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Abstract

Background: Relative expression algorithms such as the top-scoring pair (TSP) and the top-scoring triplet (TST)
have several strengths that distinguish them from other classification methods, including resistance to
overfitting, invariance to most data normalization methods, and biological interpretability. The top-scoring
‘N’ (TSN) algorithm is a generalized form of other relative expression algorithms which uses generic permutations
and a dynamic classifier size to control both the permutation and combination space available for
classification.

Results: TSN was tested on nine cancer datasets, showing statistically significant differences in classification
accuracy between different classifier sizes (choices of N). TSN also performed competitively against a wide variety of
different classification methods, including artificial neural networks, classification trees, discriminant analysis,
k-Nearest neighbor, naïve Bayes, and support vector machines, when tested on the Microarray Quality Control II
datasets. Furthermore, TSN exhibits low levels of overfitting on training data compared to other methods,
giving confidence that results obtained during cross validation will be more generally applicable to external
validation sets.

Conclusions: TSN preserves the strengths of other relative expression algorithms while allowing a much larger
permutation and combination space to be explored, potentially improving classification accuracies when fewer
numbers of measured features are available.

Keywords: Classification, Top-scoring pair, Relative expression, Cross validation, Support vector machine, Graphics
processing unit, Microarray
Background
Relative expression algorithms such as the top-scoring
pair (TSP) [1] and the top-scoring triplet (TST) [2] repre-
sent powerful methods for disease classification, primar-
ily focused on the creation of simple, yet effective
classifiers. These algorithms have several strengths that
distinguish them from other classification methods. First,
only the ranks of the expression data are used, rather
than the expression values directly, therefore these algo-
rithms are invariant to data normalization methods that
preserve rank-order. For example, quantile normalization
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is a rank-preserving common practice in microarray ana-
lysis to remove technical sources of variance between
arrays [3]. It is therefore preferable that the classification
algorithm be insensitive to such normalization proce-
dures, particularly in meta-analyses combining data from
multiple studies or in a clinical setting where additional
measurements beyond the features used to build the
classifier would be needed to apply the normalization
step. Second, relative expression classifiers make use of
only a few features to build each classifier, and require
relatively little to no parameter tuning. As a result, the
algorithms are generally resistant to overfitting, in which
an algorithm learns to classify the noise of the training
set rather than the true phenotypic signal of interest.
Moreover, the small number of features in relative
tral Ltd. This is an Open Access article distributed under the terms of the
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expression algorithms lends itself well to the develop-
ment of inexpensive clinical tests [4]. Third, an underap-
preciated aspect of relative expression algorithms involves
their potential for biological interpretation. The simplicity
of these algorithms, in which the ranks of a few features
shift positions in a predictable way between two pheno-
typic classes, suggests that the features participating in a
highly accurate classifier may represent or reflect an
underlying biological role for those features in the pheno-
types being classified. Relative expression algorithms may
therefore serve as hypothesis generators for additional
study. This characteristic may become particularly rele-
vant as classification methods move increasingly more
into technologies such as secretomics and miRNA expres-
sion measurements that, at present, result in fewer mea-
surements per sample than do transcriptomes.
In this paper we present a new formulation of the rela-

tive expression classification algorithm that generalizes
the idea of pairwise rank comparisons (TSP) and triplet
rank comparisons (TST) into generic permutation rank
comparisons, where the size of the classifier is not
defined a priori. This algorithm is called the top-scoring
‘N’ (TSN), where N is a variable indicating the size of
the classifier. As such, TSP and TST can be thought of
as special cases of the general TSN algorithm (just with
a fixed N= 2 or N= 3, respectively). Because the classifier
size is unconstrained, TSN can explore a much larger
permutation and combination space than that available
to either TSP or TST. All of the results presented in this
paper used no more than sixteen features from any of
the training sets.
The classification accuracy of the existing relative ex-

pression algorithms has been demonstrated in several
studies. Classifiers identified using relative expression
algorithms have been used to distinguish multiple cancer
types from normal tissue based on expression data
[1,2,4,5] as well as to predict cancer outcomes and model
disease progression [6]. Furthermore, relative expression
algorithms perform competitively when compared to
other, often more complex, classification methods, in-
cluding support vector machines [7], decision trees [8]
and neural networks [9]. Relative expression algorithms
have also been applied in a network context, illustrating
the dysregulation of cellular pathways in disease pheno-
types [10].
We first demonstrate that both TSP and TST are spe-

cial cases of the TSN algorithm. We illustrate the per-
formance of a range of TSN classifier sizes on a set of
nine cancer datasets. Finally, we demonstrate that TSN
performs competitively when compared to a broad range
of classification models, including artificial neural net-
works, classification trees, and support vector machines,
using data and results from the FDA-sponsored Micro-
array Quality Control II project (MAQC-II) [11].
Methods
Overview of relative expression algorithms TSP and TST
Given two classes of samples C= {C1, C2}, for which
ranked expression data are available on M features
X= {x1,. . .,xM}, the TSP algorithm [1] searches for the
feature pair {xi, xj} that maximizes the TSP score Δi,j,
defined as:

Δi;j ¼ Pr xi < xj C ¼ C1j Þ � Pr xi < xj C ¼ C2j Þ� ��; i 6¼ j
���

The TSP algorithm identifies the best pair of features for
which the rank of xi falls lower than the rank of xj in
most or all samples in class C1, and the rank of xi falls
lower than the rank of xj in few or no samples of class
C2. The max (Δi,j= 1) indicates a perfect classifier on the
training set in which no samples deviate from this pat-
tern. Classification is performed by comparing the order-
ing of features {xi, xj} in each sample of the test set to
the orderings associated with the two classes. A variant
on this algorithm known as k-TSP makes use of multiple
disjoint pairs to improve classification accuracy [5].
The top-scoring triplet (TST) algorithm [2] extends

the TSP algorithm to triplets of features. The six unique
permutations π1,. . .,π6 of each feature triplet {xi, xj, xk,}
are now considered explicitly, where:

π1¼ xi < xj < xk
� �

;π2¼ xi < xk < xj
� �

;π3¼ xj < xi < xk
� �

π4¼ xj < xk < xi
� �

;π5¼ xk < xi < xj
� �

;π6¼ xk < xj < xi
� �

These permutation counts are accumulated for each
sample of the training set, and the TST score Δi,j,k to be
maximized is then calculated as follows:

Δi;j;k ¼ 1
2

X6
m¼1

���Pr πm

���C¼C1

� �
�Pr πm

���C¼C2

� ����; i 6¼ j 6¼k

The top-scoring ‘N’ algorithm
The top-scoring ‘N’ algorithm, as the name implies,
extends these relative expression algorithms to a generic
permutation size. Within the context of feature permu-
tations, TSP and TST can be thought of as special cases
of the TSN algorithm, where a fixed N= 2 and N= 3 are
used, respectively. The TSN algorithm uses a nonstan-
dard counting system known as factoradics, or factorial-
radix numbers. Briefly, factoradics can be described as a
mixed-radix counting system in which the multiplicative
factor for each digit placeholder is derived from the set
of factorial numbers. An example of factoradics com-
pared to two other common fixed-radix counting sys-
tems is shown in Additional file 1: Figure S1. Given that
the factoradic counting system is intimately related to
the factorial numbers, it is perhaps not surprising that
there is a relationship between factoradics and permuta-
tions. There exist N! permutations of a set of N objects,
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and therefore each permutation of N objects may be
represented by an integer from 0 to N!-1. Factoradics pro-
vide a mechanism by which permutations may be
uniquely represented, and the translation between a per-
mutation and its corresponding factoradic is known as
the Lehmer code (Figure 1). Using factoradics, every per-
mutation has a one-to-one correspondence with a deci-
mal number. Several examples of permutation-to-decimal
translations via factoradics are shown in Additional file 1:
Figure S2.
The TSN algorithm works as follows: given two classes

of samples C= {C1, C2} with rank values for M features
{x1,. . .,xM}, and a classifier size N, the TSN algorithm
identifies the feature set X= {xi,xj,. . .xN} that maximizes
the sum of the difference of the permutation probability
distribution between the two classes:

ΔX ¼ 1
2

XN !

m¼1

���Pr σm
���C ¼ C1

� �
� Pr σm

���C ¼ C2

� ����

where σm is the mth permutation of the classifier X. Re-
call that there are N! possible permutations of X. The
permutation probability distribution for each class is
determined by mapping the permutation of X for each
training set sample to its corresponding factoradic, con-
verting the factoradic to decimal representation, and
Convert permutation σ = 3, 4, 1, 2 to decimal representation

Step 1: Let i = arg min(σ)

Step 2: Count the number of digits to the left of digit i that
are greater than σ(i) . This is the first digit of the factoradic.

3, 4,  1,  2

3, 4, 1, 2

Step 3: Remove σ(i) from the permutation. 3, 4, 2

Step 4: Perform steps 1-3 until no digits remain. 

3, 4, 2 3, 4, 2 Num digits: 2

3, 4 3, 4 Num digits: 0

4 4 Num digits: 0

3, 4, 1, 2 Num digits: 23, 4, 1,  2

Step 5: Convert factoradic 2, 2, 0, 0 to decimal, using the 
factorial numbers as the place for each digit.  

2 2 0 0
2x3!+2x2!+0x1!+0x0! = 16

Place: 3! 2! 1! 0!
Factoradic:

The unique decimal representation of permutation 
3, 4, 1, 2 is 16.  

Num digits: 2

Figure 1 The Lehmer code. A complete translation from
permutation to decimal, by way of the factoradic, for a permutation
of size 4. Each permutation is mapped to a single unique decimal
representation. Two additional translations from permutation to
factoradic are shown in Additional file 1: Figure S2.
using this as an index into a histogram of size N!. Once
normalized by the number of samples in each class, the
histogram represents the permutation probability distri-
bution for that feature set on that training set class.
When the two histograms are completely disjoint (i.e.,
there are no overlapping permutations between the two
classes), the TSN score ΔX= 1.
In addition to the primary TSN score, a secondary

score γ is calculated in the event of ties between two
classifiers. This is simply the distance in rank between
the first and last element of the classifier X for each
sample, summed over all the samples of the training set:

γX ¼
Xs

i¼1

RX Nð Þ;i � RX 1ð Þ;i
�� ��

where S is equal to the number of samples in the train-
ing set and N the size of the classifier X. R refers to the
rank, and X(1) and X(N) are the first and last elements
of the classifier, respectively. In the case of ties in the
primary TSN score, the classifier chosen will have the
largest distance in rank between the upper and lower
elements of the classifier.
In the case where N= 2, the TSN algorithm simply

reduces to the TSP algorithm, since X2= {xi, xj}, and Pr
(σ1) = Pr(xi < xj). In the case where N= 3, the TSN algo-
rithm reduces to the TST algorithm, since X3= {xi,xj,xk}
and Pr(σm) =Pr(πm). Because the TSN algorithm uses
factoradics to uniquely represent any permutation of any
size classifier, it allows TSP and TSP classifiers to be
used in concert as well as allowing for even larger classi-
fiers to be explored.
The choice of N is clearly important in the determin-

ation of a new classifier for a training set. The simplest
method is to choose the value of N with the greatest
classification accuracy after iteration over a range of N.
This method would reveal the apparently most effective
classifier size. In this case the experimenter is artificially
choosing the ‘best’ value of N for a given dataset. How-
ever, in fair comparisons with other classification meth-
ods it is important that the choice of N not be made a
posteriori (once the best classifier and value of N have
been determined) to avoid overly optimistic error esti-
mates. We do not choose the value of N outside the
cross validation loop, but rather dynamically select the
value of N at each iteration of the cross validation loop;
the choice is made based on the apparent accuracy of
that value of N on the training set. We call this version
of the algorithm dynamic N. Apparent accuracy is calcu-
lated by first finding the highest scoring classifier on the
training set for each value of N in a range specified by
the user. The value of N with the highest apparent ac-
curacy on the training set is then applied to the test set.
In the case of ties in apparent accuracy for multiple
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values of N, the algorithm chooses the smallest tied
value of N for the classifier at that iteration of the cross
validation loop. This process is repeated at each iteration
of the cross validation loop. Note that this method does
not preclude the user from artificially choosing the best
value of N (outside of cross validation) for other pur-
poses, but is rather a mechanism to avoid bias during
cross validation. This allows us to make fair comparisons
of the TSN algorithm with other classification methods
without potentially biasing the results in our favor.

Classification with TSN
Once the highest scoring classifier X is identified using a
training set, prediction on a test set is performed by
comparing the classifier permutation for each sample of
the test set to the permutation probability distribution of
the classifier for each class. A class is predicted for each
sample based on which permutation probability is higher
for the permutation of that sample. For example, given a
classifier size of N= 4, if a particular sample in the test
set contains permutation 16, that sample is classified as
class 1 or class 2 based on which class has higher per-
mutation probability for permutation 16 in the training
set. A special case may occur during classification, where
the probability for a test set permutation is equal (or zero)
for both classes. In this case, the algorithm adopts a
maximum likelihood approach to classify the sample.
First, all permutations are identified with an inversion
distance of 1 from the original permutation. The inver-
sion distance is defined as the number of adjacent
swaps required to convert one permutation into another
(Figure 2, top panel). For example, given a classifier of
Permutation: 3 4 1 2

Factoradic: 2 2 0 0 Sum = 4

1 2 3 4Sorted:

1 3 2 4Inversion 1:

3 1 2 4Inversion 2:

3 1 4 2Inversion 3:

3 4 1 2Inversion 4:

][

][

][

][

][

][

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

Figure 2 Inversions. (Top) There are four inversions required to
translate the sorted list [1 2 3 4] into the permutation [3 4 1 2]. The
sum of the digits of the factoradic give the number of inversions
required to translate one permutation into another. (Bottom) The
grey squares indicate the set of permutations that have a single
inversion distance from the original (black) permutations.
size 4, each permutation has a set of three permutations
with an inversion distance of 1. For permutation 16, this
set includes permutations 13, 17, and 22 (Figure 2, bot-
tom panel). Once the single-inversion permutation set is
identified, the permutation probability for this set is
summed for each class. The class with the higher prob-
ability is chosen. If the single-inversion distance sums are
the same between the two classes, the algorithm repeats
the calculation for the permutations with inversion dis-
tance 2, and so on. If a choice cannot be made, which
only occurs if both classes have identical permutation
probability distributions, that sample is considered an
incorrect prediction for that iteration of the cross valid-
ation loop.
Implementation of TSN
While the TSN algorithm can theoretically explore a very
large permutation space, the computational require-
ments of the algorithm rise very quickly and to avoid
overfitting the number of permutations explored must
be scaled to what is reasonable given available sample
numbers. The complexity of TSN is O M

N

� �
N !

� �
, where M

is the number of features and N is the size of the classi-
fier. We have previously shown [12] that the graphics
processing unit (GPU) is highly efficient when applied to
easily parallelizable algorithms such as TSP and TST.
Given that TSN preserves the parallel nature of the other
relative expression algorithms, it is also easily applied to
the GPU. However, given that GPU hardware is not yet
widely available to many researchers, we are releasing
the source code for both GPU and CPU implementations
of the TSN algorithm. TSN has been implemented for
both the GPU and the CPU in the MATLAB computing
environment.
The GPU is a specialized hardware device normally

used in graphics rendering. The nature of graphics ren-
dering involves large numbers of vector and matrix
operations performed in real-time, thus the GPU archi-
tecture emphasizes massive parallelism. Driven by the
billion-dollar gaming industry, the GPU has developed
into a powerful tool currently able to reach over 1 TFLOP
(trillion floating point operations per second) on a single
chip in single precision operations. With NVIDIA’s
release of the Compute Unified Device Architecture
(CUDA) in 2007, general-purpose computation on the
GPU became accessible. GPUs are increasingly being ap-
plied to computationally intensive scientific problems, in-
cluding molecular dynamics simulations [13], weather
prediction [14], quantum chemistry [15], bioinformatics
[16], and medical imaging [17]. Plots of running times
for N= 2, N= 3, and N= 4 over a wide range of input fea-
ture sizes are shown in Figure 3. The speedup of the
GPU over the CPU implementations of TSN improves as
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Figure 3 GPU vs. CPU running times. Running times for N= 2, N= 3, and N= 4 over a range of input feature sizes. Each point is the mean of
three independent runs of the software. The CPU running time for N= 2 over 20,000 features is similar to the running times for N= 3 over
1000 features and N= 4 over 200 features. The CPU version of TSN was run on a single core of a 2.4 GHz Intel Core 2 processor. The GPU version
of TSN was run on an NVIDIA Tesla C2050. The speedup due to the GPU improves as the value of N gets higher: for N= 2, the speedup is 2.3X,
for N= 3 the speedup is 2.8X, and for N= 4 the speedup is 4.4X. Running times reflect a single iteration of the algorithm and do not include
multiple iterations such as cross validation. Note that running times are also a function of the number of samples in the dataset; there were
70 samples in this dataset.
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the value of N gets higher, ranging from 2.3X for N= 2 to
4.4X for N= 4. Pseudocode for the operation of the core
TSN algorithm is shown in Additional file 1: Figure S3.
All source code for both the CPU and GPU implementa-
tions is freely available on http://price.systemsbiology.
net/downloads.php.

Results and discussion
Multiple values of N
TSN has been tested on nine cancer datasets that were
used in the previous k-TSP and TST papers [2,5] for
comparison between different values of N. These data-
sets represent a wide range of cancers, including colon
[18], leukemia [19], central nervous system lymphoma
(CNS) [20], diffuse large B-cell lymphoma (DLBCL) [21],
prostate [22-24], and a global cancer map (GCM) data-
set [25]. As discussed in the methods section, the TSN
algorithm can be used in two different ways: the choice
of N can be made a posteriori after all fixed values have
been tested, or the choice of N can be made at each iter-
ation of the cross validation loop (dynamic N) using ap-
parent accuracy. Apparent accuracy is calculated by first
finding the highest scoring classifier on the training set
for each value of N in a range specified by the user. The
value of N with the highest apparent accuracy on the
training set is then applied to the test set. In order to
directly compare the accuracies based on the number of
permutations of features, we chose 16 features for N= 2,
10 features for N= 3, and 9 features for N= 4. This
results in approximately 120 combinations for each
value of N. The reason for choosing different numbers of
features for each value of N is to equalize the combin-
ation space for each classifier size. For example, a classi-
fier of size N= 2 given 16 features can explore 2! = 2

permutations over 16
2

� �
¼ 120 combinations. A classifier

of size N= 3 given 10 features can explore 3! = 6 permu-

tations over 10
3

� �
¼ 120 combinations. A classifier of size

N= 4 given 9 features can explore 4! = 24 permutations

over 9
4

� �
¼ 126 combinations. As a result, any difference

in accuracy between these two classifiers depends pri-
marily on the permutation space being explored and not
the combination space (which is held relatively constant).
The features were chosen to be the most differentially
expressed genes based on the Wilcoxon rank sum test,
again selected within each iteration of the cross valid-
ation loop to avoid overly optimistic estimates.
Shown in Figure 4 are the results of TSN being applied

to three of the cancer datasets with fixed values of N as
well as dynamic N using 5-fold cross validation. To deter-
mine statistically significant differences between values

http://price.systemsbiology.net/downloads.php
http://price.systemsbiology.net/downloads.php


N=2 N=3 N=4 Dyn. N

0.75

0.85

0.95

1

A
cc

ur
ac

y

Leukemia DLBCL Lung

0.90

0.80

0.70
N=2 N=3 N=4 Dyn. N N=2 N=3 N=4 Dyn. N

A A

B
C

0.75

0.85

0.95

1

0.90

0.80

0.70

A
BC AB

C

A
B B C

Figure 4 Results of TSN classification on cancer datasets. Results of 100 rounds of 5-fold cross validation over a range of N= {2,3,4} where the
number of differentially expressed probes is different for each value of N {16,10,9}. This yields approximately the same number of possible
combinations for each value of N (~120), illustrating how classification accuracy can be determined by the permutation itself, not just the number
of combinations available. Results shown include accuracies of fixed values of N as well as the dynamic N algorithm described in the methods
section. Statistical differences were calculated using the nonparametric Kruskal-Wallis one-way analysis of variance by ranks, and a p-value < 0.05
was considered significant. If bars share the same letter they are not statistically different. The datasets are derived from [2] and represent a wide
range of cancers. Significance plots for all nine cancer datasets are in Additional file 1: Figure S4.
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of N, we ran 100 iterations of 5-fold cross validation on
each of the nine cancer datasets. Each iteration of cross
validation randomly selected different training and test
sets, allowing us to measure the distribution of accur-
acies for each value of N. This was done for fixed N= 2,
fixed N= 3, fixed N= 4, and dynamic N= {2,3,4} as
described above. Because the resulting distributions of
accuracies failed a Kolmogorov-Smirnov normality test,
we used the non-parametric Kruskal-Wallis one-way
analysis of variance by ranks to measure differences be-
tween the groups. A p-value < 0.05 was considered sig-
nificant. Significant differences are indicated by letters
above each bar; if two bars share the same letter they are
not statistically different. Significance plots for all nine
cancer datasets are shown in Additional file 1: Figure S4.
All raw data is included in Additional file 2.
It is clear from Figure 4 that the value of N can have a

significant effect on the resulting accuracy of the classi-
fier, which indicates that the larger permutation space
afforded by larger values of N can be useful in identify-
ing an effective classifier. In the Leukemia dataset, for
example, N= 2 and N= 3 produced the apparently most
effective classifiers; in the Lung dataset, N= 3 and N= 4
were the apparent best. In four of the nine datasets
(DLBCL, Prostate2, Prostate3, and GCM), dynamic N
yielded no significant difference in accuracy with the
highest-scoring fixed value of N. In two additional data-
sets (Leukemia and Lung), the dynamic N accuracy is
statistically in between the highest- and lowest-scoring
values of N. In the remaining three datasets (Colon,
CNS, and Prostate1), the dynamic N accuracy is not sig-
nificantly different from the lowest-scoring fixed value of
N. The dynamic N TSN result is the fair estimate of
how well the algorithm would be expected to perform
with optimization for N, without the bias that is intro-
duced by choosing the apparently best N after the error
estimate has been made.

Microarray quality control II datasets
Published in 2010, the Microarray Quality Control II
dataset (MAQC-II) [11] was produced by the National
Center for Toxicological Research at the United States
Food and Drug Administration in collaboration with 96
universities and companies from around the world. One
goal of the project was to build a set of microarray data
that could be used to validate classification methods in a
rigorous and systematic manner. To this end, six differ-
ent microarray datasets representing a range of pheno-
types, microarray platforms, and sample sizes were
selected by the consortium. Each dataset was partitioned
into one or more endpoints, where an endpoint repre-
sents a class partition to be predicted. A total of thirteen
endpoints were represented by the six datasets. Each
endpoint consisted of a training set as well as an inde-
pendently collected validation set. A listing of the
MAQC-II datasets and endpoints used in this study is
provided in Table 1. Note that only five of the datasets
representing nine endpoints are currently available for
public download from the Gene Expression Omnibus
(GSE16716). We tested TSN on all endpoints for which
data was available. Thirty-six independent groups using
a variety of classification methods, including artificial
neural networks, classification trees, discriminant ana-
lysis, k-Nearest neighbor, naïve Bayes, and support vec-
tor machines, analyzed the MAQC-II training sets and
provided nearly 20,000 models to the MAQC-II consor-
tium. It should be noted the groups were not restricted
to a single classification method, and many chose to use



Table 1 The five MAQC-II datasets, representing endpoints A through I that are available from the Gene Expression
Omnibus

Dataset Endpoint Description Platform

Hamner A Lung tumorigen vs. non-tumorigen Affymetrix Mouse 430 2.0

Iconix B Non-genotoxic liver carcinogens vs. non-carcinogens Amersham Uniset Rat 1 Bioarray

NIEHS C Liver toxicants vs. non-toxicants Affymetrix Rat 230 2.0

Breast Cancer D Pre-operative treatment response Affymetrix Human U133A

E Estrogen receptor status

Multiple Myeloma F Overall survival milestone outcome Affymetrix Human U133 Plus 2.0

G Event-free survival milestone outcome

H Gender of patient (positive control)

I Random class labels (negative control)
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different methods for the different endpoints based on
what they determined would be the most successful. As
a result, our single classification method, TSN, is being
compared against ensembles of methods by most
MAQC-II participants. Each group ultimately nominated
a single model from each endpoint training set to be
tested on the corresponding validation set, and these
models were compiled into a list of final predictions. To
further test the classification algorithms, the MAQC-II
consortium swapped the training and validation sets for
each endpoint, and each group submitted predictions for
the swapped datasets. TSN was tested against the groups
that submitted validation set predictions for every
Table 2 The participants that submitted models for every end
classification methods used

Code Name

CAS Chinese Academy of Sciences

CBC CapitalBio Corporation, China

Cornell Weill Medical College of Cornell University

FBK Fondazione Bruno Kessler, Italy

GeneGo GeneGo, Inc.

GHI Golden Helix, Inc.

GSK GlaxoSmithKline

NCTR National Center for Toxicological Research, FDA

NWU Northwestern University

SAI Systems Analytics, Inc.

SAS SAS Institute, Inc.

Tsinghua Tsinghua University, China

UIUC University of Illinois, Urbana-Champaign

USM University of Southern Mississippi

ZJU Zejiang University, China
available endpoint on both original and swapped data. A
listing of the participants and their respective classifica-
tion methods used in this paper is provided in Table 2.
The metric chosen by the MAQC-II consortium to

rate the classification models was the Matthew’s Correl-
ation Coefficient (MCC). The MCC has several advan-
tages over the accuracy/sensitivity/specificity standard,
as it is able to detect inverse correlations as well as being
sensitive to the overall size of the training sets. MCC
values range from +1 (perfect prediction) to −1 (perfect
inverse prediction), with 0 indicating random prediction.
Note that unbeknownst to the original study partici-
pants, endpoints H and I were replaced by a positive
point (original and swap) in the MAQC-II study, and the

Classification algorithm(s) used

Naïve Bayes, Support Vector Machine

k-Nearest Neighbor, Support Vector Machine

Support Vector Machine

Discriminant Analysis, Support Vector Machine

Discriminant Analysis, Random Forest

Classification Tree

Naïve Bayes

k-Nearest Neighbor, Naïve Bayes, Support Vector Machine

k-Nearest Neighbor, Classification Tree, Support Vector Machine

Discriminant Analysis, k-Nearest Neighbor, Machine Learning,
Support Vector Machine, Logistic Regression

Classification Tree, Discriminant Analysis, Logistic Regression,
Partial Least Squares, Support Vector Machine

Classification Tree, k-Nearest Neighbor, Recursive Feature Elimination,
Support Vector Machine

Classification Tree, k-Nearest Neighbor, Naïve Bayes,
Support Vector Machine

Artificial Neural Network, Naïve Bayes, Sequential Minimal Optimization,
Support Vector Machine

k-Nearest Neighbor, Nearest Centroid
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control (gender of the study participants) and a negative
control (random class assignments), respectively. There-
fore, it was expected that endpoint H would result in
very high prediction MCC and endpoint I would result
in MCC close to zero. The MCC is calculated as follows:

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

If any of the sums in the denominator of the MCC are
zero, the denominator is set to be one, resulting in an
MCC equal to zero.
As stated above, only five of the six MAQC-II datasets

are currently available from GEO, therefore we were
only able to compare TSN to these datasets. All filtering
and classification was performed using only the training
data for each dataset – the validation set was left com-
pletely out of these calculations. Where possible (Affy-
metrix platforms), the features of each training set were
first filtered for a high percentage (66%) of present or
marginal calls using a MATLAB implementation of the
Affymetrix MAS5 call algorithm [26]. The most differen-
tially expressed probes for each training set were identi-
fied using the TSN implementation of the Wilcoxon
rank sum test. Finally, the dynamic N TSN algorithm
was used to identify the highest-scoring classifier on the
training set over a range of N= {2,3,4} and DEG=
−0.1
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Figure 5 Results of TSN classification on MAQC-II datasets. MCC of MA
set and then applied to the validation set. MCC values range from +1 (perf
random prediction. Boxplots show the MCC distribution of the models from
endpoints from the MAQC-II. The original and swap MCC values are averag
showing the mean MCC over endpoints A through H is shown (ALL). We e
control. The bottom and top of each box indicate the lower and upper qu
median. The whiskers indicate the extreme values. The asterisk represents t
Additional file 3.
{16,10,9}. As described in the methods section, the algo-
rithm was allowed to select the best value of N using ap-
parent accuracy of the training set. The highest scoring
classifier was then applied to the validation set for each
endpoint. The results of the TSN algorithm models ap-
plied to each endpoint validation set in the context of all
analyzed participants are shown in Figure 5. All raw data
is included in Additional file 3. The mean MCC value
across all endpoints (excluding endpoint I, the negative
control) was also calculated for each participant, and is
shown in Figure 5. TSN performs competitively on these
datasets, yielding a mean MCC value across all endpoints
of 0.444. The maximum mean MCC value achieved by
any of the groups was SAI, with 0.489.
In addition to standard cross validation and validation

set MCC, we also measured the statistical significance of
different classifier sizes. As described with the cancer
datasets above, we ran 100 iterations of TSN using fixed
values of N= 2, N= 3, and N= 4, as well as dynamic
N= {2,3,4} on all nine of the MAQC-II training sets. For
example, in endpoints A and B, N= 4 yields a statistically
significant improvement over smaller classifier sizes. For
endpoints C and E, N= 2 is the most effective classifier
size. For endpoint G, there was no significant difference
between any of the classifier sizes. In six out of the nine
datasets (endpoints A, C, F, G, H, and I) there was no
significant difference in MCC between dynamic N and
F G H I ALL

QC-II endpoints A through I, based on models learned on the training
ect prediction) to −1 (perfect inverse prediction), with 0 indicating
the 15 groups, including TSN, that predicted all original and swap

ed for each group. In addition to endpoints A through I, a boxplot
xclude endpoint I from this final boxplot because it is a negative
artiles of the data, respectively. The middle line represents the
he performance of TSN on that dataset. All raw data is included in
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the highest-scoring fixed value of N. The complete
results are available in Additional file 1: Figure S5. All
raw data is included in Additional file 4.
In order to test the amount of overfitting, we calculated

the difference of the MCC values from each validation
set and the corresponding MCC values from training set
cross validation for each group. The cross validation per-
formed for TSN was 5-fold cross validation, repeated 10
times, as recommended by the MAQC-II consortium.
These results are presented in Figure 6 as boxplots show-
ing the distribution of ΔMCC values. To prevent negative
and positive values canceling each other out, the absolute
value of each ΔMCC was used. Both original and swap
datasets were included in the calculation of ΔMCC. TSN
has a mean ΔMCC=0.101, ranking second after SAS for
the lowest ΔMCC of any of the MAQC-II participants –
demonstrating that TSN had a remarkably low overfitting
to the data.
For all analyses in this paper, up to sixteen differen-

tially expressed genes were selected by the Wilcoxon
rank sum test to input into the TSN algorithm. The fact
that so few features were input to TSN in these analyses
could explain the low levels of overfitting it exhibits. To
test this, we ran all MAQC-II training sets (except for
the negative control endpoint I, which would bias the
results of ΔMCC towards zero) over a range of input
feature sizes. For N= 2, we input a range of 16 to 10,000
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Figure 6 ΔMCC Results from MAQC-II data. Boxplots showing the distrib
ΔMCC=Cross Validation MCC – Validation Set MCC. This illustrates the amo
value of each ΔMCC value was used in the calculations. The cross validatio
as recommended by the MAQC-II consortium. Boxplots are sorted by the m
Additional file 3.
input features. For N= 3 we input a range of 10 to 670
input features. For N= 4 we input a range of 9 to 188 in-
put features. These numbers were chosen to span approxi-
mately the same range of possible feature combinations
for each value of N (approximately 120 combinations up
to 50 million combinations). Finally we ran dynamic N
for N= {2,3,4} over the same ranges of input feature
sizes. ΔMCC values were calculated for each input fea-
ture size, and box plots of their distributions are shown
in Additional file 1: Figure S6. All raw data is included in
Additional file 5. While the mean ΔMCC values do in-
crease as a function of input feature size, overall the
levels of overfitting remain low for TSN despite the in-
crease. The mean ΔMCC exhibited by dynamic N TSN
at the largest input size of [10000, 760, 188], is 0.148.
This is still among the smallest mean ΔMCC value
observed in any of the participating groups; only three
groups are smaller (GHI, GSK, and SAS).

Conclusions
The goal of relative expression classification algorithms
is to identify simple yet effective classifiers that are resist-
ant to data normalization procedures and overfitting,
practical to implement in a clinical environment, and po-
tentially biologically interpretable. The top-scoring ‘N’ al-
gorithm presented here retains these desirable properties
while allowing a larger combination and permutation
CTR FBK GeneGoTsinghua CBC ZJU UIUC CAS

ution of ΔMCC values on the original data for each group, where
unt of overfitting present during cross validation. The absolute
n performed for TSN was 5-fold cross validation, repeated 10 times,
ean ΔMCC for each group (asterisk). All raw data is included in
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space to be searched than that afforded by earlier relative
expression algorithms such as TSP and TST. TSN can
also recommend the classifier size (N) most likely to re-
sult in effective classification based on the training set.
Of course, more care must be taken to avoid overfitting
with TSN, particularly on smaller datasets, given that the
permutation space grows with the factorial numbers.
However, the problem of overfitting can be well miti-
gated by choosing a suitably small number of features
from which to build the classifier, or ensuring that the
number of samples available is large enough to justify
searching a larger combination space. All the results pre-
sented in this paper were performed using between nine
and sixteen features of the microarray datasets. TSN is
therefore well suited for datasets of emerging technolo-
gies that contain smaller numbers of features to begin
with, such as secretomics and miRNAs. However, as
Figure 3 demonstrates, it is still possible to search tens of
thousands of permutations in a relatively short amount
of time, when justified by large sample sizes. The statis-
tical significance of the resulting classifiers can then be
determined though e.g. permutation tests of the class
labels.
We have demonstrated the effectiveness of TSN in

classification of the MAQC-II datasets in comparison
with many other classification strategies, including artifi-
cial neural networks, classification trees, discriminant
analysis, k-Nearest neighbor, naïve Bayes, and support
vector machines, as implemented by several universities
and companies from around the world. We do not claim
that TSN is necessarily the best or most effective classi-
fier for every circumstance. For example, TSN performs
relatively poorly on endpoint H, which as the positive
control in which classes were simply assigned as the
gender of the study participants, should be among the
easiest to classify. A major strength of the algorithm is
the level to which the MCC values for cross validation
agree with the MCC values on the independent valid-
ation set (ΔMCC). Importantly, these results indicate a
very low level of overfitting, and increase our confidence
that results generated through cross validation on future
datasets will be effective classifiers on independent valid-
ation sets. That is, when TSN works on a dataset it is
relatively more likely to be true, and conversely, when it
is going to fall short in independent validation it typic-
ally does not work well in cross validation and so can be
discarded as a candidate diagnostic early in the process.
Analyses over a range of input sizes indicate that overfit-
ting remains low even as input feature numbers increase,
given sufficient sample sizes.
Of all the MAQC-II participants, including TSN,

group SAS yielded the lowest mean ΔMCC score
(0.074), indicating low levels of overfitting. Group SAI
yielded the highest mean MCC (0.4893) for original and
swap datasets, indicating high levels of validation set ac-
curacy based on the training set. Both of these groups
utilized multiple classification strategies across all end-
points. For example, group SAS used logistic regression
for endpoints A, E, and I, support vector machines for
endpoints B, G, and H, partial least squares regression
for endpoints D and F, and a decision tree for endpoint C.
Group SAI used support vector machines for endpoints
A, B, E, F, G, and I, k-nearest neighbor for endpoints C
and H, and a machine learning classifier for endpoint D.
Group SAI also used a range of different feature selec-
tion methods for each endpoint. Both groups also used
different classification strategies for the swap datasets.
For example, group SAS used logistic regression for the
original endpoint E data but partial least squares regres-
sion on swap endpoint E. Group SAI used a machine
learning classifier for the original endpoint D, and dis-
criminant analysis for swap endpoint D [11]. As a result,
TSN is not only being compared to different classifica-
tion strategies, but an ensemble of classification strat-
egies that were chosen in an attempt to maximize
success for each endpoint across both original and swap
datasets. Given its advantages of relative simplicity, bio-
logical interpretability, and low levels of overfitting, the
TSN algorithm can serve as a useful tool for hypothesis
generation, particularly as next generation sequencing
and proteomics technologies yield increasing sensitivity
in biomolecule measurements.
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