/a, we have

PT = P inf
T · |C21 − C22|2, k � aH, (52)

where P inf
T = 2H2

inf
π2M2

p
·( k

aH

)3−2ν2 is the power spectrum of ten-

sor perturbation modes that exit the horizon during inflation.
Thus the spectrum of primordial GWs has a shape similar to
that of the scalar perturbation.

3.3 Numerical simulation

In the numerical calculation, we set

g1(φ) = f1e2φ

1 + f1e2φ
tanh[q1(φ − φ0)], (53)

g2,3(φ) = f2,3

(
1 − tanh[q2,3(φ − φ0)]

2

)
, (54)

V (φ) = λ

2
(φ − φ1)

2
(

1 + tanh[q4(φ − φ2)]
2

)
, (55)

with f1,2,3, q1,2,3,4, φ0,1,2 and λ being dimensionless con-
stants. When φ � φ0, we have g1 = − f1e2φ , g2 = f2 and
g3 = f3, which brings a Genesis phase (36), while φ � φ0,
we have g1 = 1 and g2 = g3 = 0, the slow-roll inflation will

Fig. 1 The evolution of φ and φ̇, while we set f1 = 5, f2 = −0.23,
f3 = −13 f2, q1 = 1, q2 = 0.2, q3 = 0.2, q4 = 2, λ = 4 × 10−4,
φ0 = 7, φ1 = 22.7 and φ2 = 5.2

occur with V (φ) ∼ φ2. When φ � φ2, V (φ) ≈ 0, while
φ � φ2, V (φ) ≈ λ

2 (φ − φ1)
2. We do not require φ0 = φ2

but φ0 > φ2.
We start the simulation at ti � −1, and we set

φ̇(ti ) = 1

(−ti )
, φ(ti ) = 1

2
ln

[
3 f3

2 f1M2
p

1

(−ti )2

]
, (56)

and

a(ti ) = 1, H(ti ) = f3 − 2 f2
12M2

p

1

(−ti )3 . (57)

We show the evolution of φ and φ̇ in Fig. 1, and the evolution
of a, H and ε in Fig. 2. In Fig. 3a, c1 is plotted, and c1 > 0
is satisfied. In Fig. 3b, we see that γ does not cross 0, which
implies that, in the Genesis phase, c2

s0 < 0 (see Fig. 4a),
as proved in Sect. 4. By including the operator R(3)δg00,
we could have c2

s > 0 and so cure the gradient instability.
The spectrum of the scalar perturbation can be simulated
numerically, which is plotted in Fig. 5. The spectrum obtained
has a cutoff at large scale k < k∗ and is nearly scale-invariant
for k > k∗, as displayed in Eq. (51).

4 The dilemma of γ in the Genesis scenario

In the Genesis scenario based on the cubic Galileon, see [18]
(see also [23]), we have

γ = H + f2
2M2

p
φ̇3 = f3 + 4 f2

12M2
p

φ̇3 (58)

during the Genesis, where f2 < 0.
In Ref. [18], f3 = − f2, which suggests γ = f2

4M2
p
φ̇3 < 0.

Thus if a hot “big bang” or inflation (γ = H > 0) starts after
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(a) a and H (b)

Fig. 2 The evolution of a, H and ε, while we set f1 = 5, f2 = −0.23, f3 = −13 f2, q1 = 1, q2 = 0.2, q3 = 0.2, q4 = 2, λ = 4 × 10−4, φ0 = 7,
φ1 = 22.7 and φ2 = 5.2

(a) c1 (b) γ/H

Fig. 3 The evolution of c1, γ /H and ε, while we set f1 = 5, f2 = −0.23, f3 = −13 f2, q1 = 1, q2 = 0.2, q3 = 0.2, q4 = 2, λ = 4 × 10−4,
φ0 = 7, φ1 = 22.7 and φ2 = 5.2

the Genesis phase, γ must cross 0 at tγ (c2
s0 < 0 around tγ ,

which may be cured by applying Qm̃4 ). It is obvious that when
γ = 0, c1 in (1) will be divergent. Though this divergence
might not be a problem, it will affect the numerical simulation
for perturbations [49,50], unless QT /γ 2 is finite at tγ , as in
Ijjas and Steinhardt’s model [37].

In the model of [9], the Genesis is followed by Galileon
inflation [51]. Though f3 = − f2 and γ = f2

4M2
p
φ̇3 < 0 in

the Genesis phase, one might also have γ < 0 for Galileon
inflation, since g2 �= 0 in (22) during inflation. Thus it seems
that γ might not necessarily cross 0. However, after inflation,
γ crossing 0 is still inevitable.

In our model, the Genesis is followed by the slow-roll
inflation, γ = H > 0 for inflation. To not cross 0, initially
γ must satisfy γ > 0. In the Genesis phase, this suggests
f3 > −4 f2. Thus we will have γ > 0 throughout. However,
for the cubic Galileon model, the expense is

c2
s0 = 1 − 4 f2 + 4 f3

3 f3
< 0 (59)

during the Genesis. Here, this pathology is cured in EFT by
applying (19).

5 Conclusion

Based on the EFT of cosmological perturbations, we revisit
the nonsingular cosmologies, using the “non-integral
approach”. By doing this, we could have a clearer under-
standing of the pathology in nonsingular Galileon models
and its cure in EFT.

We clarify the application of the operator m̃2
4R

(3)δg00/2
in EFT, which is significant for curing the gradient instability.
We show that if Qm̃4 < 0 around γ = 0 is adopted to cure
the gradient instability, in solution (13) (with γ < 0 and
Qm̃4 = 1 initially), Qm̃4 must cross 0 twice; while in solution
(19) (with γ > 0 throughout), initially Qm̃4 < 0 must be
satisfied, Qm̃4 will cross 0 to Qm̃4 > 0 at tm̃4 , and crosses 0
only once. Thus at a certain time, Qm̃4 meeting 0 is required,
as pointed out first by Cai et al. [41], and also by Creminelli
et al. [42].
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(a) c2s0 (with m̃2
4 ≡ 0) and c2s (with m̃2

4(t)) (b) Qm̃4 and m̃2
4

(c) Q̇m̃4

Fig. 4 The sound speed of the scalar perturbation with and without m̃2
4, while we set f1 = 5, f2 = −0.23, f3 = −13 f2, q1 = 1, q2 = 0.2,

q3 = 0.2, q4 = 2, λ = 4 × 10−4, φ0 = 7, φ1 = 22.7 and φ2 = 5.2

We also clarify that in the bounce model with γ < 0
initially, c2

s < 0 will occur in the phase with γ � 0 and γ̇ >

0, while the NEC is violated when Ḣ > 0 (bounce phase);
these two phases do not necessarily coincide. As pointed out
by Ijjas and Steinhardt [37], it is the sign’s change of γ that
causes c2

s < 0. Here, we verify this point. In the Genesis
model, see [9,18], and also see [23], the case is similar, as
discussed in Sect. 4.

The nonsingular model with the solution (19) (γ > 0
throughout) has not been studied before. In Sect. 3, we design
such a model, in which a slow expansion phase (namely,
the Genesis phase) is followed by slow-roll inflation. Under
the unitary gauge, since γ̇ > 0 and γ > 0 (not crossing
0), the evolution of primordial perturbations can be simu-
lated numerically. The simulation displays that the spectrum
acquires a large-scale cutoff, as expected in Ref. [8].

We conclude that, based on EFT, not only a stable non-
singular cosmological scenario may be built without getting
involved in unknown physics, but also the phenomenolog-
ical possibilities of its implementation are far richer than
expected (see also [52,53] for the higher spatial derivative
operators).

Fig. 5 The spectrum PR of the scalar perturbation, while we set f1 =
5, f2 = −0.23, f3 = −13 f2, q1 = 1, q2 = 0.2, q3 = 0.2, q4 = 2,
λ = 4 × 10−4, φ0 = 7, φ1 = 22.7, φ2 = 5.2 and k∗ corresponds to
the comoving wave number of the perturbation mode which exits the
horizon around the beginning of inflation
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Appendix A: EFT of cosmological perturbations

With the ADM line element, we have

gμν =
(
NkNk − N 2 N j

Ni hi j

)
,

gμν =
(

−N−2 N j

N2

Ni

N2 hi j − Ni N j

N2

)
, (A1)

and
√−g = N

√
h, where Ni = hi j N j . The unit one-

form tangent vector is defined as nν = n0(dt/dxμ) =
(−N , 0, 0, 0) and nν = gμνnμ = (1/N ,−Ni/N ), which
satisfies nμnμ = −1. On the hypersurface, the induced 3-
dimensional metric is Hμν = gμν + nμnν ; thus

Hμν =
(
NkNk N j

Ni hi j

)
, Hμν =

(
0 0
0 hi j

)
. (A2)

The extrinsic curvature is Kμν ≡ 1
2LnHμν , where Ln is the

Lie derivative with respect to nμ. The induced 3-dimensional
Ricci scalar R(3) associated with Hμν is

R(3) = R + K 2 − KμνK
μν − 2∇μ(Knμ − nν∇νn

μ) . (A3)

Without higher-order spatial derivatives, the EFT reads
[41]

S =
∫

d4x
√−g

[
M2

p

2
f (t)R − �(t) − c(t)g00

+M4
2 (t)

2
(δg00)2 − m3

3(t)

2
δK δg00

−m2
4(t)(δK

2 − δKμνδK
μν)

+ m̃2
4(t)

2
R(3)δg00

]
+ Sm[gμν, ψm], (A4)

where δg00 = g00 + 1, δKμν = Kμν − HμνH with H being
the Hubble parameter. The coefficient set ( f, c,�, M2,m3,
m4, m̃4) specifies different theories and could be time depen-
dent in general.4 A particular subset (m4 = m̃4) of EFT

4 Different conventions of the nomenclatures of these coefficients were
adopted during the development of the EFT of cosmological perturba-
tions (see e.g., [43–46]). Here, we follow the convention used in Refs.
[45,46].

(A4) is the Horndeski theory. Sm[gμν, ψm] is the matter part,
which is minimally coupled to the metric gμν .

To obtain the quadratic actions for scalar and tensor per-
turbations, we will work in the unitary gauge, thus we set

hi j = a2e2ζ (eγ )i j , γi i = 0 = ∂iγi j . (A5)

Then we follow the standard method first used by Malda-
cena [54], it is straightforward (though tedious) to obtain the
quadratic actions of scalar perturbation ζ and tensor pertur-
bation γi j , as exhibited in Eqs. (1) and (4), respectively (see
[41] for detailed derivations).
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